Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,183)

Search Parameters:
Keywords = local forest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3387 KiB  
Article
Landscape Services from the Perspective of Experts and Their Use by the Local Community: A Comparative Study of Selected Landscape Types in a Region in Central Europe
by Piotr Krajewski, Marek Furmankiewicz, Marta Sylla, Iga Kołodyńska and Monika Lebiedzińska
Sustainability 2025, 17(15), 6998; https://doi.org/10.3390/su17156998 (registering DOI) - 1 Aug 2025
Abstract
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual [...] Read more.
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual use. The study has three main objectives: (1) to assess the potential of 16 selected landscape types to provide six key LS through expert evaluation; (2) to determine actual LS usage patterns among the local community (residents); and (3) to identify agreements and discrepancies between expert assessments and resident use. The services analyzed include providing space for daily activities; regulating spatial structure through diversity and compositional richness; enhancing physical and mental health; enabling passive and active recreation; supporting personal fulfillment; and fostering social interaction. Expert-based surveys and participatory mapping with residents were used to assess the provision and use of LS. The results indicate consistent evaluations for forest and historical urban landscapes (high potential and use) and mining and transportation landscapes (low potential and use). However, significant differences emerged for mountain LS, rated highly by experts but used minimally by residents. These insights highlight the importance of aligning expert planning with community needs to promote sustainable land use policies and reduce spatial conflicts. Full article
Show Figures

Figure 1

17 pages, 2076 KiB  
Article
Detection and Classification of Power Quality Disturbances Based on Improved Adaptive S-Transform and Random Forest
by Dongdong Yang, Shixuan Lü, Junming Wei, Lijun Zheng and Yunguang Gao
Energies 2025, 18(15), 4088; https://doi.org/10.3390/en18154088 (registering DOI) - 1 Aug 2025
Abstract
The increasing penetration of renewable energy into power systems has intensified transient power quality (PQ) disturbances, demanding efficient detection and classification methods to enable timely operational decisions. This paper introduces a hybrid framework combining an Improved Adaptive S-Transform (IAST) with a Random Forest [...] Read more.
The increasing penetration of renewable energy into power systems has intensified transient power quality (PQ) disturbances, demanding efficient detection and classification methods to enable timely operational decisions. This paper introduces a hybrid framework combining an Improved Adaptive S-Transform (IAST) with a Random Forest (RF) classifier to address these challenges. The IAST employs a globally adaptive Gaussian window as its kernel function, which automatically adjusts window length and spectral resolution based on real-time frequency characteristics, thereby enhancing time–frequency localization accuracy while reducing algorithmic complexity. To optimize computational efficiency, window parameters are determined through an energy concentration maximization criterion, enabling rapid extraction of discriminative features from diverse PQ disturbances (e.g., voltage sags and transient interruptions). These features are then fed into an RF classifier, which simultaneously mitigates model variance and bias, achieving robust classification. Experimental results show that the proposed IAST–RF method achieves a classification accuracy of 99.73%, demonstrating its potential for real-time PQ monitoring in modern grids with high renewable energy penetration. Full article
Show Figures

Figure 1

19 pages, 1789 KiB  
Article
Soils of the Settlements of the Yamal Region (Russia): Morphology, Diversity, and Their Environmental Role
by Evgeny Abakumov, Alexandr Pechkin, Sergey Kouzov and Anna Kravchuk
Appl. Sci. 2025, 15(15), 8569; https://doi.org/10.3390/app15158569 (registering DOI) - 1 Aug 2025
Abstract
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and [...] Read more.
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and industrial settlements. In this regard, we studied the background soils of forests and tundras and the soils of settlements. The main signs of the urbanogenic morphogenesis of soils associated with the transportation of material for urban construction are revealed. The peculiarities of soils of recreational, residential, and industrial zones of urbanized ecosystems are described. The questions of diversity and the classification of soils are discussed. The specificity of bulk soils used in the construction of industrial structures in the context of the initial stage of soil formation is considered. For the first time, soils and soil cover of settlements in the central and southern parts of the Yamal region are described in the context of traditional pedology. It is shown that the construction of new soils and grounds can lead to both decreases and increases in biodiversity, including the appearance of protected species. Surprisingly, the forms of urban soil formation in the Arctic are very diversified in terms of morphology, as well as in the ecological functions performed by soils. The urbanization of past decades has drastically changed the local soil cover. Full article
(This article belongs to the Section Environmental Sciences)
26 pages, 1103 KiB  
Article
How to Compensate Forest Ecosystem Services Through Restorative Justice: An Analysis Based on Typical Cases in China
by Haoran Gao and Tenglong Lin
Forests 2025, 16(8), 1254; https://doi.org/10.3390/f16081254 (registering DOI) - 1 Aug 2025
Abstract
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice [...] Read more.
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice of environmental public interest litigation. Since 2015, China has actively explored and institutionalized the application of the concept of restorative justice in its environmental justice reform. This concept emphasizes compensating environmental damages through actual ecological restoration acts rather than relying solely on financial compensation. This shift reflects a deep understanding of the limitations of traditional environmental justice and an institutional response to China’s ecological civilization construction, providing critical support for forest ecosystem restoration and enabling ecological restoration activities, such as replanting and re-greening, habitat reconstruction, etc., to be enforced through judicial decisions. This study conducts a qualitative analysis of judicial rulings in forest restoration cases to systematically evaluate the effectiveness of restorative justice in compensating for losses in forest ecosystem service functions. The findings reveal the following: (1) restoration measures in judicial practice are disconnected from the types of ecosystem services available; (2) non-market values and long-term cumulative damages are systematically underestimated, with monitoring mechanisms exhibiting fragmented implementation and insufficient effectiveness; (3) management cycles are set in violation of ecological restoration principles, and acceptance standards lack function-oriented indicators; (4) participation of key stakeholders is severely lacking, and local knowledge and professional expertise have not been integrated. In response, this study proposes a restorative judicial framework oriented toward forest ecosystem services, utilizing four mechanisms: independent recognition of legal interests, function-matched restoration, application of scientific assessment tools, and multi-stakeholder collaboration. This framework aims to drive a paradigm shift from formal restoration to substantive functional recovery, providing theoretical support and practical pathways for environmental judicial reform and global forest governance. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

22 pages, 10557 KiB  
Article
The RF–Absolute Gradient Method for Localizing Wheat Moisture Content’s Abnormal Regions with 2D Microwave Scanning Detection
by Dong Dai, Zhenyu Wang, Hao Huang, Xu Mao, Yehong Liu, Hao Li and Du Chen
Agriculture 2025, 15(15), 1649; https://doi.org/10.3390/agriculture15151649 - 31 Jul 2025
Abstract
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization [...] Read more.
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization method for addressing such a challenge. Both static and scanning experiments were performed on a developed mobile and non-destructive microwave detection system to quantify the MC of wheat and then locate abnormal moisture regions. For quantifying the wheat’s MC, a dual-parameter wheat MC prediction model with the random forest (RF) algorithm was constructed, achieving a high accuracy (R2 = 0.9846, MSE = 0.2768, MAE = 0.3986). MC scanning experiments were conducted by synchronized moving waveguides; the maximum absolute error of MC prediction was 0.565%, with a maximum relative error of 3.166%. Furthermore, both one- and two-dimensional localizing methods were proposed for localizing abnormal moisture regions. The one-dimensional method evaluated two approaches—attenuation value and absolute attenuation gradient—using computer simulation technology (CST) modeling and scanning experiments. The experimental results confirmed the superior performance of the absolute gradient method, with a center detection error of less than 12 mm in the anomalous wheat moisture region and a minimum width detection error of 1.4 mm. The study performed two-dimensional antenna scanning and effectively imaged the high-MC regions using phase delay analysis. The imaging results coincide with the actual locations of moisture anomaly regions. This study demonstrated a promising solution for accurately localizing the wheat’s abnormal/high-moisture regions with the use of an emerging microwave transmission method. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

25 pages, 10331 KiB  
Article
Forest Fire Detection Method Based on Dual-Branch Multi-Scale Adaptive Feature Fusion Network
by Qinggan Wu, Chen Wei, Ning Sun, Xiong Xiong, Qingfeng Xia, Jianmeng Zhou and Xingyu Feng
Forests 2025, 16(8), 1248; https://doi.org/10.3390/f16081248 - 31 Jul 2025
Abstract
There are significant scale and morphological differences between fire and smoke features in forest fire detection. This paper proposes a detection method based on dual-branch multi-scale adaptive feature fusion network (DMAFNet). In this method, convolutional neural network (CNN) and transformer are used to [...] Read more.
There are significant scale and morphological differences between fire and smoke features in forest fire detection. This paper proposes a detection method based on dual-branch multi-scale adaptive feature fusion network (DMAFNet). In this method, convolutional neural network (CNN) and transformer are used to form a dual-branch backbone network to extract local texture and global context information, respectively. In order to overcome the difference in feature distribution and response scale between the two branches, a feature correction module (FCM) is designed. Through space and channel correction mechanisms, the adaptive alignment of two branch features is realized. The Fusion Feature Module (FFM) is further introduced to fully integrate dual-branch features based on the two-way cross-attention mechanism and effectively suppress redundant information. Finally, the Multi-Scale Fusion Attention Unit (MSFAU) is designed to enhance the multi-scale detection capability of fire targets. Experimental results show that the proposed DMAFNet has significantly improved in mAP (mean average precision) indicators compared with existing mainstream detection methods. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

27 pages, 31400 KiB  
Article
Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China
by Zhiyuan Xu, Fuyan Ke, Jiajie Yu and Haotian Zhang
Land 2025, 14(8), 1569; https://doi.org/10.3390/land14081569 - 31 Jul 2025
Abstract
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and [...] Read more.
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and grid scales. Therefore, this study selects Zhejiang Province—a representative rapidly transforming region in China—to establish a “type-process-ecological effect” analytical framework. Utilizing four-period (2005–2020) 30 m resolution land use data alongside natural and socio-economic factors, four spatial scales (city, county, township, and 5 km grid) were selected to systematically evaluate multi-scale impacts of land use transition on EEQ and their driving mechanisms. The research reveals that the spatial distribution, changing trends, and driving factors of EEQ all exhibit significant scale dependence. The county scale demonstrates the strongest spatial agglomeration and heterogeneity, making it the most appropriate core unit for EEQ management and planning. City and county scales generally show degradation trends, while township and grid scales reveal heterogeneous patterns of local improvement, reflecting micro-scale changes obscured at coarse resolutions. Expansive land transition including conversions of forest ecological land (FEL), water ecological land (WEL), and agricultural production land (APL) to industrial and mining land (IML) primarily drove EEQ degradation, whereas restorative ecological transition such as transformation of WEL and IML to grassland ecological land (GEL) significantly enhanced EEQ. Regarding driving mechanisms, natural factors (particularly NDVI and precipitation) dominate across all scales with significant interactive effects, while socio-economic factors primarily operate at macro scales. This study elucidates the scale complexity of land use transition impacts on ecological environments, providing theoretical and empirical support for developing scale-specific, typology-differentiated ecological governance and spatial planning policies. Full article
Show Figures

Figure 1

19 pages, 1844 KiB  
Article
Urban Expansion and the Loss of Agricultural Lands and Forest Cover in Limbe, Cameroon
by Lucy Deba Enomah, Joni Downs, Michael Acheampong, Qiuyan Yu and Shirley Tanyi
Remote Sens. 2025, 17(15), 2631; https://doi.org/10.3390/rs17152631 - 29 Jul 2025
Viewed by 196
Abstract
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its [...] Read more.
Using LULC change detection analysis, it is possible to identify changes due to urbanization, deforestation, or a natural disaster in an area. As population growth and urbanization increase, real-time solutions for the effects of urbanization on land use are required to assess its implications for food security and livelihood. This study seeks to identify and quantify recent LULC changes in Limbe, Cameroon, and to measure rates of conversion between agricultural, forest, and urban lands between 1986 and 2020 using remote sensing and GIS. Also, there is a deficiency of research employing these data to evaluate the efficiency of LULC satellite data and a lack of awareness by local stakeholders regarding the impact on LULC change. The changes were identified in four classes utilizing maximum supervised classification in ENVI and ArcGIS environments. The classification result reveals that the 2020 image has the highest overall accuracy of 94.6 while the 2002 image has an overall accuracy of 89.2%. The overall gain for agriculture was approximately 4.6 km2, urban had an overall gain of nearly 12.7 km2, while the overall loss for forest was −16.9 km2 during this period. Much of the land area previously occupied by forest is declining as pressures for urban areas and new settlements increase. This study’s findings have significant policy implications for sustainable land use and food security. It also provides a spatial method for monitoring LULC variations that can be used as a framework by stakeholders who are interested in environmentally conscious development and sustainable land use practices. Full article
Show Figures

Figure 1

16 pages, 2462 KiB  
Article
Allometric Equations for Aboveground Biomass Estimation in Wet Miombo Forests of the Democratic Republic of the Congo Using Terrestrial LiDAR
by Jonathan Ilunga Muledi, Stéphane Takoudjou Momo, Pierre Ploton, Augustin Lamulamu Kamukenge, Wilfred Kombe Ibey, Blaise Mupari Pamavesi, Benoît Amisi Mushabaa, Mylor Ngoy Shutcha, David Nkulu Mwenze, Bonaventure Sonké, Urbain Mumba Tshanika, Benjamin Toirambe Bamuninga, Cléto Ndikumagenge and Nicolas Barbier
Environments 2025, 12(8), 260; https://doi.org/10.3390/environments12080260 - 29 Jul 2025
Viewed by 236
Abstract
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been [...] Read more.
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been validated by the IPCC guidelines for carbon accounting within the REDD+ framework. TLS surveys were carried out in five non-contiguous 1-ha plots in two study sites in the wet Miombo forest of Katanga, in the Democratic Republic Congo. Local wood densities (WD) were determined from wood cores taken from 619 trees on the sites. After a careful checking of Quantitative Structure Models (QSMs) output, the individual volumes of 213 trees derived from TLS data processing were converted to AGB using WD. Four AEs were calibrated using different predictors, and all presented strong performance metrics (e.g., R2 ranging from 90 to 93%), low relative bias and relative individual mean error (11.73 to 16.34%). Multivariate analyses performed on plot floristic and structural data showed a strong contrast in terms of composition and structure between sites and between plots within sites. Even though the whole variability of the biome has not been sampled, we were thus able to confirm the transposability of results within the wet Miombo forests through two cross-validation approaches. The AGB predictions obtained with our best AE were also compared with AEs found in the literature. Overall, an underestimation of tree AGB varying from −35.04 to −19.97% was observed when AEs from the literature were used for predicting AGB in the Miombo of Katanga. Full article
Show Figures

Figure 1

19 pages, 8766 KiB  
Article
Fusion of Airborne, SLAM-Based, and iPhone LiDAR for Accurate Forest Road Mapping in Harvesting Areas
by Evangelia Siafali, Vasilis Polychronos and Petros A. Tsioras
Land 2025, 14(8), 1553; https://doi.org/10.3390/land14081553 - 28 Jul 2025
Viewed by 207
Abstract
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and [...] Read more.
This study examined the integraftion of airborne Light Detection and Ranging (LiDAR), Simultaneous Localization and Mapping (SLAM)-based handheld LiDAR, and iPhone LiDAR to inspect forest road networks following forest operations. The goal is to overcome the challenges posed by dense canopy cover and ensure accurate and efficient data collection and mapping. Airborne data were collected using the DJI Matrice 300 RTK UAV equipped with a Zenmuse L2 LiDAR sensor, which achieved a high point density of 285 points/m2 at an altitude of 80 m. Ground-level data were collected using the BLK2GO handheld laser scanner (HPLS) with SLAM methods (LiDAR SLAM, Visual SLAM, Inertial Measurement Unit) and the iPhone 13 Pro Max LiDAR. Data processing included generating DEMs, DSMs, and True Digital Orthophotos (TDOMs) via DJI Terra, LiDAR360 V8, and Cyclone REGISTER 360 PLUS, with additional processing and merging using CloudCompare V2 and ArcGIS Pro 3.4.0. The pairwise comparison analysis between ALS data and each alternative method revealed notable differences in elevation, highlighting discrepancies between methods. ALS + iPhone demonstrated the smallest deviation from ALS (MAE = 0.011, RMSE = 0.011, RE = 0.003%) and HPLS the larger deviation from ALS (MAE = 0.507, RMSE = 0.542, RE = 0.123%). The findings highlight the potential of fusing point clouds from diverse platforms to enhance forest road mapping accuracy. However, the selection of technology should consider trade-offs among accuracy, cost, and operational constraints. Mobile LiDAR solutions, particularly the iPhone, offer promising low-cost alternatives for certain applications. Future research should explore real-time fusion workflows and strategies to improve the cost-effectiveness and scalability of multisensor approaches for forest road monitoring. Full article
Show Figures

Figure 1

27 pages, 1712 KiB  
Article
Self-Organizing Coverage Method of Swarm Robots Based on Dynamic Virtual Force
by Maohua Kuang, Wei Yan, Qiuzhen Wang and Yue Zheng
Symmetry 2025, 17(8), 1202; https://doi.org/10.3390/sym17081202 - 28 Jul 2025
Viewed by 194
Abstract
Swarm robots often need to cover the designated area to complete specific tasks. While robots possess local perception and limited communication capabilities, they struggle to handle coverage issues in dynamic environments. This paper proposes a self-organizing algorithm for swarm robots based on Dynamic [...] Read more.
Swarm robots often need to cover the designated area to complete specific tasks. While robots possess local perception and limited communication capabilities, they struggle to handle coverage issues in dynamic environments. This paper proposes a self-organizing algorithm for swarm robots based on Dynamic Virtual Force (DVF) to cover dynamic areas. Robots in the swarm can locally perceive their surrounding robots and dynamically select adjacent ones to generate virtual repulsion, thereby controlling their movement. The algorithm enables swarm robots to be rapidly and evenly deployed in unknown areas, adapt to dynamic area changes, and solve the problem of symmetrical robot distribution during coverage. It also allows for adaptive coverage of different density areas, divided as needed. Experimental validation across 20 benchmark scenarios (including obstacles, dynamic boundaries, and multi-density zones) demonstrates that the DVF method outperforms existing approaches in coverage rate, total robot movement distance, and coverage uniformity. The results validate its effectiveness and superiority in addressing area coverage problems. By addressing these challenges, the DVF algorithm can be widely applied to forest firefighting, oil spill cleanup in the ocean, and other swarm robot tasks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

15 pages, 3952 KiB  
Article
Prediction of the Potentially Suitable Area for Anoplophora glabripennis (Coleoptera: Cerambycidae) in China Based on MaxEnt
by Kaiwen Tan, Mingwang Zhou, Hongjiang Hu, Ning Dong and Cheng Tang
Forests 2025, 16(8), 1239; https://doi.org/10.3390/f16081239 - 28 Jul 2025
Viewed by 150
Abstract
Anoplophora glabripennis (Asian longhorned beetle, ALB) (Motschulsky, 1854) is a local forest pest in China. Although the suitable area for this pest has some research history, it does not accurately predict the future distribution area of ALB. Accurate prediction of its suitable area [...] Read more.
Anoplophora glabripennis (Asian longhorned beetle, ALB) (Motschulsky, 1854) is a local forest pest in China. Although the suitable area for this pest has some research history, it does not accurately predict the future distribution area of ALB. Accurate prediction of its suitable area can help control the harm caused by ALB more effectively. In this study, we applied the maximum entropy model to predict the suitable area for ALB. Moreover, the prediction results revealed that ALB is distributed mainly in northern, eastern, central, southern, southwestern, and northwestern China, and its high-fit areas are located mainly in northern, northwestern, and southwestern China. The average minimum temperature in September, precipitation seasonality (coefficient of variation), the average maximum temperature in April, and average precipitation in October had the greatest influence on ALB. The greatest distribution probabilities were observed at the September average minimum temperature of 16 °C, the precipitation seasonality (coefficient of variation) of 130%, the April average maximum temperature of 14 °C, and the October average precipitation of 30 mm. Furthermore, with climate change, the non-suitability area for the ALB will show a decreasing trend in the future. The intermediate suitability area will increase, while the low and high suitability areas will first increase and then decrease. Taken together, the potentially suitable areas for ALB in China include the Beijing–Tianjin–Hebei region and the Shanghai region in North China and East China, providing a deeper understanding of ALB control. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 205
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

23 pages, 20415 KiB  
Article
FireNet-KD: Swin Transformer-Based Wildfire Detection with Multi-Source Knowledge Distillation
by Naveed Ahmad, Mariam Akbar, Eman H. Alkhammash and Mona M. Jamjoom
Fire 2025, 8(8), 295; https://doi.org/10.3390/fire8080295 - 26 Jul 2025
Viewed by 310
Abstract
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional [...] Read more.
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional techniques for fire detection often experience false alarms and delayed responses in various environmental situations. Therefore, developing robust, intelligent, and real-time detection systems has emerged as a central challenge in remote sensing and computer vision research communities. Despite recent achievements in deep learning, current forest fire detection models still face issues with generalizability, lightweight deployment, and accuracy trade-offs. In order to overcome these limitations, we introduce a novel technique (FireNet-KD) that makes use of knowledge distillation, a method that maps the learning of hard models (teachers) to a light and efficient model (student). We specifically utilize two opposing teacher networks: a Vision Transformer (ViT), which is popular for its global attention and contextual learning ability, and a Convolutional Neural Network (CNN), which is esteemed for its spatial locality and inductive biases. These teacher models instruct the learning of a Swin Transformer-based student model that provides hierarchical feature extraction and computational efficiency through shifted window self-attention, and is thus particularly well suited for scalable forest fire detection. By combining the strengths of ViT and CNN with distillation into the Swin Transformer, the FireNet-KD model outperforms state-of-the-art methods with significant improvements. Experimental results show that the FireNet-KD model obtains a precision of 95.16%, recall of 99.61%, F1-score of 97.34%, and mAP@50 of 97.31%, outperforming the existing models. These results prove the effectiveness of FireNet-KD in improving both detection accuracy and model efficiency for forest fire detection. Full article
Show Figures

Figure 1

12 pages, 1322 KiB  
Article
Recovery Following a Drought-Induced Population Decline in an Exudivorous Forest Mammal
by Ross L. Goldingay
Forests 2025, 16(8), 1230; https://doi.org/10.3390/f16081230 - 26 Jul 2025
Viewed by 116
Abstract
The likely increase in the frequency and severity of droughts with climate warming will pose an enormous challenge for the conservation of forest biodiversity. Documenting the response of species to recent droughts can inform future conservation actions. Mammals that breed and mature slowly [...] Read more.
The likely increase in the frequency and severity of droughts with climate warming will pose an enormous challenge for the conservation of forest biodiversity. Documenting the response of species to recent droughts can inform future conservation actions. Mammals that breed and mature slowly may be especially vulnerable to drought-induced disruption to breeding. The yellow-bellied glider (Petaurus australis, Shaw) is a threatened low-density, arboreal marsupial of eastern Australia. Following a severe drought in 2019, one population had declined by 48% by 2021. The present study investigated whether this population had recovered 3–4 years (2022 and 2023) after that drought. Audio surveys of this highly vocal species were conducted at 42 sites, sampling > 1000 h per year, and producing recordings of 2038–2856 call sequences. The probability of occupancy varied little across the two survey years (0.92–0.97). Local abundance in 2023 had returned to pre-drought levels (45% of occupied sites had ≥3 individuals compared to 6% in 2021). These findings show a recovery from a drought-induced decline required at least 3 years, in keeping with the slow life history traits of this species. This study highlights the importance of considering a species’ life history strategy when evaluating its sensitivity to drought. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

Back to TopTop