Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (646)

Search Parameters:
Keywords = long-distance dependence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 4124 KiB  
Article
Prompt-Gated Transformer with Spatial–Spectral Enhancement for Hyperspectral Image Classification
by Ruimin Han, Shuli Cheng, Shuoshuo Li and Tingjie Liu
Remote Sens. 2025, 17(15), 2705; https://doi.org/10.3390/rs17152705 - 4 Aug 2025
Abstract
Hyperspectral image (HSI) classification is an important task in the field of remote sensing, with far-reaching practical significance. Most Convolutional Neural Networks (CNNs) only focus on local spatial features and ignore global spectral dependencies, making it difficult to completely extract spectral information in [...] Read more.
Hyperspectral image (HSI) classification is an important task in the field of remote sensing, with far-reaching practical significance. Most Convolutional Neural Networks (CNNs) only focus on local spatial features and ignore global spectral dependencies, making it difficult to completely extract spectral information in HSI. In contrast, Vision Transformers (ViTs) are widely used in HSI due to their superior feature extraction capabilities. However, existing Transformer models have challenges in achieving spectral–spatial feature fusion and maintaining local structural consistency, making it difficult to strike a balance between global modeling capabilities and local representation. To this end, we propose a Prompt-Gated Transformer with a Spatial–Spectral Enhancement (PGTSEFormer) network, which includes a Channel Hybrid Positional Attention Module (CHPA) and Prompt Cross-Former (PCFormer). The CHPA module adopts a dual-branch architecture to concurrently capture spectral and spatial positional attention, thereby enhancing the model’s discriminative capacity for complex feature categories through adaptive weight fusion. PCFormer introduces a Prompt-Gated mechanism and grouping strategy to effectively model cross-regional contextual information, while maintaining local consistency, which significantly enhances the ability for long-distance dependent modeling. Experiments were conducted on five HSI datasets and the results showed that overall accuracies of 97.91%, 98.74%, 99.48%, 99.18%, and 92.57% were obtained on the Indian pines, Salians, Botswana, WHU-Hi-LongKou, and WHU-Hi-HongHu datasets. The experimental results show the effectiveness of our proposed approach. Full article
Show Figures

Figure 1

23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Viewed by 211
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

20 pages, 2399 KiB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Viewed by 304
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

16 pages, 14336 KiB  
Article
Three-Dimensional Binary Marker: A Novel Underwater Marker Applicable for Long-Term Deployment Scenarios
by Alaaeddine Chaarani, Patryk Cieslak, Joan Esteba, Ivan Eichhardt and Pere Ridao
J. Mar. Sci. Eng. 2025, 13(8), 1442; https://doi.org/10.3390/jmse13081442 - 28 Jul 2025
Viewed by 294
Abstract
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the [...] Read more.
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the 2D-markers limitation through a 3D design that enhances resilience and maintains contrast for computer vision detection over extended periods. The proposed solution has been validated through simulation, water tank testing, and long-term sea trials for 5 months. In each stage, the marker was compared based on detection per visible frame and the detection distance. In conclusion, the design demonstrated superior performance compared to standard 2D markers. The proposed Three-Dimensional Binary Marker provides compatibility with widely used fiducial markers, such as ArUco and AprilTag, allowing quick adaptation for users. In terms of fabrication, the Three-Dimensional Binary Marker uses additive manufacturing, offering a low-cost and scalable solution for underwater localization tasks. The proposed marker improved the deployment time of fiducial markers from a couple of days to sixty days and with a range up to seven meters, providing robustness and reliability. As the marker survivability and detection range depend on its size, it is still a valuable innovation for Autonomous Underwater Vehicles, as well as for inspection, maintenance, and monitoring tasks in marine robotics and offshore infrastructure applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 2182 KiB  
Article
Assessment of Hydroxyl Radical Reactivity in Sulfur-Containing Amino Acid Models Under Acidic pH
by Chryssostomos Chatgilialoglu, Piotr Filipiak, Tomasz Szreder, Ireneusz Janik, Gordon L. Hug, Magdalena Grzelak, Franciszek Kazmierczak, Jerzy Smorawinski, Krzysztof Bobrowski and Bronislaw Marciniak
Int. J. Mol. Sci. 2025, 26(15), 7203; https://doi.org/10.3390/ijms26157203 - 25 Jul 2025
Viewed by 179
Abstract
Methionine residues in proteins and peptides are frequently oxidized by losing one electron. The presence of nearby amide groups is crucial for this process, enabling methionine to participate in long-range electron transfer. Hydroxyl radical (HO) plays an important role being generated [...] Read more.
Methionine residues in proteins and peptides are frequently oxidized by losing one electron. The presence of nearby amide groups is crucial for this process, enabling methionine to participate in long-range electron transfer. Hydroxyl radical (HO) plays an important role being generated in aerobic organisms by cellular metabolisms as well as by exogenous sources such as ionizing radiations. The reaction of HO with methionine mainly affords the one-electron oxidation of the thioether moiety through two consecutive steps (HO addition to the sulfur followed by HO elimination). We recently investigated the reaction of HO with model peptides mimicking methionine and its cysteine-methylated counterpart, i.e., CH3C(O)NHCHXC(O)NHCH3, where X = CH2CH2SCH3 or CH2SCH3 at pH 7. The reaction mechanism varied depending on the distance between the sulfur atom and the peptide backbone, but, for a better understanding of various suggested equilibria, the analysis of the flux of protons is required. We extended the previous study to the present work at pH 4 using pulse radiolysis techniques with conductivity and optical detection of transient species, as well as analysis of final products by LC-MS and high-resolution MS/MS following γ-radiolysis. Comparing all the data provided a better understanding of how the presence of nearby amide groups influences the one-electron oxidation mechanism. Full article
Show Figures

Figure 1

24 pages, 1572 KiB  
Article
Optimizing DNA Sequence Classification via a Deep Learning Hybrid of LSTM and CNN Architecture
by Elias Tabane, Ernest Mnkandla and Zenghui Wang
Appl. Sci. 2025, 15(15), 8225; https://doi.org/10.3390/app15158225 - 24 Jul 2025
Viewed by 262
Abstract
This study addresses the performance of deep learning models for predicting human DNA sequence classification through an exploration of ideal feature representation, model architecture, and hyperparameter tuning. It contrasts traditional machine learning with advanced deep learning approaches to ascertain performance with respect to [...] Read more.
This study addresses the performance of deep learning models for predicting human DNA sequence classification through an exploration of ideal feature representation, model architecture, and hyperparameter tuning. It contrasts traditional machine learning with advanced deep learning approaches to ascertain performance with respect to genomic data complexity. A hybrid network combining long short-term memory (LSTM) and convolutional neural networks (CNN) was developed to extract long-distance dependencies as well as local patterns from DNA sequences. The hybrid LSTM + CNN model achieved a classification accuracy of 100%, which is significantly higher than traditional approaches such as logistic regression (45.31%), naïve Bayes (17.80%), and random forest (69.89%), as well as other machine learning models such as XGBoost (81.50%) and k-nearest neighbor (70.77%). Among deep learning techniques, the DeepSea model also accounted for good performance (76.59%), while others like DeepVariant (67.00%) and graph neural networks (30.71%) were relatively lower. Preprocessing techniques, one-hot encoding, and DNA embeddings were mainly at the forefront of transforming sequence data to a compatible form for deep learning. The findings underscore the robustness of hybrid structures in genomic classification tasks and warrant future research on encoding strategy, model and parameter tuning, and hyperparameter tuning to further improve accuracy and generalization in DNA sequence analysis. Full article
Show Figures

Figure 1

20 pages, 709 KiB  
Article
SKGRec: A Semantic-Enhanced Knowledge Graph Fusion Recommendation Algorithm with Multi-Hop Reasoning and User Behavior Modeling
by Siqi Xu, Ziqian Yang, Jing Xu and Ping Feng
Computers 2025, 14(7), 288; https://doi.org/10.3390/computers14070288 - 18 Jul 2025
Viewed by 255
Abstract
To address the limitations of existing knowledge graph-based recommendation algorithms, including insufficient utilization of semantic information and inadequate modeling of user behavior motivations, we propose SKGRec, a novel recommendation model that integrates knowledge graph and semantic features. The model constructs a semantic interaction [...] Read more.
To address the limitations of existing knowledge graph-based recommendation algorithms, including insufficient utilization of semantic information and inadequate modeling of user behavior motivations, we propose SKGRec, a novel recommendation model that integrates knowledge graph and semantic features. The model constructs a semantic interaction graph (USIG) of user behaviors and employs a self-attention mechanism and a ranked optimization loss function to mine user interactions in fine-grained semantic associations. A relationship-aware aggregation module is designed to dynamically integrate higher-order relational features in the knowledge graph through the attention scoring function. In addition, a multi-hop relational path inference mechanism is introduced to capture long-distance dependencies to improve the depth of user interest modeling. Experiments on the Amazon-Book and Last-FM datasets show that SKGRec significantly outperforms several state-of-the-art recommendation algorithms on the Recall@20 and NDCG@20 metrics. Comparison experiments validate the effectiveness of semantic analysis of user behavior and multi-hop path inference, while cold-start experiments further confirm the robustness of the model in sparse-data scenarios. This study provides a new optimization approach for knowledge graph and semantic-driven recommendation systems, enabling more accurate capture of user preferences and alleviating the problem of noise interference. Full article
Show Figures

Figure 1

23 pages, 8986 KiB  
Article
Water Flow Forecasting Model Based on Bidirectional Long- and Short-Term Memory and Attention Mechanism
by Xinfeng Zhao, Shengwen Dong, Hui Rao and Wuyi Ming
Water 2025, 17(14), 2118; https://doi.org/10.3390/w17142118 - 16 Jul 2025
Viewed by 409
Abstract
Accurate forecasting of river water flow helps to warn of floods and droughts in advance, provides a basis for the rational allocation of water resources, and at the same time, offers important support for the safe operation of hydropower stations and water conservancy [...] Read more.
Accurate forecasting of river water flow helps to warn of floods and droughts in advance, provides a basis for the rational allocation of water resources, and at the same time, offers important support for the safe operation of hydropower stations and water conservancy projects. Water flow is characterized by time series, but the existing models focus on the positive series when LSTM is applied, without considering the different contributions of the water flow series to the model at different moments. In order to solve this problem, this study proposes a river water flow prediction model, named AT-BiLSTM, which mainly consists of a bidirectional layer and an attention layer. The bidirectional layer is able to better capture the long-distance dependencies in the sequential data by combining the forward and backward information processing capabilities. In addition, the attention layer focuses on key parts and ignores irrelevant information when processing water flow data series. The effectiveness of the proposed method was validated against an actual dataset from the Shizuishan monitoring station on the Yellow River in China. The results confirmed that compared with the RNN model, the proposed model significantly reduced the MAE, MSE, and RMSE on the dataset by 27.16%, 42.01%, and 23.85%, respectively, providing the best predictive performance among the six compared models. Moreover, this attention mechanism enables the model to show good performance in 72 h (3 days) forecast, keeping the average prediction error below 6%. This implies that the proposed hybrid model could provide a decision base for river flow flood control and resource allocation. Full article
Show Figures

Figure 1

36 pages, 25361 KiB  
Article
Remote Sensing Image Compression via Wavelet-Guided Local Structure Decoupling and Channel–Spatial State Modeling
by Jiahui Liu, Lili Zhang and Xianjun Wang
Remote Sens. 2025, 17(14), 2419; https://doi.org/10.3390/rs17142419 - 12 Jul 2025
Viewed by 470
Abstract
As the resolution and data volume of remote sensing imagery continue to grow, achieving efficient compression without sacrificing reconstruction quality remains a major challenge, given that traditional handcrafted codecs often fail to balance rate-distortion performance and computational complexity, while deep learning-based approaches offer [...] Read more.
As the resolution and data volume of remote sensing imagery continue to grow, achieving efficient compression without sacrificing reconstruction quality remains a major challenge, given that traditional handcrafted codecs often fail to balance rate-distortion performance and computational complexity, while deep learning-based approaches offer superior representational capacity. However, challenges remain in achieving a balance between fine-detail adaptation and computational efficiency. Mamba, a state–space model (SSM)-based architecture, offers linear-time complexity and excels at capturing long-range dependencies in sequences. It has been adopted in remote sensing compression tasks to model long-distance dependencies between pixels. However, despite its effectiveness in global context aggregation, Mamba’s uniform bidirectional scanning is insufficient for capturing high-frequency structures such as edges and textures. Moreover, existing visual state–space (VSS) models built upon Mamba typically treat all channels equally and lack mechanisms to dynamically focus on semantically salient spatial regions. To address these issues, we present an innovative architecture for distant sensing image compression, called the Multi-scale Channel Global Mamba Network (MGMNet). MGMNet integrates a spatial–channel dynamic weighting mechanism into the Mamba architecture, enhancing global semantic modeling while selectively emphasizing informative features. It comprises two key modules. The Wavelet Transform-guided Local Structure Decoupling (WTLS) module applies multi-scale wavelet decomposition to disentangle and separately encode low- and high-frequency components, enabling efficient parallel modeling of global contours and local textures. The Channel–Global Information Modeling (CGIM) module enhances conventional VSS by introducing a dual-path attention strategy that reweights spatial and channel information, improving the modeling of long-range dependencies and edge structures. We conducted extensive evaluations on three distinct remote sensing datasets to assess the MGMNet. The results of the investigations revealed that MGMNet outperforms the current SOTA models across various performance metrics. Full article
Show Figures

Figure 1

24 pages, 3524 KiB  
Article
Transient Stability Assessment of Power Systems Based on Temporal Feature Selection and LSTM-Transformer Variational Fusion
by Zirui Huang, Zhaobin Du, Jiawei Gao and Guoduan Zhong
Electronics 2025, 14(14), 2780; https://doi.org/10.3390/electronics14142780 - 10 Jul 2025
Viewed by 264
Abstract
To address the challenges brought by the high penetration of renewable energy in power systems, such as multi-scale dynamic interactions, high feature dimensionality, and limited model generalization, this paper proposes a transient stability assessment (TSA) method that combines temporal feature selection with deep [...] Read more.
To address the challenges brought by the high penetration of renewable energy in power systems, such as multi-scale dynamic interactions, high feature dimensionality, and limited model generalization, this paper proposes a transient stability assessment (TSA) method that combines temporal feature selection with deep learning-based modeling. First, a two-stage feature selection strategy is designed using the inter-class Mahalanobis distance and Spearman rank correlation. This helps extract highly discriminative and low-redundancy features from wide-area measurement system (WAMS) time-series data. Then, a parallel LSTM-Transformer architecture is constructed to capture both short-term local fluctuations and long-term global dependencies. A variational inference mechanism based on a Gaussian mixture model (GMM) is introduced to enable dynamic representations fusion and uncertainty modeling. A composite loss function combining improved focal loss and Kullback–Leibler (KL) divergence regularization is designed to enhance model robustness and training stability under complex disturbances. The proposed method is validated on a modified IEEE 39-bus system. Results show that it outperforms existing models in accuracy, robustness, interpretability, and other aspects. This provides an effective solution for TSA in power systems with high renewable energy integration. Full article
(This article belongs to the Special Issue Advanced Energy Systems and Technologies for Urban Sustainability)
Show Figures

Figure 1

23 pages, 5970 KiB  
Article
Miniaturized and Circularly Polarized Dual-Port Metasurface-Based Leaky-Wave MIMO Antenna for CubeSat Communications
by Tale Saeidi, Sahar Saleh and Saeid Karamzadeh
Electronics 2025, 14(14), 2764; https://doi.org/10.3390/electronics14142764 - 9 Jul 2025
Viewed by 386
Abstract
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface [...] Read more.
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface (MTS) with coffee bean-shaped arrays on substrates of varying permittivity, separated by a cavity layer to enhance coupling. Its dual-port MIMO design boosts data throughput operating in three bands (3.75–5.25 GHz, 6.4–15.4 GHz, and 22.5–30 GHz), while the leaky-wave mechanism supports frequency- or phase-dependent beamsteering without mechanical parts. Ideal for CubeSat communications, its compact size meets CubeSat constraints, and its high gain and efficiency ensure reliable long-distance communication with low power consumption, which is crucial for low Earth orbit operations. Circular polarization (CP) maintains signal integrity despite orientation changes, and MIMO capability supports high data rates for applications such as Earth observations or inter-satellite links. The beamsteering feature allows for dynamic tracking of ground stations or satellites, enhancing mission flexibility and reducing interference. This lightweight, efficient antenna addresses modern CubeSat challenges, providing a robust solution for advanced space communication systems with significant potential to enhance satellite connectivity and data transmission in complex space environments. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

20 pages, 3583 KiB  
Article
Bridge Cable Performance Warning Method Based on Temperature and Displacement Monitoring Data
by Yan Shi, Yan Wang, Lu-Nan Wang, Wei-Nan Wang and Tao-Yuan Yang
Buildings 2025, 15(13), 2342; https://doi.org/10.3390/buildings15132342 - 3 Jul 2025
Viewed by 323
Abstract
Cable-stayed bridge cables experience significant tension over time, making the bridge cables prone to corrosion and fatigue. The direct measurement of cable length is not a standard capability in most current structural health monitoring systems, nor is long-term monitoring of cable changes. Bridge [...] Read more.
Cable-stayed bridge cables experience significant tension over time, making the bridge cables prone to corrosion and fatigue. The direct measurement of cable length is not a standard capability in most current structural health monitoring systems, nor is long-term monitoring of cable changes. Bridge displacements are caused by both dynamic loads (wind and traffic) and quasi-static factors, primarily temperature. This study filtered out dynamic responses by the three-sigma rule, multiple linear regression, interpolation method, and not-a-number calibration. Monitoring data were used to analyze the bridge’s thermal field distribution and the time-dependent variation of tower displacements. Correlation analysis revealed a strong linear correlation between air temperature and quasi-static tower-girder displacements. This research proposes to use the tower-girder distance (effective cable length) to represent the length of the cable, take the thermal expansion coefficient of the effective length of the cable as the quantitative index for long-term monitoring, and take its error as the performance early warning indicator. This method effectively monitors cable health and provides damage warnings. Full article
Show Figures

Figure 1

15 pages, 2295 KiB  
Article
A Deep Learning Approach for Spatiotemporal Feature Classification of Infrasound Signals
by Xiaofeng Tan, Xihai Li, Hongru Li, Xiaoniu Zeng, Shengjie Luo and Tianyou Liu
Geosciences 2025, 15(7), 251; https://doi.org/10.3390/geosciences15070251 - 2 Jul 2025
Viewed by 247
Abstract
Infrasound signal classification remains a critical challenge in geophysical monitoring systems, where classification performance is fundamentally constrained by feature extraction efficacy. Existing two-dimensional feature extraction methods suffer from inadequate representation of spatiotemporal signal dynamics, leading to performance degradation in long-distance detection scenarios. To [...] Read more.
Infrasound signal classification remains a critical challenge in geophysical monitoring systems, where classification performance is fundamentally constrained by feature extraction efficacy. Existing two-dimensional feature extraction methods suffer from inadequate representation of spatiotemporal signal dynamics, leading to performance degradation in long-distance detection scenarios. To overcome these limitations, we present a novel classification framework that effectively captures spatiotemporal infrasound characteristics through Gramian Angular Field (GAF) transformation. The proposed method introduces an innovative encoding scheme that transforms one-dimensional infrasonic waveforms into two-dimensional GAF images while preserving crucial temporal dependencies. Building upon this representation, we develop an advanced hybrid deep learning architecture that integrates ConvLSTM networks to simultaneously extract and correlate spatial and spectral features. Extensive experimental validation on both chemical explosion and seismic infrasound datasets shows our approach achieves 92.4% classification accuracy, demonstrating consistent superiority over four state-of-the-art benchmark methods. These findings demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

29 pages, 18908 KiB  
Article
Toward Efficient UAV-Based Small Object Detection: A Lightweight Network with Enhanced Feature Fusion
by Xingyu Di, Kangning Cui and Rui-Feng Wang
Remote Sens. 2025, 17(13), 2235; https://doi.org/10.3390/rs17132235 - 29 Jun 2025
Cited by 1 | Viewed by 676
Abstract
UAV-based small target detection is crucial in environmental monitoring, circuit detection, and related applications. However, UAV images often face challenges such as significant scale variation, dense small targets, high inter-class similarity, and intra-class diversity, which can lead to missed detections, thus reducing performance. [...] Read more.
UAV-based small target detection is crucial in environmental monitoring, circuit detection, and related applications. However, UAV images often face challenges such as significant scale variation, dense small targets, high inter-class similarity, and intra-class diversity, which can lead to missed detections, thus reducing performance. To solve these problems, this study proposes a lightweight and high-precision model UAV-YOLO based on YOLOv8s. Firstly, a double separation convolution (DSC) module is designed to replace the Bottleneck structure in the C2f module with deep separable convolution and point-by-point convolution fusion, which can reduce the model parameters and calculation complexity while enhancing feature expression. Secondly, a new SPPL module is proposed, which combines spatial pyramid pooling rapid fusion (SPPF) with long-distance dependency modeling (LSKA) to improve the robustness of the model to multi-scale targets through cross-level feature association. Then, DyHead is used to replace the original detector head, and the discrimination ability of small targets in complex background is enhanced by adaptive weight allocation and cross-scale feature optimization fusion. Finally, the WIPIoU loss function is proposed, which integrates the advantages of Wise-IoU, MPDIoU and Inner-IoU, and incorporates the geometric center of bounding box, aspect ratio and overlap degree into a unified measure to improve the localization accuracy of small targets and accelerate the convergence. The experimental results on the VisDrone2019 dataset showed that compared to YOLOv8s, UAV-YOLO achieved an 8.9% improvement in the recall of mAP@0.5 and 6.8%, while the parameters and calculations were reduced by 23.4% and 40.7%, respectively. Additional evaluations of the DIOR, RSOD, and NWPU VHR-10 datasets demonstrate the generalization capability of the model. Full article
(This article belongs to the Special Issue Geospatial Intelligence in Remote Sensing)
Show Figures

Figure 1

23 pages, 3677 KiB  
Article
HG-Mamba: A Hybrid Geometry-Aware Bidirectional Mamba Network for Hyperspectral Image Classification
by Xiaofei Yang, Jiafeng Yang, Lin Li, Suihua Xue, Haotian Shi, Haojin Tang and Xiaohui Huang
Remote Sens. 2025, 17(13), 2234; https://doi.org/10.3390/rs17132234 - 29 Jun 2025
Viewed by 474
Abstract
Deep learning has demonstrated significant success in hyperspectral image (HSI) classification by effectively leveraging spatial–spectral feature learning. However, current approaches encounter three challenges: (1) high spectral redundancy and the presence of noisy bands, which impair the extraction of discriminative features; (2) limited spatial [...] Read more.
Deep learning has demonstrated significant success in hyperspectral image (HSI) classification by effectively leveraging spatial–spectral feature learning. However, current approaches encounter three challenges: (1) high spectral redundancy and the presence of noisy bands, which impair the extraction of discriminative features; (2) limited spatial receptive fields inherent in convolutional operations; and (3) unidirectional context modeling that inadequately captures bidirectional dependencies in non-causal HSI data. To address these challenges, this paper proposes HG-Mamba, a novel hybrid geometry-aware bidirectional Mamba network for HSI classification. The proposed HG-Mamba synergistically integrates convolutional operations, geometry-aware filtering, and bidirectional state-space models (SSMs) to achieve robust spectral–spatial representation learning. The proposed framework comprises two stages. The first stage, termed spectral compression and discrimination enhancement, employs multi-scale spectral convolutions alongside a spectral bidirectional Mamba (SeBM) module to suppress redundant bands while modeling long-range spectral dependencies. The second stage, designated spatial structure perception and context modeling, incorporates a Gaussian Distance Decay (GDD) mechanism to adaptively reweight spatial neighbors based on geometric distances, coupled with a spatial bidirectional Mamba (SaBM) module for comprehensive global context modeling. The GDD mechanism facilitates boundary-aware feature extraction by prioritizing spatially proximate pixels, while the bidirectional SSMs mitigate unidirectional bias through parallel forward–backward state transitions. Extensiveexperiments on the Indian Pines, Houston2013, and WHU-Hi-LongKou datasets demonstrate the superior performance of HG-Mamba, achieving overall accuracies of 94.91%, 98.41%, and 98.67%, respectively. Full article
(This article belongs to the Special Issue AI-Driven Hyperspectral Remote Sensing of Atmosphere and Land)
Show Figures

Graphical abstract

Back to TopTop