Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (635)

Search Parameters:
Keywords = local government behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13479 KB  
Article
Friction and Wear of Extrusion Dies Under Extreme Transient High-Temperature Conditions in the Extrusion of a Novel Nickel-Based High-Temperature Powder Alloy
by Baizhi Sun, Jinhui Wang, Yanzhuo Liu, Kongyan Zhang, Yuhua Zhang, Zifeng Liu, Falin Zhang, Guangyun Duan, Hongqiang Du, Yongsheng Wei, Yingnan Shi and Xinmei Hou
Lubricants 2026, 14(2), 55; https://doi.org/10.3390/lubricants14020055 - 27 Jan 2026
Abstract
During the extrusion of novel nickel-based powder superalloy bars, the die is subjected to elevated temperatures, high pressures, and severe friction, which readily lead to abrasive wear and thermal-fatigue damage. These failures deteriorate the quality of the extruded products and significantly shorten the [...] Read more.
During the extrusion of novel nickel-based powder superalloy bars, the die is subjected to elevated temperatures, high pressures, and severe friction, which readily lead to abrasive wear and thermal-fatigue damage. These failures deteriorate the quality of the extruded products and significantly shorten the service life of the die. Frequent repair and replacement of the tooling ultimately increase the overall manufacturing cost. This study investigates the friction and wear behavior of H13 and 5CrNiMo hot-work tool steels under extreme transient high-temperature conditions by combining finite element simulation with tribological testing. The temperature and stress distributions of the billet and key tooling components during extrusion were analyzed using DEFORM-3D. In addition, pin-on-disk friction and wear tests were conducted at 1000 °C to examine the friction coefficient, wear morphology, and subsurface grain structural evolution under various loading conditions. The results show that the extrusion die and die holder experience the highest loads and most severe wear during the extrusion process. For 5CrNiMo tool steel, the wear mechanism under low loads is dominated by mild abrasive wear and oxidative wear, whereas increasing the load causes a transition toward adhesive wear and severe oxidative wear. In contrast, H13 tool steel exhibits a transition from abrasive wear to severe oxidative wear. In 5CrNiMo steel, friction-induced recrystallization, grain refinement, and softening lead to the formation of a mechanically mixed layer, which, together with a stable third-body layer, markedly reduces and stabilizes the friction coefficient. H13 steel, however, undergoes surface strain localization and spalling, resulting in persistent fluctuations in the friction coefficient. The toughness and adhesion of the oxide film govern the differences in wear mechanisms between the two steels. Owing to its higher Cr, V, and Mo contents, H13 forms a dense but highly brittle oxide scale dominated by Cr and Fe oxides at 1000 °C. This oxide layer readily cracks and delaminates under frictional shear and thermal cycling. The repeated spalling exposes the fresh surface to further oxidation, accompanied by recurrent adhesion–delamination cycles. Consequently, the subsurface undergoes alternating intense shear and transient load variations, leading to localized dislocation accumulation and cracking, which suppresses the progression of continuous recrystallization. Full article
(This article belongs to the Special Issue Friction and Wear Mechanism Under Extreme Environments)
Show Figures

Figure 1

26 pages, 2600 KB  
Article
Influence of the Amount of Mineral Additive on the Rheological Properties and the Carbon Footprint of 3D-Printed Concrete Mixtures
by Modestas Kligys, Giedrius Girskas and Daiva Baltuškienė
Buildings 2026, 16(3), 490; https://doi.org/10.3390/buildings16030490 - 25 Jan 2026
Viewed by 154
Abstract
Rheology plays an important role in the 3D concrete printing technology, because it directly governs the flowability and shape retention of the material, impacting both the printing process and the final quality of the obtained structure. Local raw materials such as Portland cement, [...] Read more.
Rheology plays an important role in the 3D concrete printing technology, because it directly governs the flowability and shape retention of the material, impacting both the printing process and the final quality of the obtained structure. Local raw materials such as Portland cement, washed sand, and tap water were used for the preparation of 3D-printed concrete mixtures. The solid-state polycarboxylate ether with an anti-foaming agent was used as superplasticizer. The Portland cement was partially replaced (by volume) with a natural zeolite additive in amounts ranging from 0% to 9% in 3D-printed concrete mixtures. A rotational rheometer with coaxial cylinders was used in this research for the determination of rheological characteristics of prepared 3D-printed concrete mixtures. The Herschel–Buckley model was used to approximate experimental flow curves and assess rheological parameters such as yield stress, plastic viscosity, and shear-thinning/thickening index. The additional experiments and calculations, such as water bleeding test and evaluation of the carbon footprint of 3D-printed concrete mixtures, were performed in this work. The replacement of Portland cement with natural zeolite additive positively influenced rheological and stability-related properties of 3D-printed concrete mixtures. Natural zeolite additive consistently reduced water bleeding, enhanced yield stress under increasing shear rates, and lowered plastic viscosity, thereby improving flowability and mixture transportation during the 3D printing process. As the shear-thinning/thickening index remained stable (indicating non-thixotropic behavior in most cases), higher amounts of natural zeolite additive introduced slight thixotropy (especially under decreased shear rates). These changes contributed to better shape retention, layer stability, and the ability to print taller and narrower structures without collapse, making natural zeolite additive suitable for use in the optimized processes of 3D concrete printing. A significant decrease in total carbon footprint (from 3% to 19%) was observed in 3D-printed concrete mixtures with an increase in the mentioned amounts of natural zeolite additive, compared to the mixture without this additive. Full article
(This article belongs to the Special Issue Advances and Applications of Recycled Concrete in Green Building)
Show Figures

Figure 1

17 pages, 3990 KB  
Article
Analysis of Fatigue Behavior of 66 kV Dry-Type Submarine Cable for a Flexible Pull-In Installation System
by Yun-Jae Kim and Sungwoong Choi
J. Mar. Sci. Eng. 2026, 14(3), 243; https://doi.org/10.3390/jmse14030243 - 23 Jan 2026
Viewed by 232
Abstract
Submarine power cables for offshore wind farms experience continuous cyclic loading from environmental forces and floating-platform motions, making fatigue performance a critical design factor. This study combined global and local analyses to investigate the fatigue behavior of a 66 kV dry-type submarine cable [...] Read more.
Submarine power cables for offshore wind farms experience continuous cyclic loading from environmental forces and floating-platform motions, making fatigue performance a critical design factor. This study combined global and local analyses to investigate the fatigue behavior of a 66 kV dry-type submarine cable installed using a flexible pull-in installation system. A global dynamic analysis using site-specific meteorological and oceanographic data provided time-series displacement responses that were used to evaluate the fatigue damage to the metallic components of the cable. The results indicated that the minimum fatigue life of 8.71 × 104 cycles occurred at the upper metallic sheath near the fixed end, with a corresponding cumulative damage of 1.147 × 10−5. Fatigue accumulation was predominantly governed by lateral (y-direction) displacement, while axial and vertical displacement components contributed minimally. Furthermore, the predicted fatigue life of the metallic sheath varied by a factor of up to 3.6 depending on the selected curve, comparing the cyclic stress amplitude and number of cycles to failure (S–N curve), highlighting the importance of accurate material fatigue data. These findings emphasize the need for careful evaluation of the environmental loading and sheath fatigue properties in flexible pull-in installation system-based submarine cable system designs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 13400 KB  
Article
Numerical Simulation Study on the Influence of Physical Heterogeneity on the Dissolution Rate of Carbonate Rock
by Yunchao Lei, Zihao Li and Yuxiang Lv
Minerals 2026, 16(1), 110; https://doi.org/10.3390/min16010110 - 21 Jan 2026
Viewed by 70
Abstract
Seepage–dissolution in carbonate rock fractures serves as the core driver governing the evolution of key engineering projects, including reservoir dam stability, CO2 geological sequestration, and unstable rock collapse mitigation strategies. While physical heterogeneity (e.g., fracture aperture, mineral distribution) is widely recognized as [...] Read more.
Seepage–dissolution in carbonate rock fractures serves as the core driver governing the evolution of key engineering projects, including reservoir dam stability, CO2 geological sequestration, and unstable rock collapse mitigation strategies. While physical heterogeneity (e.g., fracture aperture, mineral distribution) is widely recognized as a critical factor regulating dissolution processes, the specific influence of mineral distribution heterogeneity on dissolution rates still lacks quantitative quantification. To address this gap, this study focuses on limestone fractures and employs multi-component reactive transport numerical simulations to model acidic fluid (pH = 5.0) seepage–dissolution under two Darcy flux conditions (37.8/378 m·yr−1). It investigates the controlling mechanisms of fracture roughness (λb = 0.036~0.308) and calcite contents (55%, 75%, 95%) on dissolution dynamics, and analyzes spatial variations in local Darcy velocity, reaction rate, and effective dissolution rate (Reff,i). Results demonstrate that mineral distribution heterogeneity directly induces pronounced spatial heterogeneity in dissolution behavior: diffusion dominates under low flux (simulation duration: 48.3 days), forming discrete reaction fronts (~15 mm) controlled by mineral clusters; advection prevails under high flux (simulation duration: 4.83 days), generating alternating dissolution–deposition zones (~7.5 mm) with Reff,i one order of magnitude greater than that under low flux. Notably, 55% calcite content yields the highest Reff,i (1.87 × 10−11 mol·m−2·s−1), 0.94 orders of magnitude greater than that at 95% calcite content. A strong linear correlation (R2 > 0.98) exists between the Damköhler number (DaI) and Reff,i at the same calcite content. Furthermore, the synergistic interaction between fracture aperture and mineral heterogeneity amplifies dissolution complexity, with high roughness (λb = 0.308) coupled with 55% calcite content achieving the highest Reff,i of 2.1 × 10−11 mol·m−2·s−1. This study provides critical theoretical insights and quantitative data support for fractured rock mass evolution prediction models, geological hazard prevention, and geological carbon sequestration optimization. Full article
Show Figures

Figure 1

15 pages, 12198 KB  
Article
Automated Local Measurement of Wall Shear Stress with AI-Assisted Oil Film Interferometry
by Mohammad Mehdizadeh Youshanlouei, Lorenzo Lazzarini, Alessandro Talamelli, Gabriele Bellani and Massimiliano Rossi
Sensors 2026, 26(2), 701; https://doi.org/10.3390/s26020701 - 21 Jan 2026
Viewed by 112
Abstract
Accurate measurement of wall shear stress (WSS) is essential for both fundamental and applied fluid dynamics, where it governs boundary-layer behavior, drag generation, and the performance of flow-control systems. Yet, existing WSS sensing methods remain limited by low spatial resolution, complex instrumentation, or [...] Read more.
Accurate measurement of wall shear stress (WSS) is essential for both fundamental and applied fluid dynamics, where it governs boundary-layer behavior, drag generation, and the performance of flow-control systems. Yet, existing WSS sensing methods remain limited by low spatial resolution, complex instrumentation, or the need for user-dependent calibration. This work introduces a method based on artificial intelligence (AI) and Oil-Film Interferometry, referred to as AI-OFI, that transforms a classical optical technique into an automated and sensor-like platform for local WSS detection. The method combines the non-intrusive precision of Oil-Film Interferometry with modern deep-learning tools to achieve fast and fully autonomous data interpretation. Interference patterns generated by a thinning oil film are first segmented in real time using a YOLO-based object detection network and subsequently analyzed through a modified VGG16 regression model to estimate the local film thickness and the corresponding WSS. A smart interrogation-window selection algorithm, based on 2D Fourier analysis, ensures robust fringe detection under varying illumination and oil distribution conditions. The AI-OFI system was validated in the high-Reynolds-number Long Pipe Facility at the Centre for International Cooperation in Long Pipe Experiments (CICLoPE), showing excellent agreement with reference pressure-drop measurements and conventional OFI, with an average deviation below 5%. The proposed framework enables reliable, real-time, and operator-independent wall shear stress sensing, representing a significant step toward next-generation optical sensors for aerodynamic and industrial flow applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 3475 KB  
Article
Geometry-Dependent Photonic Nanojet Formation and Arrays Coupling
by Zehua Sun, Shaobo Ge, Lujun Shen, Junyan Li, Shibo Xu, Jin Zhang, Yingxue Xi and Weiguo Liu
Nanomaterials 2026, 16(2), 136; https://doi.org/10.3390/nano16020136 - 20 Jan 2026
Viewed by 243
Abstract
This work systematically investigates photonic nanojet (PNJ) planar arrays formed by periodic arrangements of dielectric microstructures with four geometric configurations: cylinders, cones, truncated pyramids, and pyramids, focusing on the effects of geometry, array arrangement, and array sparsity on PNJ formation and coupling behavior. [...] Read more.
This work systematically investigates photonic nanojet (PNJ) planar arrays formed by periodic arrangements of dielectric microstructures with four geometric configurations: cylinders, cones, truncated pyramids, and pyramids, focusing on the effects of geometry, array arrangement, and array sparsity on PNJ formation and coupling behavior. Full-wave finite-difference time-domain simulations were performed to analyze optical field distributions under different array conditions. The results indicate that under approximately infinite array conditions, different geometries exhibit markedly different coupling responses. Cylindrical and truncated pyramid structures are more susceptible to inter-element scattering, leading to pronounced multistage focusing, whereas pyramid and cone structures maintain higher spatial stability due to dominant localized tip-focusing mechanisms. For the central elements, the maximum PNJ intensity is about 16.4 a.u. for cylindrical structures and 33.5 a.u. for truncated pyramid structures, while significantly higher intensities of approximately 47.5 a.u. and 93 a.u. are achieved for pyramid and cone structures, respectively. In contrast, the FWHM remains nearly constant for all geometries under different array conditions, indicating that lateral focusing is primarily governed by geometry rather than array arrangement. By tuning the array spacing, the inter-element coupling strength can be continuously weakened, and different geometries require distinct sparsity levels to reach the weak-coupling limit. These results establish the dominant role of geometric configuration in PNJ planar arrays and provide guidance for their predictable design. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

32 pages, 1461 KB  
Article
Social–Ecological Systems for Sustainable Water Management Under Anthropopressure: Bibliometric Mapping and Case Evidence from Poland
by Grzegorz Dumieński, Alicja Lisowska, Adam Sulich and Bogumił Nowak
Sustainability 2026, 18(2), 993; https://doi.org/10.3390/su18020993 - 19 Jan 2026
Viewed by 203
Abstract
The aim of this article is to present the social–ecological system (SES) as a unit of analysis for sustainable water management under conditions of anthropogenic pressure in Poland. In the face of accelerating climate change and growing human impacts, Polish water systems are [...] Read more.
The aim of this article is to present the social–ecological system (SES) as a unit of analysis for sustainable water management under conditions of anthropogenic pressure in Poland. In the face of accelerating climate change and growing human impacts, Polish water systems are exposed to increasing ecological stress and to material and immaterial losses affecting local communities. The SES approach provides an integrative analytical framework that links ecological and social components, enabling a holistic view of adaptive and governance processes at multiple spatial scales, from municipalities to areas that transcend administrative boundaries. Methodologically, this study triangulates three complementary approaches to strengthen explanatory inference. This conceptual SES review defines the analytical categories used in the paper, the bibliometric mapping (Scopus database with VOSviewer) identifies dominant research streams and underexplored themes, and the qualitative Polish case studies operationalize these categories to diagnose mechanisms, feedbacks, and governance vulnerabilities under anthropogenic pressure. The bibliometric analysis identifies the main research streams at the intersection of SES, water management and sustainable development, revealing thematic clusters related to climate change adaptation, environmental governance, ecosystem services and hydrological extremes. The case studies - the 2024 flood, the 2022 ecological disaster in the Odra River, and water deficits associated with lignite opencast mining in Eastern Wielkopolska - illustrate how anthropogenic pressure and climate-related hazards interact within local SES and expose governance gaps. Particular attention is paid to attitudes and social participation, understood as configurations of behaviors, knowledge and emotions that shape decision-making in local self-government, especially at the municipal level. This study argues that an SES-based perspective can contribute to building the resilience of water systems, improving the integration of ecological and social dimensions and supporting more sustainable water management in Poland. Full article
Show Figures

Figure 1

33 pages, 21083 KB  
Article
Numerical Analysis of Energy Dissipation and Frictional Effects in Aramid-Based Polymeric Fabrics Under Dynamic Loading
by Larisa Titire, Cristian Munteniță and Valentin Tiberiu Amorțilă
Polymers 2026, 18(2), 259; https://doi.org/10.3390/polym18020259 - 18 Jan 2026
Viewed by 194
Abstract
Aramid-based polymeric fabrics are increasingly employed in lightweight protective and structural applications where high strength, flexibility, and impact resistance are required. Their response under high-velocity impact is governed by complex interactions among fiber properties, inter-yarn friction, and the mechanical behavior of the impacting [...] Read more.
Aramid-based polymeric fabrics are increasingly employed in lightweight protective and structural applications where high strength, flexibility, and impact resistance are required. Their response under high-velocity impact is governed by complex interactions among fiber properties, inter-yarn friction, and the mechanical behavior of the impacting body. In this work, three-dimensional finite element simulations were conducted in ANSYS Explicit Dynamics to investigate the coupled effects of the interfacial friction coefficient (μ = coefficient of friction = 0.0–0.5) and impactor material on the dynamic response of 24-layer plain-weave aramid panels. The numerical results reveal that low friction facilitates yarn mobility and localized penetration, whereas moderate friction enhances stress-wave dispersion and enables a more uniform activation of multiple fabric layers. At higher friction levels, penetration is further reduced, but localized stress concentrations may emerge due to constrained yarn movement. The constitutive properties of the impactor strongly influenced deformation modes and the efficiency of kinetic energy transfer to the composite structure. The simulated results are consistent with experimental data reported in the literature, confirming the predictive capability of the model. The study provides quantitative insight into the role of frictional interactions and impactor characteristics in optimizing the energy absorption and structural integrity of aramid-based polymeric fabrics subjected to high-velocity loading, contributing to the development of advanced lightweight protective materials. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

31 pages, 2717 KB  
Perspective
Artificial Intelligence in Local Energy Systems: A Perspective on Emerging Trends and Sustainable Innovation
by Sára Ferenci, Florina-Ambrozia Coteț, Elena Simina Lakatos, Radu Adrian Munteanu and Loránd Szabó
Energies 2026, 19(2), 476; https://doi.org/10.3390/en19020476 - 17 Jan 2026
Viewed by 199
Abstract
Local energy systems (LESs) are becoming larger and more heterogeneous as distributed energy resources, electrified loads, and active prosumers proliferate, increasing the need for reliable coordination of operation, markets, and community governance. This Perspective synthesizes recent literature to map how artificial intelligence (AI) [...] Read more.
Local energy systems (LESs) are becoming larger and more heterogeneous as distributed energy resources, electrified loads, and active prosumers proliferate, increasing the need for reliable coordination of operation, markets, and community governance. This Perspective synthesizes recent literature to map how artificial intelligence (AI) supports forecasting and situational awareness, optimization, and real-time control of distributed assets, and community-oriented markets and engagement, while arguing that adoption is limited by system-level credibility rather than model accuracy alone. The analysis highlights interlocking deployment barriers, such as governance-integrated explainability, distributional equity, privacy and data governance, robustness under non-stationarity, and the computational footprint of AI. Building on this diagnosis, the paper proposes principles-as-constraints for sustainable, trustworthy LES AI and a deployment-oriented validation and reporting framework. It recommends evaluating LES AI with deployment-ready evidence, including stress testing under shift and rare events, calibrated uncertainty, constraint-violation and safe-fallback behavior, distributional impact metrics, audit-ready documentation, edge feasibility, and transparent energy/carbon accounting. Progress should be judged by measurable system benefits delivered under verifiable safeguards. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Graphical abstract

21 pages, 4133 KB  
Article
Mechanical Characterization of PLA+ Specimens with Different Geometries Using Experimental and Numerical Methods
by Mete Han Boztepe and Mehmet Haskul
Polymers 2026, 18(2), 243; https://doi.org/10.3390/polym18020243 - 16 Jan 2026
Viewed by 288
Abstract
Geometric discontinuities are unavoidable in additively manufactured polymer components and can significantly alter their mechanical response; however, their effects are rarely quantified in a systematic and geometry-comparative manner. In this study, the tensile behavior of FDM-printed PLA+ specimens with three different geometries—dog-bone, circular-hole, [...] Read more.
Geometric discontinuities are unavoidable in additively manufactured polymer components and can significantly alter their mechanical response; however, their effects are rarely quantified in a systematic and geometry-comparative manner. In this study, the tensile behavior of FDM-printed PLA+ specimens with three different geometries—dog-bone, circular-hole, and U-notched (manufactured and tested in accordance with ASTM D638 (Type IV))—was experimentally and numerically investigated. Tensile tests were conducted using a universal testing machine equipped with an extensometer, while finite element simulations were performed using an experimentally calibrated Ramberg–Osgood-based elastic–plastic material model. The dog-bone specimens exhibited an ultimate tensile strength (UTS) of 41–43 MPa and a Young’s modulus of 3.06 GPa, representing the intrinsic material response under nearly homogeneous stress conditions. Circular-hole specimens maintained comparable strength (38–42 MPa) but showed reduced ductility (1.4–1.6%) and a slightly increased apparent modulus of 3.17 GPa due to localized deformation. In contrast, U-notched specimens displayed the highest apparent modulus (≈5.30 GPa) and nominal UTS (46–49 MPa), accompanied by a pronounced reduction in ductility (0.9–1.0%), indicating severe stress concentration and predominantly brittle fracture behavior. Finite element analysis showed excellent agreement with experimental results, with peak von Mises stresses reaching approximately 42 MPa for all geometries, corresponding closely to the experimentally measured tensile strength. These results demonstrate that geometric discontinuities strongly govern stress localization, apparent stiffness, and fracture initiation in FDM-printed PLA+ components. The validated Ramberg–Osgood-based modeling framework provides a reliable tool for predicting geometry-dependent mechanical behavior under quasi-static loading and supports geometry-aware design of additively manufactured polymer structures. Full article
(This article belongs to the Special Issue Mechanical Behaviors and Properties of Polymer Materials, 2nd Edition)
Show Figures

Figure 1

14 pages, 5336 KB  
Article
Time-Dependent Microstructural Transformation and Interfacial Phase Evolution in TLP Bonding of CM247LC Superalloy
by Jaehui Bang, Hyukjoo Kwon, Taewon Park and Eunkyung Lee
Coatings 2026, 16(1), 121; https://doi.org/10.3390/coatings16010121 - 16 Jan 2026
Viewed by 166
Abstract
The bonding behavior of the Ni-based superalloy CM247LC during transient liquid phase (TLP) bonding is strongly governed by filler metal chemistry, particularly boron activity. In this study, the time-dependent bonding mechanisms of CM247LC joints fabricated using a high-boron MBF-80 filler and a low-boron [...] Read more.
The bonding behavior of the Ni-based superalloy CM247LC during transient liquid phase (TLP) bonding is strongly governed by filler metal chemistry, particularly boron activity. In this study, the time-dependent bonding mechanisms of CM247LC joints fabricated using a high-boron MBF-80 filler and a low-boron MBF-20 filler are systematically compared to clarifying the transition between reaction-dominated brazing and diffusion-assisted TLP bonding. Microstructural analyses reveal that MBF-80 promotes the formation of a persistent, reaction-stabilized interlayer characterized by strong boron localization and the development of boron-rich intermetallic reaction products. These features kinetically suppress diffusion-assisted homogenization and prevent isothermal solidification, resulting in pronounced chemical and mechanical discontinuities across the joint. In contrast, MBF-20 enables progressive boron depletion, suppression of stable intermetallic accumulation, and interfacial smoothing, leading to diffusion-assisted chemical redistribution and partial isothermal solidification. This evolution is accompanied by gradual convergence of hardness profiles toward that of the CM247LC base metal, indicating improved mechanical continuity. These results demonstrate that joint hardness alone is insufficient for evaluating bonding quality in CM247LC. Instead, controlled microstructural evolution governed by low-boron filler chemistry is essential for achieving chemically and mechanically compatible joints. The present work establishes a clear mechanistic link between filler metal composition and bonding behavior, providing guidance for the design of reliable TLP bonding strategies in Ni-based superalloys. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

22 pages, 6124 KB  
Article
High-Resolution Monitoring of Badland Erosion Dynamics: Spatiotemporal Changes and Topographic Controls via UAV Structure-from-Motion
by Yi-Chin Chen
Water 2026, 18(2), 234; https://doi.org/10.3390/w18020234 - 15 Jan 2026
Viewed by 325
Abstract
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in [...] Read more.
Mudstone badlands are critical hotspots of erosion and sediment yield, and their rapid morphological changes serve as an ideal site for studying erosion processes. This study used high-resolution Unmanned Aerial Vehicle (UAV) photogrammetry to monitor erosion patterns on a mudstone badland platform in southwestern Taiwan over a 22-month period. Five UAV surveys conducted between 2017 and 2018 were processed using Structure-from-Motion photogrammetry to generate time-series digital surface models (DSMs). Topographic changes were quantified using DSMs of Difference (DoD). The results reveal intense surface lowering, with a mean erosion depth of 34.2 cm, equivalent to an average erosion rate of 18.7 cm yr−1. Erosion is governed by a synergistic regime in which diffuse rain splash acts as the dominant background process, accounting for approximately 53% of total erosion, while concentrated flow drives localized gully incision. Morphometric analysis shows that erosion depth increases nonlinearly with slope, consistent with threshold hillslope behavior, but exhibits little dependence on the contributing area. Plan and profile curvature further influence the spatial distribution of erosion, with enhanced erosion on both strongly concave and convex surfaces relative to near-linear slopes. The gully network also exhibits rapid channel adjustment, including downstream meander migration and associated lateral bank erosion. These findings highlight the complex interactions among hillslope processes, gully dynamics, and base-level controls that govern badland landscape evolution and have important implications for erosion modeling and watershed management in high-intensity rainfall environments. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

26 pages, 11251 KB  
Article
Hydrogen Permeation Behavior of Locally Reinforced Type IV Hydrogen Storage Vessels
by Guangming Huo, Yu Zhang, Xia Han, Haonan Liu, Xiaoyu Yan, Gai Huang, Ruiqi Li, Shuxin Li, Kaidong Zheng and Hongda Chen
Polymers 2026, 18(2), 230; https://doi.org/10.3390/polym18020230 - 15 Jan 2026
Viewed by 189
Abstract
Hydrogen permeation parameters of PA12 were obtained through high-pressure hydrogen permeation experiments conducted under various temperature and pressure conditions. The temperature-dependent mechanism governing the hydrogen permeation behavior of PA12 was further examined using dynamic mechanical analysis (DMA). A multi-field coupled numerical model was [...] Read more.
Hydrogen permeation parameters of PA12 were obtained through high-pressure hydrogen permeation experiments conducted under various temperature and pressure conditions. The temperature-dependent mechanism governing the hydrogen permeation behavior of PA12 was further examined using dynamic mechanical analysis (DMA). A multi-field coupled numerical model was established and validated against the experimental results. Based on the validated numerical approach, the hydrogen permeation behavior of a type IV hydrogen storage vessel with local reinforcement was investigated. The results show that both temperature and pressure have a significant influence on the hydrogen permeation performance of PA12. When the temperature is below the glass transition temperature (Tg) of PA12 (48.34 °C), the diffusion coefficient remains low, whereas temperatures above the Tg led to a marked increase in the diffusion coefficient. In addition, the local reinforcement patch effectively prolongs the time required to reach steady-state permeation, reduces the hydrogen permeation flux before and after steady state, and enhances the overall resistance to hydrogen permeation of the type IV vessel. As the diffusion coefficient of the liner material increases, the hydrogen diffusion rate increases substantially, leading to greater hydrogen accumulation in the dome region and higher permeation levels both before and after steady state. These findings provide theoretical guidance and design references for optimizing the hydrogen-resistant performance of type IV hydrogen storage vessels. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 4319 KB  
Article
Numerical Simulation of Tritiated Water Transfer by Moist Air in Nuclear Power Station
by Yifan Cheng, Xi Xu, Kefeng Lyu, Yang Li, Kun Hu, Yongfang Xia and Xudan Ma
Processes 2026, 14(2), 286; https://doi.org/10.3390/pr14020286 - 14 Jan 2026
Viewed by 167
Abstract
This study investigates the dispersion and condensation behavior of tritiated water vapor released into the atmosphere using moist air as a carrier, with an emphasis on safety optimization for nuclear power plant effluent discharge. A coupled heat and mass transfer model was developed [...] Read more.
This study investigates the dispersion and condensation behavior of tritiated water vapor released into the atmosphere using moist air as a carrier, with an emphasis on safety optimization for nuclear power plant effluent discharge. A coupled heat and mass transfer model was developed and implemented in CFD simulations to analyze the evolution of temperature and relative humidity during the mixing of exhaust moist air with ambient air. The effects of key atmospheric and operational parameters—including the ambient wind speed, turbulence intensity, ambient temperature, relative humidity, and exhaust velocity—were systematically examined. The results indicate that the temperature difference between the exhaust gas and ambient air is the primary factor governing condensation risk. Low wind speeds and weak turbulence favor near-field humidity accumulation, while higher wind speeds and turbulence intensities enhance mixing and dilution, thereby reducing local humidity peaks but extending the downwind impact range. Increasing exhaust velocity strengthens plume rise and long-range transport due to enhanced momentum and latent heat release, mitigating accumulation near the chimney outlet. Furthermore, high ambient temperatures significantly increase the air’s moisture-holding capacity, allowing higher exhaust humidity without inducing condensation. Full article
(This article belongs to the Section Process Safety and Risk Management)
Show Figures

Figure 1

21 pages, 1259 KB  
Review
Transition Metal-Doped ZnO and ZrO2 Nanocrystals: Correlations Between Structure, Magnetism, and Vibrational Properties—A Review
by Izabela Kuryliszyn-Kudelska and Witold Daniel Dobrowolski
Appl. Sci. 2026, 16(2), 786; https://doi.org/10.3390/app16020786 - 12 Jan 2026
Viewed by 138
Abstract
Transition metal (TM)-doped zinc oxide (ZnO) and zirconium dioxide (ZrO2) nanocrystals exhibit complex correlations between crystal structure, defect chemistry, vibrational properties, and magnetic behavior that are strongly governed by synthesis route and dopant incorporation mechanisms. This review critically summarizes recent progress [...] Read more.
Transition metal (TM)-doped zinc oxide (ZnO) and zirconium dioxide (ZrO2) nanocrystals exhibit complex correlations between crystal structure, defect chemistry, vibrational properties, and magnetic behavior that are strongly governed by synthesis route and dopant incorporation mechanisms. This review critically summarizes recent progress on Fe-, Mn-, and Co-doped ZnO and ZrO2 nanocrystals synthesized by wet chemical, hydrothermal, and microwave-assisted hydrothermal methods, with emphasis on synthesis-driven phase evolution and apparent solubility limits. ZnO and ZrO2 are treated as complementary host lattices: ZnO is a semiconducting, piezoelectric oxide with narrow solubility limits for most 3d dopants, while ZrO2 is a dielectric, polymorphic oxide in which transition metal doping may stabilize tetragonal or cubic phases. Structural and microstructural studies using X-ray diffraction, electron microscopy, Raman spectroscopy, and Mössbauer spectroscopy demonstrate that at low dopant concentrations, TM ions may be partially incorporated into the host lattice, giving rise to diluted or defect-mediated magnetic behavior. When solubility limits are exceeded, nanoscopic secondary oxide phases emerge, leading to superparamagnetic, ferrimagnetic, or spin-glass-like responses. Magnetic measurements, including DC magnetization and AC susceptibility, reveal a continuous evolution from paramagnetism in lightly doped samples to dynamic magnetic states characteristic of nanoscale magnetic entities. Vibrational spectroscopy highlights phonon confinement, surface optical phonons, and disorder-activated modes that sensitively reflect nanocrystal size, lattice strain, and defect populations, and often correlate with magnetic dynamics. Rather than classifying these materials as diluted magnetic semiconductors, this review adopts a synthesis-driven and correlation-based framework that links dopant incorporation, local structural disorder, vibrational fingerprints, and magnetic response. By emphasizing multi-technique characterization strategies required to distinguish intrinsic from extrinsic magnetic contributions, this review provides practical guidelines for interpreting magnetism in TM-doped oxide nanocrystals and outlines implications for applications in photocatalysis, sensing, biomedicine, and electromagnetic interference (EMI) shielding. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

Back to TopTop