Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,259)

Search Parameters:
Keywords = localization approaches

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4204 KiB  
Article
Audouin’s Gull Colony Itinerancy: Breeding Districts as Units for Monitoring and Conservation
by Massimo Sacchi, Barbara Amadesi, Adriano De Faveri, Gilles Faggio, Camilla Gotti, Arnaud Ledru, Sergio Nissardi, Bernard Recorbet, Marco Zenatello and Nicola Baccetti
Diversity 2025, 17(8), 526; https://doi.org/10.3390/d17080526 (registering DOI) - 28 Jul 2025
Abstract
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we [...] Read more.
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we identified five spatial breeding units of increasing hierarchical scale—Breeding Sites, Colonies, Districts, Regions and Marine Sectors—which reflect biologically meaningful boundaries beyond simple geographic proximity. To determine the most appropriate scale for monitoring local populations, we applied multievent capture–recapture models and examined variation in survival and site fidelity across these units. Audouin’s gulls frequently change their location at the Breeding Site and Colony levels from one year to another, without apparent survival costs. In contrast, dispersal beyond Districts boundaries was found to be rare and associated with reduced survival rates, indicating that breeding Districts represent the most relevant biological unit for identifying local populations. The survival disadvantage observed in individuals leaving their District likely reflects increased extrinsic mortality in unfamiliar environments and the selective dispersal of lower-quality individuals. Within breeding Districts, birds may benefit from local knowledge and social information, supporting demographic stability and higher fitness. Our findings highlight the value of adopting a District-based framework for long-term monitoring and conservation of this endangered species. At this scale, demographic trends such as population growth or decline emerge more clearly than when assessed at the level of singular colonies. This approach can enhance our understanding of population dynamics in other mobile species and support more effective conservation strategies aligned with natural population structure. Full article
(This article belongs to the Special Issue Ecology, Diversity and Conservation of Seabirds—2nd Edition)
37 pages, 3086 KiB  
Article
Conformal On-Body Antenna System Integrated with Deep Learning for Non-Invasive Breast Cancer Detection
by Marwa H. Sharaf, Manuel Arrebola, Khalid F. A. Hussein, Asmaa E. Farahat and Álvaro F. Vaquero
Sensors 2025, 25(15), 4670; https://doi.org/10.3390/s25154670 - 28 Jul 2025
Abstract
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, [...] Read more.
Breast cancer detection through non-invasive and accurate techniques remains a critical challenge in medical diagnostics. This study introduces a deep learning-based framework that leverages a microwave radar system equipped with an arc-shaped array of six antennas to estimate key tumor parameters, including position, size, and depth. This research begins with the evolutionary design of an ultra-wideband octagram ring patch antenna optimized for enhanced tumor detection sensitivity in directional near-field coupling scenarios. The antenna is fabricated and experimentally evaluated, with its performance validated through S-parameter measurements, far-field radiation characterization, and efficiency analysis to ensure effective signal propagation and interaction with breast tissue. Specific Absorption Rate (SAR) distributions within breast tissues are comprehensively assessed, and power adjustment strategies are implemented to comply with electromagnetic exposure safety limits. The dataset for the deep learning model comprises simulated self and mutual S-parameters capturing tumor-induced variations over a broad frequency spectrum. A core innovation of this work is the development of the Attention-Based Feature Separation (ABFS) model, which dynamically identifies optimal frequency sub-bands and disentangles discriminative features tailored to each tumor parameter. A multi-branch neural network processes these features to achieve precise tumor localization and size estimation. Compared to conventional attention mechanisms, the proposed ABFS architecture demonstrates superior prediction accuracy and interpretability. The proposed approach achieves high estimation accuracy and computational efficiency in simulation studies, underscoring the promise of integrating deep learning with conformal microwave imaging for safe, effective, and non-invasive breast cancer detection. Full article
20 pages, 3073 KiB  
Article
Fusion of airborne, SLAM-based, and iPhone LiDAR for Accurate Forest Road Mapping in Harvesting Areas
by Evangelia Siafali, Vasilis Polychronos and Petros A. Tsioras
Land 2025, 14(8), 1553; https://doi.org/10.3390/land14081553 - 28 Jul 2025
Abstract
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and [...] Read more.
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and ensure accurate and efficient data collection and mapping. Airborne data were collected using the DJI Matrice 300 RTK UAV equipped with a Zenmuse L2 LiDAR sensor, which achieved a high point density of 285 points/m2 at an altitude of 80 m. Ground-level data were collected using the BLK2GO handheld laser scanner (HPLS) with SLAM methods (LiDAR SLAM, Visual SLAM, Inertial Measurement Unit) and the iPhone 13 Pro Max LiDAR. Data processing included generating DEMs, DSMs, and True Digital Orthophotos (TDOMs) via DJI Terra, LiDAR360 V8, and Cyclone REGISTER 360 PLUS, with additional processing and merging using CloudCompare V2 and ArcGIS Pro 3.4.0. The pairwise comparison analysis between ALS data and each alternative method revealed notable differences in elevation, highlighting discrepancies between methods. ALS + iPhone demonstrated the smallest deviation from ALS (MAE = 0.011, RMSE = 0.011, RE = 0.003%) and HPLS the larger deviation from ALS (MAE = 0.507, RMSE = 0542, RE = 0.123%). The findings highlight the potential of fusing point clouds from diverse platforms to enhance forest road mapping accuracy. However, the selection of technology should consider trade-offs among accuracy, cost, and operational constraints. Mobile LiDAR solutions, particularly the iPhone, offer promising low-cost alternatives for certain applications. Future research should explore real-time fusion workflows and strategies to improve the cost-effectiveness and scalability of multisensor approaches for forest road monitoring. Full article
21 pages, 948 KiB  
Article
Examining the Impacts of Land Resources and Youth Education on Agricultural Livelihood in Battambang Province
by Dyna Chin, Sanara Hor, Soksan Seng, Sophak Pok, Lyhour Hin, Chaneng Yin, Sotheavy Kin, Nuch Sek, Sopharith Nou, Sokhieng Chhe, Thapkonin Chhoengsan, Pengkheang Mol, Chetha Chea, Sambath Eun, Linna Long and Hitoshi Shinjo
Sustainability 2025, 17(15), 6866; https://doi.org/10.3390/su17156866 - 28 Jul 2025
Abstract
Since the end of the Civil War, Cambodia has pursued economic development to enhance livelihoods, particularly in rural areas, where land is a critical resource. Previous studies have indicated that the country has changed land use and land cover. However, they have not [...] Read more.
Since the end of the Civil War, Cambodia has pursued economic development to enhance livelihoods, particularly in rural areas, where land is a critical resource. Previous studies have indicated that the country has changed land use and land cover. However, they have not explained how these changes can improve the livelihoods of local communities, thereby mitigating their negative impacts through an asset-based approach. Battambang Province, in the northwestern region, was the battleground until political integration in 1996. Since then, the province has been home to immigrants exploring the lands for livelihood. Thus, this study aims to examine agricultural livelihoods in the villages of Dei Kraham and Ou Toek Thla, located west of Battambang Town. These were selected because of their common characteristics. Adopting a quantitative approach and a sustainable livelihood framework, this study employed stratified random sampling to select 123 families for interviews across three population subgroups: old settlers, new settlers, and young settlers. In situ information was collected using structured questionnaires and analyzed using Kruskal–Wallis tests to assess the livelihood assets underlying the physical, natural, human, financial, and social capital. The statistical analysis results reveal no significant differences (p-value = 0.079) in livelihood assets between the strata at the village level. Meanwhile, significant differences were observed in physical, human, and financial capital between old and young settlers when examining the subgroups (p-value 0.000). The extent of the land resources held by old settlers was associated with household income and livelihoods related to agriculture. Based on livelihood asset scores, nearly half of the new settlers (0.49–0.5) and a quarter of the young settlers (0.47) are vulnerable groups requiring support. The youth will soon face an uncertain future if they do not prioritize education. Full article
Show Figures

Figure 1

16 pages, 1113 KiB  
Case Report
Novel Sonoguided Digital Palpation and Ultrasound-Guided Hydrodissection of the Long Thoracic Nerve for Managing Serratus Anterior Muscle Pain Syndrome: A Case Report with Technical Details
by Nunung Nugroho, King Hei Stanley Lam, Theodore Tandiono, Teinny Suryadi, Anwar Suhaimi, Wahida Ratnawati, Daniel Chiung-Jui Su, Yonghyun Yoon and Keneath Dean Reeves
Diagnostics 2025, 15(15), 1891; https://doi.org/10.3390/diagnostics15151891 - 28 Jul 2025
Abstract
Background and Clinical Significance: Serratus Anterior Muscle Pain Syndrome (SAMPS) is an underdiagnosed cause of anterior chest wall pain, often attributed to myofascial trigger points of the serratus anterior muscle (SAM) or dysfunction of the Long Thoracic Nerve (LTN), leading to significant disability [...] Read more.
Background and Clinical Significance: Serratus Anterior Muscle Pain Syndrome (SAMPS) is an underdiagnosed cause of anterior chest wall pain, often attributed to myofascial trigger points of the serratus anterior muscle (SAM) or dysfunction of the Long Thoracic Nerve (LTN), leading to significant disability and affecting ipsilateral upper limb movement and quality of life. Current diagnosis relies on exclusion and physical examination, with limited treatment options beyond conservative approaches. This case report presents a novel approach to chronic SAMPS, successfully diagnosed using Sonoguided Digital Palpation (SDP) and treated with ultrasound-guided hydrodissection of the LTN using 5% dextrose in water (D5W) without local anesthetic (LA), in a patient where conventional treatments had failed. Case Presentation: A 72-year-old male presented with a three-year history of persistent left chest pain radiating to the upper back, exacerbated by activity and mimicking cardiac pain. His medical history included two percutaneous coronary interventions. Physical examination revealed tenderness along the anterior axillary line and a positive hyperirritable spot at the mid axillary line at the 5th rib level. SDP was used to visualize the serratus anterior fascia (SAF) and LTN, and to reproduce the patient’s concordant pain by palpating the LTN. Ultrasound-guided hydrodissection of the LTN was then performed using 20–30cc of D5W without LA to separate the nerve from the surrounding tissues, employing a “fascial unzipping” technique. The patient reported immediate pain relief post-procedure, with the pain reducing from 9/10 to 1/10 on the Numeric Rating Scale (NRS), and sustained relief and functional improvement at the 12-month follow-up. Conclusions: Sonoguided Digital Palpation (SDP) of the LTN can serve as a valuable diagnostic adjunct for visualizing and diagnosing SAMPS. Ultrasound-guided hydrodissection of the LTN with D5W without LA may provide a promising and safe treatment option for patients with chronic SAMPS refractory to conservative management, resulting in rapid and sustained pain relief. Further research, including controlled trials, is warranted to evaluate the long-term efficacy and generalizability of these findings and to compare D5W to other injectates. Full article
18 pages, 2335 KiB  
Article
MLLM-Search: A Zero-Shot Approach to Finding People Using Multimodal Large Language Models
by Angus Fung, Aaron Hao Tan, Haitong Wang, Bensiyon Benhabib and Goldie Nejat
Robotics 2025, 14(8), 102; https://doi.org/10.3390/robotics14080102 - 28 Jul 2025
Abstract
Robotic search of people in human-centered environments, including healthcare settings, is challenging, as autonomous robots need to locate people without complete or any prior knowledge of their schedules, plans, or locations. Furthermore, robots need to be able to adapt to real-time events that [...] Read more.
Robotic search of people in human-centered environments, including healthcare settings, is challenging, as autonomous robots need to locate people without complete or any prior knowledge of their schedules, plans, or locations. Furthermore, robots need to be able to adapt to real-time events that can influence a person’s plan in an environment. In this paper, we present MLLM-Search, a novel zero-shot person search architecture that leverages multimodal large language models (MLLM) to address the mobile robot problem of searching for a person under event-driven scenarios with varying user schedules. Our approach introduces a novel visual prompting method to provide robots with spatial understanding of the environment by generating a spatially grounded waypoint map, representing navigable waypoints using a topological graph and regions by semantic labels. This is incorporated into an MLLM with a region planner that selects the next search region based on the semantic relevance to the search scenario and a waypoint planner that generates a search path by considering the semantically relevant objects and the local spatial context through our unique spatial chain-of-thought prompting approach. Extensive 3D photorealistic experiments were conducted to validate the performance of MLLM-Search in searching for a person with a changing schedule in different environments. An ablation study was also conducted to validate the main design choices of MLLM-Search. Furthermore, a comparison study with state-of-the-art search methods demonstrated that MLLM-Search outperforms existing methods with respect to search efficiency. Real-world experiments with a mobile robot in a multi-room floor of a building showed that MLLM-Search was able to generalize to new and unseen environments. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

12 pages, 3213 KiB  
Article
Improving Laser Direct Writing Overlay Precision Based on a Deep Learning Method
by Guohan Gao, Jiong Wang, Xin Liu, Junfeng Du, Jiang Bian and Hu Yang
Micromachines 2025, 16(8), 871; https://doi.org/10.3390/mi16080871 - 28 Jul 2025
Abstract
This study proposes a deep learning-based method to improve overlay alignment precision in laser direct writing systems. Alignment errors arise from multiple sources in nanoscale processes, including optical aberrations, mechanical drift, and fiducial mark imperfections. A significant portion of the residual alignment error [...] Read more.
This study proposes a deep learning-based method to improve overlay alignment precision in laser direct writing systems. Alignment errors arise from multiple sources in nanoscale processes, including optical aberrations, mechanical drift, and fiducial mark imperfections. A significant portion of the residual alignment error stems from the interpretation of mark coordinates by the vision system and algorithms. Here, we developed a convolutional neural network (CNN) model to predict the coordinates calculation error of 66,000 sets of computer-generated defective crosshair marks (simulating real fiducial mark imperfections). We compared 14 neural network architectures (8 CNN variants and 6 feedforward neural network (FNN) configurations) and found a well-performing, simple CNN structure achieving a mean squared error (MSE) of 0.0011 on the training sets and 0.0016 on the validation sets, demonstrating 90% error reduction compared to the FNN structure. Experimental results on test datasets showed the CNN’s capability to maintain prediction errors below 100 nm in both X/Y coordinates, significantly outperforming traditional FNN approaches. The proposed method’s success stems from the CNN’s inherent advantages in local feature extraction and translation invariance, combined with a simplified network architecture that prevents overfitting while maintaining computational efficiency. This breakthrough establishes a new paradigm for precision enhancement in micro–nano optical device fabrication. Full article
Show Figures

Figure 1

22 pages, 2673 KiB  
Article
Federated Semi-Supervised Learning with Uniform Random and Lattice-Based Client Sampling
by Mei Zhang and Feng Yang
Entropy 2025, 27(8), 804; https://doi.org/10.3390/e27080804 - 28 Jul 2025
Abstract
Federated semi-supervised learning (Fed-SSL) has emerged as a powerful framework that leverages both labeled and unlabeled data distributed across clients. To reduce communication overhead, real-world deployments often adopt partial client participation, where only a subset of clients is selected in each round. However, [...] Read more.
Federated semi-supervised learning (Fed-SSL) has emerged as a powerful framework that leverages both labeled and unlabeled data distributed across clients. To reduce communication overhead, real-world deployments often adopt partial client participation, where only a subset of clients is selected in each round. However, under non-i.i.d. data distributions, the choice of client sampling strategy becomes critical, as it significantly affects training stability and final model performance. To address this challenge, we propose a novel federated averaging semi-supervised learning algorithm, called FedAvg-SSL, that considers two sampling approaches, uniform random sampling (standard Monte Carlo) and a structured lattice-based sampling, inspired by quasi-Monte Carlo (QMC) techniques, which ensures more balanced client participation through structured deterministic selection. On the client side, each selected participant alternates between updating the global model and refining the pseudo-label model using local data. We provide a rigorous convergence analysis, showing that FedAvg-SSL achieves a sublinear convergence rate with linear speedup. Extensive experiments not only validate our theoretical findings but also demonstrate the advantages of lattice-based sampling in federated learning, offering insights into the interplay among algorithm performance, client participation rates, local update steps, and sampling strategies. Full article
(This article belongs to the Special Issue Number Theoretic Methods in Statistics: Theory and Applications)
40 pages, 5094 KiB  
Article
Thinking Green: A Place Lab Approach to Citizen Engagement and Indicators for Nature-Based Solutions in a Case Study from Katowice
by Katarzyna Samborska-Goik, Anna Starzewska-Sikorska and Patrycja Obłój
Sustainability 2025, 17(15), 6857; https://doi.org/10.3390/su17156857 - 28 Jul 2025
Abstract
Urban areas are at the forefront in addressing global challenges such as climate change and biodiversity loss. Among the key responses are nature-based solutions, which are increasingly being integrated into policy frameworks but which require strong community engagement for their effective implementation. This [...] Read more.
Urban areas are at the forefront in addressing global challenges such as climate change and biodiversity loss. Among the key responses are nature-based solutions, which are increasingly being integrated into policy frameworks but which require strong community engagement for their effective implementation. This paper presents the findings of surveys conducted within the Place Lab in Katowice, Poland, an initiative developed as part of an international project and used as a participatory tool for co-creating and implementing green infrastructure. The project applies both place-based and people-centred approaches to support European cities in their transition towards regenerative urbanism. Place Lab activities encourage collaboration between local authorities and residents, enhancing awareness and fostering participation in environmental initiatives. The survey data collected during the project allowed for the evaluation of changes in public attitudes and levels of engagement and for the identification of broader societal phenomena that may influence the implementation of nature-based solutions. The findings revealed, for instance, that more women were interested in supporting the project, that residents tended to be sceptical of governmental actions on climate change, and that views were divided on the trade-off between urban infrastructure such as parking and roads and the presence of green areas. Furthermore, questions of responsibility, awareness, and long-term commitment were frequently raised. Building on the survey results and the existing literature, the study proposes a set of indicators to assess the contribution of citizen participation to the adoption of nature-based solutions. While the effectiveness of nature-based solutions in mitigating climate change impacts can be assessed relatively directly, evaluating civic engagement is more complex. Nevertheless, when conducted transparently and interpreted by experts, indicator-based assessment can offer valuable insights. This study introduces a novel perspective by considering not only drivers of engagement but also the obstacles. The proposed indicators provide a foundation for evaluating community readiness and commitment to nature-based approaches and may be adapted for application in other urban settings and in future research on climate resilience strategies. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
25 pages, 1339 KiB  
Article
Low-Latency Edge-Enabled Digital Twin System for Multi-Robot Collision Avoidance and Remote Control
by Daniel Poul Mtowe, Lika Long and Dong Min Kim
Sensors 2025, 25(15), 4666; https://doi.org/10.3390/s25154666 - 28 Jul 2025
Abstract
This paper proposes a low-latency and scalable architecture for Edge-Enabled Digital Twin networked control systems (E-DTNCS) aimed at multi-robot collision avoidance and remote control in dynamic and latency-sensitive environments. Traditional approaches, which rely on centralized cloud processing or direct sensor-to-controller communication, are inherently [...] Read more.
This paper proposes a low-latency and scalable architecture for Edge-Enabled Digital Twin networked control systems (E-DTNCS) aimed at multi-robot collision avoidance and remote control in dynamic and latency-sensitive environments. Traditional approaches, which rely on centralized cloud processing or direct sensor-to-controller communication, are inherently limited by excessive network latency, bandwidth bottlenecks, and a lack of predictive decision-making, thus constraining their effectiveness in real-time multi-agent systems. To overcome these limitations, we propose a novel framework that seamlessly integrates edge computing with digital twin (DT) technology. By performing localized preprocessing at the edge, the system extracts semantically rich features from raw sensor data streams, reducing the transmission overhead of the original data. This shift from raw data to feature-based communication significantly alleviates network congestion and enhances system responsiveness. The DT layer leverages these extracted features to maintain high-fidelity synchronization with physical robots and to execute predictive models for proactive collision avoidance. To empirically validate the framework, a real-world testbed was developed, and extensive experiments were conducted with multiple mobile robots. The results revealed a substantial reduction in collision rates when DT was deployed, and further improvements were observed with E-DTNCS integration due to significantly reduced latency. These findings confirm the system’s enhanced responsiveness and its effectiveness in handling real-time control tasks. The proposed framework demonstrates the potential of combining edge intelligence with DT-driven control in advancing the reliability, scalability, and real-time performance of multi-robot systems for industrial automation and mission-critical cyber-physical applications. Full article
(This article belongs to the Section Internet of Things)
27 pages, 1712 KiB  
Article
Self-Organizing Coverage Method of Swarm Robots Based on Dynamic Virtual Force
by Maohua Kuang, Wei Yan, Qiuzhen Wang and Yue Zheng
Symmetry 2025, 17(8), 1202; https://doi.org/10.3390/sym17081202 - 28 Jul 2025
Abstract
Swarm robots often need to cover the designated area to complete specific tasks. While robots possess local perception and limited communication capabilities, they struggle to handle coverage issues in dynamic environments. This paper proposes a self-organizing algorithm for swarm robots based on Dynamic [...] Read more.
Swarm robots often need to cover the designated area to complete specific tasks. While robots possess local perception and limited communication capabilities, they struggle to handle coverage issues in dynamic environments. This paper proposes a self-organizing algorithm for swarm robots based on Dynamic Virtual Force (DVF) to cover dynamic areas. Robots in the swarm can locally perceive their surrounding robots and dynamically select adjacent ones to generate virtual repulsion, thereby controlling their movement. The algorithm enables swarm robots to be rapidly and evenly deployed in unknown areas, adapt to dynamic area changes, and solve the problem of symmetrical robot distribution during coverage. It also allows for adaptive coverage of different density areas, divided as needed. Experimental validation across 20 benchmark scenarios (including obstacles, dynamic boundaries, and multi-density zones) demonstrates that the DVF method outperforms existing approaches in coverage rate, total robot movement distance, and coverage uniformity. The results validate its effectiveness and superiority in addressing area coverage problems. By addressing these challenges, the DVF algorithm can be widely applied to forest firefighting, oil spill cleanup in the ocean, and other swarm robot tasks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

16 pages, 2956 KiB  
Article
The Biophysical Basis for Karyopherin-Dependent Ebola Virus VP24 Nuclear Transport
by Junjie Zhao, Bojie Zhang, Olivia Vogel, Benjamin W. Walker, Leonard W. Ma, Nicole D. Wagner, Christopher F. Basler, Daisy W. Leung, Michael L. Gross and Gaya K. Amarasinghe
Viruses 2025, 17(8), 1051; https://doi.org/10.3390/v17081051 - 28 Jul 2025
Abstract
Nucleocytoplasmic trafficking is a highly regulated process that allows the cell to control the partitioning of proteins and nucleic acids between the cytosolic and nuclear compartments. The Ebola virus minor matrix protein VP24 (eVP24) hijacks this process by binding to a region on [...] Read more.
Nucleocytoplasmic trafficking is a highly regulated process that allows the cell to control the partitioning of proteins and nucleic acids between the cytosolic and nuclear compartments. The Ebola virus minor matrix protein VP24 (eVP24) hijacks this process by binding to a region on the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear importers. This region overlaps with the activated transcription factor STAT1 binding site on KPNAs, preventing STAT1 nuclear localization and activation of antiviral gene transcription. However, the molecular interactions of eVP24-KPNA5 binding that lead to the nuclear localization of eVP24 remain poorly characterized. Here, we show that trafficking of eVP24 into the nucleus by KPNA5 requires simultaneous binding of cargo. We also describe the conformational dynamics of KPNA5 and interactions with eVP24 and cargo nuclear localization sequences (NLS) using biophysical approaches. Our results reveal that eVP24 binding to KPNA5 does not impact cargo NLS binding to KPNA5, indicating that simultaneous binding of both cellular cargo and eVP24 to KPNA5 is likely required for nuclear trafficking. Together, these results provide a biophysical basis for how Ebola virus VP24 protein gains access to the nucleus during Ebola virus infection. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Graphical abstract

17 pages, 645 KiB  
Review
Regulation of Subcellular Protein Synthesis for Restoring Neural Connectivity
by Jeffery L. Twiss and Courtney N. Buchanan
Int. J. Mol. Sci. 2025, 26(15), 7283; https://doi.org/10.3390/ijms26157283 - 28 Jul 2025
Abstract
Neuronal proteins synthesized locally in axons and dendrites contribute to growth, plasticity, survival, and retrograde signaling underlying these cellular processes. Advances in molecular tools to profile localized mRNAs, along with single-molecule detection approaches for RNAs and proteins, have significantly expanded our understanding of [...] Read more.
Neuronal proteins synthesized locally in axons and dendrites contribute to growth, plasticity, survival, and retrograde signaling underlying these cellular processes. Advances in molecular tools to profile localized mRNAs, along with single-molecule detection approaches for RNAs and proteins, have significantly expanded our understanding of the diverse proteins produced in subcellular compartments. These investigations have also uncovered key molecular mechanisms that regulate mRNA transport, storage, stability, and translation within neurons. The long distances that axons extend render their processes vulnerable, especially when injury necessitates regeneration to restore connectivity. Localized mRNA translation in axons helps initiate and sustain axon regeneration in the peripheral nervous system and promotes axon growth in the central nervous system. Recent and ongoing studies suggest that axonal RNA transport, storage, and stability mechanisms represent promising targets for enhancing regenerative capacity. Here, we summarize critical post-transcriptional regulatory mechanisms, emphasizing translation in the axonal compartment and highlighting potential strategies for the development of new regeneration-promoting therapeutics. Full article
(This article belongs to the Special Issue Plasticity of the Nervous System after Injury: 2nd Edition)
Show Figures

Figure 1

24 pages, 2710 KiB  
Article
Spatial and Economic-Based Clustering of Greek Irrigation Water Organizations: A Data-Driven Framework for Sustainable Water Pricing and Policy Reform
by Dimitrios Tsagkoudis, Eleni Zafeiriou and Konstantinos Spinthiropoulos
Water 2025, 17(15), 2242; https://doi.org/10.3390/w17152242 - 28 Jul 2025
Abstract
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective [...] Read more.
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective on irrigation water pricing and cost recovery. The findings reveal that organizations located on islands, despite high water costs due to limited rainfall and geographic isolation, tend to achieve relatively strong financial performance, indicating the presence of adaptive mechanisms that could inform broader policy strategies. In contrast, organizations managing extensive irrigable land or large volumes of water frequently show poor cost recovery, challenging assumptions about economies of scale and revealing inefficiencies in pricing or governance structures. The spatial coherence of the clusters underscores the importance of geography in shaping institutional outcomes, reaffirming that environmental and locational factors can offer greater explanatory power than algorithmic models alone. This highlights the need for water management policies that move beyond uniform national strategies and instead reflect regional climatic, infrastructural, and economic variability. The study suggests several policy directions, including targeted infrastructure investment, locally calibrated water pricing models, and performance benchmarking based on successful organizational practices. Although grounded in the Greek context, the methodology and insights are transferable to other European and Mediterranean regions facing similar water governance challenges. Recognizing the limitations of the current analysis—including gaps in data consistency and the exclusion of socio-environmental indicators—the study advocates for future research incorporating broader variables and international comparative approaches. Ultimately, it supports a hybrid policy framework that combines data-driven analysis with spatial intelligence to promote sustainability, equity, and financial viability in agricultural water management. Full article
(This article belongs to the Special Issue Balancing Competing Demands for Sustainable Water Development)
Show Figures

Figure 1

25 pages, 1903 KiB  
Article
Pesticide Residues in Fruits and Vegetables from Cape Verde: A Multi-Year Monitoring and Dietary Risk Assessment Study
by Andrea Acosta-Dacal, Ricardo Díaz-Díaz, Pablo Alonso-González, María del Mar Bernal-Suárez, Eva Parga-Dans, Lluis Serra-Majem, Adriana Ortiz-Andrellucchi, Manuel Zumbado, Edson Santos, Verena Furtado, Miriam Livramento, Dalila Silva and Octavio P. Luzardo
Foods 2025, 14(15), 2639; https://doi.org/10.3390/foods14152639 - 28 Jul 2025
Abstract
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African [...] Read more.
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African island nation increasingly reliant on imported produce. A total of 570 samples of fruits and vegetables—both locally produced and imported—were collected from major markets across the country between 2017 and 2020 and analyzed using validated multiresidue methods based on gas chromatography coupled to Ion Trap mass spectrometry (GC-IT-MS/MS), and both gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS and LC-QqQ-MS/MS). Residues were detected in 63.9% of fruits and 13.2% of vegetables, with imported fruits showing the highest contamination levels and diversity of compounds. Although only one sample exceeded the maximum residue limits (MRLs) set by the European Union, 80 different active substances were quantified—many of them not authorized under the current EU pesticide residue legislation. Dietary exposure was estimated using median residue levels and real consumption data from the national nutrition survey (ENCAVE 2019), enabling a refined risk assessment based on actual consumption patterns. The cumulative hazard index for the adult population was 0.416, below the toxicological threshold of concern. However, when adjusted for children aged 6–11 years—taking into account body weight and relative consumption—the cumulative index approached 1.0, suggesting a potential health risk for this vulnerable group. A limited number of compounds, including omethoate, oxamyl, imazalil, and dithiocarbamates, accounted for most of the risk. Many are banned or heavily restricted in the EU, highlighting regulatory asymmetries in global food trade. These findings underscore the urgent need for strengthened residue monitoring in Cape Verde, particularly for imported products, and support the adoption of risk-based food safety policies that consider population-specific vulnerabilities and mixture effects. The methodological framework used here can serve as a model for other low-resource countries seeking to integrate analytical data with dietary exposure in a One Health context. Full article
(This article belongs to the Special Issue Risk Assessment of Hazardous Pollutants in Foods)
Show Figures

Figure 1

Back to TopTop