Bridge Cable Performance Warning Method Based on Temperature and Displacement Monitoring Data
Abstract
1. Introduction
2. SHM System and Data Preprocessing
2.1. Overview of the SHM System
2.2. Method for Skipping Abnormal Monitoring Data
2.3. Method for Missing Abnormal Monitoring Data
2.3.1. Method for Missing Abnormal Monitoring Data Based on Multiple Linear Regression
2.3.2. Method for Missing Abnormal Monitoring Data Based on Interpolation Method
2.4. Method for Constant Abnormal Monitoring Data
3. Temperature Environment and Bridge Displacement Response
3.1. Air Temperature Time-Varying Law
3.2. Structural Temperature Time-Varying Law
3.3. Air-Structure Temperature Relationship
3.4. Displacement Response of Bridge Tower
4. Temperature-Displacement Statistical Relationship
4.1. Temperature-Displacement Statistical Relationship of Bridge Tower
4.2. Temperature-Displacement Statistical Relationship of Tower-Girder Distance
5. Bridge Cable Damage Warning Based on Monitoring Data
5.1. Calculation of Bridge Cable Length
5.2. Bridge Cable Damage Warning Process
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, D.L.; Yang, D.H.; Yi, T.H.; Zhang, S.H. Anomaly diagnosis of stay cables based on vehicle-induced cable force sums. Eng. Struct. 2023, 289, 116239. [Google Scholar] [CrossRef]
- Zheng, X.W.; Hou, Y.Z.; Cheng, J.; Xu, S.; Wang, W.M. Rapid Damage Assessment and Bayesian-Based Debris Prediction for Building Clusters Against Earthquakes. Buildings 2025, 15, 1481. [Google Scholar] [CrossRef]
- Zheng, X.W.; Lv, H.L.; Fan, H.; Zhou, Y.B. Physics-Based Shear-Strength Degradation Model of Stud Connector with the Fatigue Cumulative Damage. Buildings 2022, 12, 2141. [Google Scholar] [CrossRef]
- Zheng, X.W.; Li, H.N.; Gardoni, P. Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties. Reliab. Eng. Syst. Safe. 2023, 233, 109100. [Google Scholar] [CrossRef]
- Zacchei, E.; Lyra, P.H.C.; Lage, G.E.; Antonine, E.; Soares, A.B., Jr.; Caruso, N.C.; De Assis, C.S. Structural Health Monitoring of a Brazilian Concrete Bridge for Estimating Specific Dynamic Responses. Buildings 2022, 12, 785. [Google Scholar] [CrossRef]
- Radulescu, V.M.; Radulescu, G.M.T.; Nas, S.M.; Radulescu, A.T.; Radulescu, C.M. Structural Health Monitoring of Bridges under the Influence of Natural Environmental Factors and Geomatic Technologies: A Literature Review and Bibliometric Analysis. Buildings 2024, 14, 2811. [Google Scholar] [CrossRef]
- Rabi, R.R.; Vailati, M.; Monti, G. Effectiveness of Vibration-Based Techniques for Damage Localization and Lifetime Prediction in Structural Health Monitoring of Bridges: A Comprehensive Review. Buildings 2024, 14, 1183. [Google Scholar] [CrossRef]
- Pei, X.Y.; Hou, Y.; Huang, H.B.; Zheng, J.X. A Multi-Objective Sensor Placement Method Considering Modal Identification Uncertainty and Damage Detection Sensitivity. Buildings 2025, 15, 821. [Google Scholar] [CrossRef]
- Zheng, X.W.; Li, H.N.; Gardoni, P. Reliability-based design approach for high-rise buildings subject to earthquakes and strong winds. Buildings 2021, 244, 112771. [Google Scholar] [CrossRef]
- Di Trapani, F.; Oddo, M.C.; Sberna, A.P.; La Mendola, L. Structural health monitoring of masonry structures using stress sensors: Experimental induced damage tests and proposed approach for real-time monitoring. Constr. Build. Mater. 2024, 449, 138077. [Google Scholar] [CrossRef]
- Tao, T.Y.; Wang, H.; Wen, X.H.; Fenerci, A. Flutter analysis of a long-span triple-tower suspension bridge under typhoon winds with non-uniform spanwise profile. Structures 2024, 68, 107156. [Google Scholar] [CrossRef]
- Saad, S.; Nasir, A.; Bashir, R.; Pantazopoulou, S.J. Numerical Study on the Effect of Climate Parameters on the Extreme Thermal Gradients in Concrete Box Girders. J. Bridge Eng. 2023, 28, 04023069. [Google Scholar] [CrossRef]
- Marco, D.; Raffaele, C. Structural Resilience through Structural Health Monitoring. In Data Driven Methods for Civil Structural Health Monitoring and Resilience, 1st ed.; Parsa, G., Seyed, S.K., Andy, N., Eds.; CRC Press: Boca Raton, FL, USA, 2023; Volume 1, pp. 1–13. [Google Scholar] [CrossRef]
- Zhang, L.X.; Qiu, G.Y.; Chen, Z.S. Structural health monitoring methods of cables in cable-stayed bridge: A review. Measurement 2020, 168, 108343. [Google Scholar] [CrossRef]
- Jin, S.S.; Jeong, S.; Sim, S.H.; Seo, D.W.; Park, Y.S. Fully automated peak-picking method for an autonomous stay-cable monitoring system in cable-stayed bridges. Automat. Constr. 2021, 126, 103628. [Google Scholar] [CrossRef]
- Wang, L.S.; Zhao, C.; Lan, C.G. Stay cable tension estimation using a vision-based monitoring system under complex environments. Meas. Sci. Technol. 2021, 36, 026009. [Google Scholar] [CrossRef]
- Lin, J.H.; Briseghella, B.; Xue, J.Q.; Tabatabai, H. Temperature Monitoring and Response of Deck-Extension Side-by-Side Box Girder Bridges. J. Perform. Constr. Fac. 2020, 34, 04019122. [Google Scholar] [CrossRef]
- Zhu, Q.X.; Wang, H.; Spencer, B.F. Investigation on the mapping for temperature-induced responses of a long-span steel truss arch bridge. Struct. Infrastruct. Eng. 2024, 20, 232–249. [Google Scholar] [CrossRef]
- Xu, S.Y.; Wang, G.X.; Zhu, J.; Chen, B. Probabilistic statistical evaluation of the design values of temperature differences of steel truss girder bridges through finite element simulation and monitoring data analysis. J. Civ. Struct. Health 2025, 15, 1403–1420. [Google Scholar] [CrossRef]
- Xia, Q.; Wu, W.L.; Li, F.N.; Zhou, X.Q. Temperature behaviors of an arch bridge through integration of field monitoring and unified numerical simulation. Adv. Struct. Eng. 2022, 25, 3492–3509. [Google Scholar] [CrossRef]
- Elshoura, A.; Okeil, A.M. Simplified method for estimating restraint moment induced by vertical temperature gradient in continuous prestressed concrete bridges and verification using AASHTO BDS. Struct. Infrastruct. Eng. 2024, 20, 944–956. [Google Scholar] [CrossRef]
- Wang, G.X.; Shao, J.S.; Xu, W.Z.; Dong, Z.X. Real-time quantitative evaluation on the cable damage of cable-stayed bridges using the correlation between girder deflection and temperature. Struct. Health Monit. 2022, 21, 1483–1500. [Google Scholar] [CrossRef]
- Fu, C.Y.; Liu, Y.P.; Lao, Y.S. Assessing Temperature-Induced Deflections in Cable-Stayed Bridges during Construction: An Elastic Foundation Beam Model Approach. J. Bridge Eng. 2025, 30, 04024104. [Google Scholar] [CrossRef]
- Zhu, Q.X.; Wang, H.; Mao, J.X.; Wan, H.P. Investigation of Temperature Effects on Steel-Truss Bridge Based on Long-Term Monitoring Data: Case Study. J. Bridge Eng. 2020, 25, 05020007. [Google Scholar] [CrossRef]
- Gong, X.Y.; Song, X.D.; Cai, C.S.; Li, G.Q. Early warning for abnormal strains of continuous bridges using a proposed temperature-strain mapping model. Smart Mater. Struct. 2023, 32, 125018. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, D.Q.; Guo, H.; Shuang, M. Fine analysis for non-uniform temperature field and effect of railway truss suspension bridge under solar radiation. J. Constr. Steel Res. 2023, 210, 108098. [Google Scholar] [CrossRef]
- Li, J.X.; Yi, T.H.; Qu, C.X.; Li, H.N. Early Warning for Abnormal Cable Forces of Cable-Stayed Bridges Considering Structural Temperature Changes. J. Bridge Eng. 2023, 28, 04022137. [Google Scholar] [CrossRef]
- Yang, D.H.; Gu, H.L.; Yi, T.H.; Li, H.N. Bridge Cable Anomaly Detection Based on Local Variability in Feature Vector of Monitoring Group Cable Forces. J. Bridge Eng. 2023, 28, 04023030. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, H.F.; El-Tawil, S.; Agrawal, A.K. Progressive Collapse Behavior of a Long-Span Cable-Stayed Bridge Induced by Cable Loss. J. Bridge Eng. 2023, 28, 05023005. [Google Scholar] [CrossRef]
- Kong, X.; Liu, Z.W.; Liu, H.; Hu, J.X. Recent advances on inspection, monitoring, and assessment of bridge cables. Automat. Constr. 2024, 168, 105767. [Google Scholar] [CrossRef]
- Huang, H.B.; Yi, T.H.; Li, H.N.; Liu, H. Sparse Bayesian Identification of Temperature-Displacement Model for Performance Assessment and Early Warning of Bridge Bearings. J. Struct. Eng. 2022, 148, 04022052. [Google Scholar] [CrossRef]
- Yang, T.Y.; Liu, K.; Nie, G.B. Improved Time Domain Substructural Damage Identification Method on Large-Span Spatial Structure. Shock Vib. 2021, 2021, 1069470. [Google Scholar] [CrossRef]
- Nie, G.B.; Yang, T.Y.; Zhi, X.D.; Liu, K. Damage evaluation of square steel tubes at material and component levels based on a cyclic loading experiment. Adv. Mech. Eng. 2018, 10, 1687814018797786. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.H.; Yi, T.H. Displacement model error-based method for symmetrical cable-stayed bridge performance warning after eliminating variable load effects. J. Civ. Struct. Health 2022, 12, 81–99. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.H.; Yi, T.H. Accurate Correlation Modeling between Wind Speed and Bridge Girder Displacement Based on a Multi-Rate Fusion Method. Sensors 2021, 21, 1967. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.N.; Gong, J.X. New relaxation function and age-adjusted effective modulus expressions for creep analysis of concrete structures. Eng. Struct. 2019, 188, 1–10. [Google Scholar] [CrossRef]
- Wang, W.N.; Gong, J.X.; Wu, X.Y.; Wang, X.C. A general equation for estimation of time-dependent prestress losses in prestressed concrete members. Structures 2023, 55, 278–293. [Google Scholar] [CrossRef]
- Huang, H.B.; Yi, T.H.; Li, H.N.; Liu, H. Strain-Based Performance Warning Method for Bridge Main Girders under Variable Operating Conditions. J. Bridge Eng. 2020, 25, 04020013. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, T.H.; Li, H.N.; Liu, H. Multiorder Frequency-Based Integral Performance Warning of Bridges Considering Multiple Environmental Effects. J. Struct. Eng. 2023, 28, 04022230. [Google Scholar] [CrossRef]
Monitoring Subject | Serial Number | Position | Sampling Frequency (Hz) | Unit |
---|---|---|---|---|
Displacement | GPS01 | North tower | 1 | °C |
GPS02 | Mid-span | 1 | °C | |
GPS03 | South tower | 1 | °C | |
Air temperature | WSD-1-01 | North tower | 1 | °C |
WSD-2-01 | Mid-span | 1 | °C | |
WSD-2-02 | Mid-span | 1 | °C | |
WSD-3-01 | South tower | 1 | °C | |
Structural temperature | WD-1-01 | NO7 | 1/300 | mm |
WD-2-01 | NA6 | 1/300 | mm | |
WD-3-01 | North tower | 1/300 | mm | |
WD-4-01 | NJ8 | 1/300 | mm | |
WD-5-01 | Mid-span | 1/300 | mm | |
WD-6-01 | SJ8 | 1/300 | mm | |
WD-7-01 | South tower | 1/300 | mm | |
WD-8-01 | SA6 | 1/300 | mm | |
WD-9-01 | SO7 | 1/300 | mm |
Sample Number | |||
---|---|---|---|
Air temperature | Displacement of north tower | 576 | 0.87 |
Air temperature | Displacement of south tower | 576 | 0.91 |
Sample Number | |||
---|---|---|---|
Air temperature | North tower-girder distance | 576 | 0.94 |
Air temperature | South tower-girder distance | 576 | 0.93 |
Location | Sample Number | Thermal Expansion Co-Efficient | |||
---|---|---|---|---|---|
North cable’s effective length | 2880 | 0.96 | 34.93 | 285.11 | 12.25 |
South cable’s effective length | 2880 | 0.89 | 34.04 | 285.11 | 11.94 |
Case Number | = 0.05 | = 0.01 | = 0.003 | |||
---|---|---|---|---|---|---|
Alam Number | Alam Rate (%) | Alam Number | Alam Rate (%) | Alam Number | Alam Rate (%) | |
Case 1 | 20 | 2.78 | 8 | 1.11 | 5 | 0.69 |
Case 2 | 402 | 55.83 | 223 | 30.97 | 107 | 14.86 |
Case 3 | 717 | 99.58 | 682 | 94.72 | 643 | 89.31 |
Case 4 | 719 | 99.86 | 719 | 99.86 | 719 | 99.86 |
Case 5 | 719 | 99.86 | 719 | 99.86 | 719 | 99.86 |
Case 6 | 720 | 100 | 720 | 100 | 720 | 100 |
Case Number | = 0.05 | = 0.01 | = 0.003 | |||
---|---|---|---|---|---|---|
Alam Number | Alam Rate (%) | Alam Number | Alam Rate (%) | Alam Number | Alam Rate (%) | |
Case 7 | 7 | 0.97 | 4 | 0.56 | 2 | 0.28 |
Case 8 | 71 | 9.86 | 17 | 2.36 | 7 | 0.97 |
Case 9 | 358 | 49.72 | 141 | 19.58 | 69 | 9.58 |
Case 10 | 684 | 95 | 504 | 70 | 347 | 48.19 |
Case 11 | 720 | 100 | 714 | 99.17 | 677 | 94.03 |
Case 12 | 720 | 100 | 720 | 100 | 720 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Wang, Y.; Wang, L.-N.; Wang, W.-N.; Yang, T.-Y. Bridge Cable Performance Warning Method Based on Temperature and Displacement Monitoring Data. Buildings 2025, 15, 2342. https://doi.org/10.3390/buildings15132342
Shi Y, Wang Y, Wang L-N, Wang W-N, Yang T-Y. Bridge Cable Performance Warning Method Based on Temperature and Displacement Monitoring Data. Buildings. 2025; 15(13):2342. https://doi.org/10.3390/buildings15132342
Chicago/Turabian StyleShi, Yan, Yan Wang, Lu-Nan Wang, Wei-Nan Wang, and Tao-Yuan Yang. 2025. "Bridge Cable Performance Warning Method Based on Temperature and Displacement Monitoring Data" Buildings 15, no. 13: 2342. https://doi.org/10.3390/buildings15132342
APA StyleShi, Y., Wang, Y., Wang, L.-N., Wang, W.-N., & Yang, T.-Y. (2025). Bridge Cable Performance Warning Method Based on Temperature and Displacement Monitoring Data. Buildings, 15(13), 2342. https://doi.org/10.3390/buildings15132342