Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (151)

Search Parameters:
Keywords = local fatigue assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5167 KiB  
Article
Comparative Study of Local Stress Approaches for Fatigue Strength Assessment of Longitudinal Web Connections
by Ji Hoon Kim, Jae Sung Lee and Myung Hyun Kim
J. Mar. Sci. Eng. 2025, 13(8), 1491; https://doi.org/10.3390/jmse13081491 - 1 Aug 2025
Viewed by 142
Abstract
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data [...] Read more.
Ship structures are subjected to cyclic loading from waves and currents during operation, which can lead to fatigue failure, particularly at locations with structural discontinuities such as welds. Although various fatigue assessment methods have been developed, there is a lack of experimental data and comparative studies for actual ship structure details. This study addresses this limitation by evaluating the fatigue strength of longi-web connections in hull structures using local stress approaches, including hot spot stress, effective notch stress, notch stress intensity factor, and structural stress methods. Finite element analyses were conducted, and the predicted fatigue lives and failure locations were compared with experimental results. Although there are some differences between each method, all methods are valid and reasonable for predicting the primary failure locations and evaluating fatigue life. These findings provide a basis for considering suitable fatigue assessment methods for welded ship structures with respect to joint geometry and failure mechanisms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 1414 KiB  
Article
Integrated Analysis of the Safety Experience in Adults with the Bivalent Respiratory Syncytial Virus Prefusion F Vaccine
by Kumar Ilangovan, David Radley, Michael Patton, Emma Shittu, Maria Maddalena Lino, Christos Goulas, Kena A. Swanson, Annaliesa S. Anderson, Alejandra Gurtman and Iona Munjal
Vaccines 2025, 13(8), 827; https://doi.org/10.3390/vaccines13080827 - 1 Aug 2025
Viewed by 284
Abstract
Background/objectives: This was a post hoc analysis of safety data across the bivalent respiratory syncytial virus prefusion F (RSVpreF) vaccine clinical trial development program. Methods: Data from eight clinical trials in 46,913 immunocompetent adults who received RSVpreF or placebo were analyzed. Local reactions [...] Read more.
Background/objectives: This was a post hoc analysis of safety data across the bivalent respiratory syncytial virus prefusion F (RSVpreF) vaccine clinical trial development program. Methods: Data from eight clinical trials in 46,913 immunocompetent adults who received RSVpreF or placebo were analyzed. Local reactions and systemic events were assessed among non-pregnant ≥18-year-olds (n = 9517); adverse events (AEs) among pregnant and non-pregnant 18–59-year-olds (n = 9238); and vaccine-related AEs among non-pregnant ≥18-year-olds (n = 39,314). Post-marketing data in non-pregnant adults were considered. Results: Local reactions and systemic events were reported more frequently in RSVpreF versus placebo recipients; injection site pain was the most common local reaction (RSVpreF, 18.9%; placebo, 7.4%), and fatigue (23.5%; 18.4%) and headache (19.5%; 15.0%) were the most common systemic events. Percentages of AEs within 1 month after vaccination were similar across groups (RSVpreF, 12.8%; placebo, 13.1%); severe AEs were reported in ≤1.5% of participants. Differences in percentages of individuals reporting vaccine-related AEs between the RSVpreF and placebo groups were <0.2% for all related AEs. Serious AEs throughout the study were reported in ≤14.0% (RSVpreF, 12.6%; placebo, 14.0%). No atrial fibrillation, Guillain-Barré syndrome, or acute polyneuropathy cases were reported. The AE data from post-marketing data sources were consistent with the safety profile from the clinical trial program, with no new safety concerns. Conclusions: Integrated data demonstrated that RSVpreF was well tolerated with a favorable safety profile in non-pregnant and pregnant adults. Ongoing surveillance through real-world use and clinical trial experience continue to support the safety profile of RSVpreF. ClinicalTrials.gov: NCT03529773/NCT04071158/NCT04785612/NCT05035212/NCT05096208/NCT05842967/NCT04032093/NCT04424316. Full article
(This article belongs to the Special Issue Host Immunity and Vaccines for Respiratory Pathogens)
Show Figures

Figure 1

20 pages, 2619 KiB  
Article
Fatigue Life Prediction of CFRP-FBG Sensor-Reinforced RC Beams Enabled by LSTM-Based Deep Learning
by Minrui Jia, Chenxia Zhou, Xiaoyuan Pei, Zhiwei Xu, Wen Xu and Zhenkai Wan
Polymers 2025, 17(15), 2112; https://doi.org/10.3390/polym17152112 - 31 Jul 2025
Viewed by 227
Abstract
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A [...] Read more.
Amidst the escalating demand for high-precision structural health monitoring in large-scale engineering applications, carbon fiber-reinforced polymer fiber Bragg grating (CFRP-FBG) sensors have emerged as a pivotal technology for fatigue life evaluation, owing to their exceptional sensitivity and intrinsic immunity to electromagnetic interference. A time-series predictive architecture based on long short-term memory (LSTM) networks is developed in this work to facilitate intelligent fatigue life assessment of structures subjected to complex cyclic loading by capturing and modeling critical spectral characteristics of CFRP-FBG sensors, specifically the side-mode suppression ratio and main-lobe peak-to-valley ratio. To enhance model robustness and generalization, Principal Component Analysis (PCA) was employed to isolate the most salient spectral features, followed by data preprocessing via normalization and model optimization through the integration of the Adam optimizer and Dropout regularization strategy. Relative to conventional Backpropagation (BP) neural networks, the LSTM model demonstrated a substantial improvement in predicting the side-mode suppression ratio, achieving a 61.62% reduction in mean squared error (MSE) and a 34.99% decrease in root mean squared error (RMSE), thereby markedly enhancing robustness to outliers and ensuring greater overall prediction stability. In predicting the peak-to-valley ratio, the model attained a notable 24.9% decrease in mean absolute error (MAE) and a 21.2% reduction in root mean squared error (RMSE), thereby substantially curtailing localized inaccuracies. The forecasted confidence intervals were correspondingly narrower and exhibited diminished fluctuation, highlighting the LSTM architecture’s enhanced proficiency in capturing nonlinear dynamics and modeling temporal dependencies. The proposed method manifests considerable practical engineering relevance and delivers resilient intelligent assistance for the seamless implementation of CFRP-FBG sensor technology in structural health monitoring and fatigue life prognostics. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Figure 1

10 pages, 207 KiB  
Study Protocol
Assessment of Physical Activity During Chemotherapy and/or Immunotherapy for Non-Small Cell Lung Cancer (NSCLC): Protocol of the APACHIE-01 Study
by Dirk Rades, Laura Doehring, Christian Staackmann, Maria Karolin Streubel, Stefan Janssen, Tobias Bartscht and Sabine Bohnet
Clin. Pract. 2025, 15(8), 139; https://doi.org/10.3390/clinpract15080139 - 25 Jul 2025
Viewed by 323
Abstract
Background/Objectives: Most patients with non-small cell lung cancer (NSCLC) receive chemo- and/or immunotherapy, which can be associated with adverse events including fatigue. Affected patients may not be able to receive the complete chemo- and/or immunotherapy as planned. In this context, patients may benefit [...] Read more.
Background/Objectives: Most patients with non-small cell lung cancer (NSCLC) receive chemo- and/or immunotherapy, which can be associated with adverse events including fatigue. Affected patients may not be able to receive the complete chemo- and/or immunotherapy as planned. In this context, patients may benefit from maintaining their physical activity, which can be challenging. An app reminding patients to perform a certain number of steps may have a positive effect on physical activity during chemo- and/or immunotherapy. Such an app is under development and will be tested in a prospective trial. The current APACHIE-01 study (NCT06993896) is required for proper sample size calculation and design of the planned trial. Methods: The main goal of the APACHIE-01 study is to evaluate patterns and predictors of physical activity during chemo- and/or immunotherapy for locally advanced or metastatic NSCLC. The primary endpoint is the assessment of the mean number of steps per week during the first three cycles of chemo- and/or immunotherapy for lung cancer. The baseline value is represented by the mean number of steps during the last week prior to chemotherapy and/or immunotherapy. Secondary endpoints include associations between mean number of steps per week and a pain score, a distress score, and a fatigue score. The recruitment of the required 38 patients should be completed within 4 months and the treatment period will be 9–10 weeks (three cycles of chemo- and/or immunotherapy), resulting in a total running time of approximately 6 months. The APACHIE-01 study will contribute to the optimal design of a subsequent prospective trial. Full article
22 pages, 1329 KiB  
Review
Visual Field Examinations for Retinal Diseases: A Narrative Review
by Ko Eun Kim and Seong Joon Ahn
J. Clin. Med. 2025, 14(15), 5266; https://doi.org/10.3390/jcm14155266 - 25 Jul 2025
Viewed by 222
Abstract
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal [...] Read more.
Visual field (VF) testing remains a cornerstone in assessing retinal function by measuring how well different parts of the retina detect light. It is essential for early detection, monitoring, and management of many retinal diseases. By mapping retinal sensitivity, VF exams can reveal functional loss before structural changes become visible. This review summarizes how VF testing is applied across key conditions: hydroxychloroquine (HCQ) retinopathy, age-related macular degeneration (AMD), diabetic retinopathy (DR) and macular edema (DME), and inherited disorders including inherited dystrophies such as retinitis pigmentosa (RP). Traditional methods like the Goldmann kinetic perimetry and simple tools such as the Amsler grid help identify large or central VF defects. Automated perimetry (e.g., Humphrey Field Analyzer) provides detailed, quantitative data critical for detecting subtle paracentral scotomas in HCQ retinopathy and central vision loss in AMD. Frequency-doubling technology (FDT) reveals early neural deficits in DR before blood vessel changes appear. Microperimetry offers precise, localized sensitivity maps for macular diseases. Despite its value, VF testing faces challenges including patient fatigue, variability in responses, and interpretation of unreliable results. Recent advances in artificial intelligence, virtual reality perimetry, and home-based perimetry systems are improving test accuracy, accessibility, and patient engagement. Integrating VF exams with these emerging technologies promises more personalized care, earlier intervention, and better long-term outcomes for patients with retinal disease. Full article
(This article belongs to the Special Issue New Advances in Retinal Diseases)
Show Figures

Figure 1

30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Viewed by 240
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

13 pages, 732 KiB  
Article
A Preliminary Investigation of the Efficacy of Far-Infrared-Emitting Garments in Enhancing Objective and Subjective Recovery Following Resistance Exercise
by Jonathon R. Lever, Cara Ocobock, Valerie Smith-Hale, Casey J. Metoyer, Alan Huebner, John P. Wagle and Jonathan D. Hauenstein
J. Funct. Morphol. Kinesiol. 2025, 10(3), 280; https://doi.org/10.3390/jfmk10030280 - 18 Jul 2025
Viewed by 412
Abstract
Objective: This study aimed to investigate the efficacy of far-infrared (FIR) garments in enhancing recovery following resistance exercise in recreationally active individuals. Methods: Ten recreationally active adults (six females, four males; aged 20.7 ± 3.2 years) completed a resistance exercise protocol and were [...] Read more.
Objective: This study aimed to investigate the efficacy of far-infrared (FIR) garments in enhancing recovery following resistance exercise in recreationally active individuals. Methods: Ten recreationally active adults (six females, four males; aged 20.7 ± 3.2 years) completed a resistance exercise protocol and were randomly selected to wear either FIR (n = 5) or placebo (n = 5) tights post-exercise. The FIR garments incorporated Celliant-based fibers emitting wavelengths in the 2.5–20 µm range. The participants’ recovery was assessed using countermovement jump (CMJ) metrics, including their jump height, takeoff velocity, and modified reactive strength index (mRSI), along with their fatigue biomarkers and subjective recovery perceptions. The CMJ performance was tested immediately post-exercise and at 24 and 48 h. Results: The FIR garments led to significant improvements in neuromuscular recovery, with greater increases in the jump height, takeoff velocity, and mRSI observed at 48 h post-exercise (p < 0.05). Notably, the mRSI showed earlier improvements at 24 h. The fatigue biomarkers did not differ between the groups (p > 0.05), suggesting localized rather than systemic recovery effects. The participants in the FIR group reported faster subjective recovery, with a readiness to resume activity perceived within 48 h, compared to slower recovery in the placebo group. Conclusions: FIR garments may enhance neuromuscular recovery and subjective recovery perceptions following resistance exercise, likely by improving the peripheral blood flow, metabolic clearance, and tissue oxygenation. These findings suggest that FIR garments may be effective in enhancing both neuromuscular and perceived recovery following resistance exercise, supporting their potential use as a post-exercise recovery tool. Full article
(This article belongs to the Section Athletic Training and Human Performance)
Show Figures

Figure 1

16 pages, 2185 KiB  
Article
Interplay Among Muscle Oxygen Saturation, Activation, and Power on a Swim-Bench
by Vittorio Coloretti, Claudio Quagliarotti, Giorgio Gatta, Maria Francesca Piacentini, Matteo Cortesi and Silvia Fantozzi
Sensors 2025, 25(13), 4148; https://doi.org/10.3390/s25134148 - 3 Jul 2025
Viewed by 411
Abstract
Muscle activity during exercise is typically assessed using oximeters, to evaluate local oxygen saturation (SmO2), or surface electromyography (sEMG), to analyze electrical activation. Despite the importance of combining these analyses, no study has evaluated both of them during specific swimming exercises [...] Read more.
Muscle activity during exercise is typically assessed using oximeters, to evaluate local oxygen saturation (SmO2), or surface electromyography (sEMG), to analyze electrical activation. Despite the importance of combining these analyses, no study has evaluated both of them during specific swimming exercises in combination with mechanical power output. This study aimed to assess muscle activity during an incremental test on a swim-bench utilizing oximeters and sEMG. Nine male swimmers performed a five-steps test: PRE (3 min at rest), STEP 1, 2, and 3 (swimming at a frequency of 25, 30, and 40 cycle/min for a duration of 2, 2, and 1 min, respectively), and POST (5 min at rest). Each swimmer wore two oximeters and sEMG, one for each triceps brachii. Stroke frequency and arm mechanical power (from ~13 to ~52 watts) estimated by the swim-bench were different among all steps, while no differences between arms were found. SmO2 (from ~70% to ~60%) and sEMG signals (from ~20 to ~65% in signal amplitude) showed a significant increase among all steps. In both arms, a large/very large correlation was found between mechanical power and SmO2 (r < −0.634), mechanical power and sEMG onset/amplitude (r > 0.581), and SmO2 and sEMG amplitude (r > 0.508). No correlations were found between the slope of the sEMG spectral indexes and the slope of SmO2; only sEMG detected electrical manifestation of muscle fatigue through the steps (p < 0.05). Increased muscle activity, assessed by both oximeters and sEMG, was found at mechanical power increases, revealing both devices can detect effort variation during exercise. However, only sEMG seems to detect peripheral manifestations of fatigue in dynamic conditions. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

18 pages, 33781 KiB  
Article
New Experimental Single-Axis Excitation Set-Up for Multi-Axial Random Fatigue Assessments
by Luca Campello, Vivien Denis, Raffaella Sesana, Cristiana Delprete and Roger Serra
Machines 2025, 13(7), 539; https://doi.org/10.3390/machines13070539 - 20 Jun 2025
Viewed by 247
Abstract
Fatigue failure, generated by local multi-axial random state stress, frequently occurs in many engineering fields. Therefore, it is customary to perform experimental vibration tests for a structural durability assessment. Over the years, a number of testing methodologies, which differ in terms of the [...] Read more.
Fatigue failure, generated by local multi-axial random state stress, frequently occurs in many engineering fields. Therefore, it is customary to perform experimental vibration tests for a structural durability assessment. Over the years, a number of testing methodologies, which differ in terms of the testing machines, specimen geometry, and type of excitation, have been proposed. The aim of this paper is to describe a new testing procedure for random multi-axial fatigue testing. In particular, the paper presents the experimental set-up, the testing procedure, and the data analysis procedure to obtain the multi-axial random fatigue life estimation. The originality of the proposed methodology consists in the experimental set-up, which allows performing multi-axial fatigue tests with different normal-to-shear stress ratios, by choosing the proper frequency range, using a single-axis exciter. The system is composed of a special designed specimen, clamped on a uni-axial shaker. On the specimen tip, a T-shaped mass is placed, which generates a tunable multi-axial stress state. Furthermore, by means of a finite element model, the system dynamic response and the stress on the notched specimen section are estimated. The model is validated through a harmonic acceleration base test. The experimental tests validate the numerical simulations and confirm the presence of bending–torsion coupled loading. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

28 pages, 15302 KiB  
Article
Advanced Cut-Edge Characterization Methods for Improved Sheared-Edge Damage Evaluation in High-Strength Sheet Steels
by Patrick Larour, Olle Sandin and Daniel Casellas
Metals 2025, 15(6), 645; https://doi.org/10.3390/met15060645 - 9 Jun 2025
Viewed by 1299
Abstract
This study investigates shear cutting of high-strength steel sheets, a process known to negatively impact the forming and fatigue properties of the material. The localized deformation near the cut edges imposes sheared-edge damage, especially in advanced high-strength steels where severe shear deformation occurs [...] Read more.
This study investigates shear cutting of high-strength steel sheets, a process known to negatively impact the forming and fatigue properties of the material. The localized deformation near the cut edges imposes sheared-edge damage, especially in advanced high-strength steels where severe shear deformation occurs in the very vicinity of the cut edge. In this work, an extensive experimental investigation was carried out on punched holes of thin sheets, using light optical microscopy and metallographic techniques for sheared-edge damage assessment. These methods provided detailed insights into the sheared-edge damage and offer a thorough understanding of the deformation behavior in the shear-affected zone. Advanced engineering cut-edge investigation methods have been developed based on 2D and 3D stereo light microscopy for non-destructive panoramic cut-edge parameters and cut-edge profile determination along cut-hole circumference. Such methods provide an efficient evaluation instrument for challenging close-cut holes, with the possibility of industrial in-line monitoring and machine learning applications for Industry 4.0 implementation. Additionally, the study compares grain shear angle measurement and Vickers indentation for deformation assessment of the cut edge. It concludes that grain shear angle offers higher resolution. This parameter is therefore postulated as relevant for assessing the sheared-edge zone. The findings contribute to a deeper understanding of sheared-edge damage and improve evaluation methods, potentially enhancing the use of high-strength steels in automotive and safety-critical applications. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

15 pages, 885 KiB  
Article
Adapting the Bogenhausen Dysarthria Scales (BoDyS) to Chilean Spanish Speakers: Face and Content Validation
by Marcela Sanhueza-Garrido, Virginia García-Flores, Sebastián Contreras-Cubillos and Jaime Crisosto-Alarcón
Brain Sci. 2025, 15(6), 604; https://doi.org/10.3390/brainsci15060604 - 4 Jun 2025
Viewed by 736
Abstract
Background: Dysarthria is a neuromotor speech disorder that significantly impacts patients’ quality of life. In Chile, there is a lack of culturally validated instruments for assessing dysarthria. This study aimed to cross-culturally adapt the Bogenhausen Dysarthria Scales (BoDyS) into Chilean Spanish and to [...] Read more.
Background: Dysarthria is a neuromotor speech disorder that significantly impacts patients’ quality of life. In Chile, there is a lack of culturally validated instruments for assessing dysarthria. This study aimed to cross-culturally adapt the Bogenhausen Dysarthria Scales (BoDyS) into Chilean Spanish and to conduct face and content validation. Methods: The adaptation process included translation and back-translation, followed by validation by a panel of experts. Clarity, format, and length were evaluated, and the Kappa index (KI), content validity index (CVI), and content validity ratio (CVR) were calculated to confirm item relevance. A pilot test was subsequently conducted with ten speech–language pathologists to apply the adapted version to patients. Results: The adaptation process produced a consensus version that preserved the semantic and cultural characteristics of the original scale. The statistical measures (KI = 1.00; I-CVI = 1.00; S-CVI/Ave = 1.00; S-CVI/UA = 1.00; CVR = 1.00) indicated satisfactory levels of agreement. The pilot test demonstrated the scale’s appropriateness and effectiveness for assessing dysarthria within the Chilean context, although some experts recommended reducing task repetition for patients prone to fatigue. Conclusions: The Chilean version of the BoDyS (BoDyS-CL) is a valid and useful tool for evaluating dysarthria in Chile. This study provides a foundation for further research and the systematic implementation of this scale in local clinical practice. Full article
Show Figures

Figure 1

19 pages, 2096 KiB  
Article
Deoxygenation Trends and Their Multivariate Association with Self-Reported Fatigue in Post-COVID Syndrome
by Anja-Maria Ladek, Marianna Lucio, Andreas Weiß, Thomas Knauer, Helena Sarmiento, Miriam Ilgner, Marie Jakobi, Laura Barteczko, Marion Ganslmayer, Jürgen Rech, Antonio Bergua, Christian Y. Mardin and Bettina Hohberger
Biomedicines 2025, 13(6), 1371; https://doi.org/10.3390/biomedicines13061371 - 3 Jun 2025
Viewed by 3140
Abstract
Background/Objectives: A relevant subgroup of post-COVID-19 syndrome (PCS) patients suffers from post-exertional malaise (PEM) and cardiovascular or neurological symptoms, impairing daily functioning up to becoming even house- or bedbound. Recent data suggest that PCS summarizes different subgroups, one of them being characterized by [...] Read more.
Background/Objectives: A relevant subgroup of post-COVID-19 syndrome (PCS) patients suffers from post-exertional malaise (PEM) and cardiovascular or neurological symptoms, impairing daily functioning up to becoming even house- or bedbound. Recent data suggest that PCS summarizes different subgroups, one of them being characterized by an impaired microcirculation. Thus, the aim of the present study was to investigate local deoxygenation, measured with non-invasive near-infrared regional spectroscopy (NIRS), and its association with self-reported fatigue in patients with PCS compared to controls in light exercise. Methods: 150 participants (100 PCS patients and 50 controls) were recruited. PEM was assessed using FACIT, Chalder, and Bell scoring and Canadian Criteria. NIRS was used to measure local oxygenation while kneading a stress ball and during recovery. Results: PCS patients showed fatigue scores of 30 (Bell score), 20.6 (FACIT fatigue score), and 9.914 (Chalder fatigue score). Decreased deoxygenation peaks at the start of exercise were observed in patients with PCS, compared to controls (p = 0.0002). Multivariate analysis identified a subgroup, showing an association between strong fatigue and restricted oxygenation dynamics. Conclusions: NIRS could be a potential tool to assess deoxygenation deficits even in moderate to severely impaired PCS patients using light exercise protocols. Full article
Show Figures

Figure 1

22 pages, 10014 KiB  
Article
Analysis of the Impact of Vibrations on the Driver of a Motor Vehicle
by Lukasz Konieczny, Pawel Fabis, Jonas Matijošius, Kamil Duda, Piotr Deuszkiewicz and Arturas Kilikevičius
Appl. Sci. 2025, 15(10), 5510; https://doi.org/10.3390/app15105510 - 14 May 2025
Viewed by 1045
Abstract
Vibration can have a significant impact on long-term health, driver comfort, and vehicle performance. With a focus on steering wheel vibrations, this study examines both general and local vibrations that affect the driver. Under real-world conditions, a series of controlled test drives were [...] Read more.
Vibration can have a significant impact on long-term health, driver comfort, and vehicle performance. With a focus on steering wheel vibrations, this study examines both general and local vibrations that affect the driver. Under real-world conditions, a series of controlled test drives were conducted, with high-precision accelerometers mounted on the driver’s seat and steering wheel recording vibration data. The measurements were conducted in accordance with ISO 5349 and ISO 2631-1, which guaranteed a consistent assessment of vibration exposure. The results suggest that the daily vibration exposure for general vibrations at the driver’s seat is significantly lower than the legal limit, as evidenced by the presence of significant frequencies in the vertical (Z) axis. Nevertheless, steering wheel vibrations may cause pain due to their proximity to the resonance frequencies of the human hand–arm system, which have frequency maxima at approximately 35 Hz and harmonic 70 Hz. Additionally, the vibration intensity was elevated at vehicle velocities between 70 and 80 km/h, suggesting the potential presence of a resonance effect within the suspension or powertrain. The results emphasize the significance of advanced vibration reduction strategies in enhancing driver comfort and safety, including the implementation of a well-designed steering system and enhanced seat absorption. This research offers valuable insights for automotive engineers and ergonomics specialists who are interested in minimizing long-term health risks and vibration-induced fatigue. The aim of this study is to indicate the areas of the drive system fault that have a direct impact on the vibrations of the body structure. The article presents an analysis of the recorded vibration results based on which of the areas of change in the comfort of using the vehicle were selected. Full article
(This article belongs to the Special Issue Innovative Research on Transportation Means)
Show Figures

Figure 1

16 pages, 6813 KiB  
Article
Creep–Fatigue Behavior and Life Prediction of Medium-Si-Mo Ductile Iron
by Mucheng Liu, Huihua Feng and Peirong Ren
Appl. Sci. 2025, 15(10), 5406; https://doi.org/10.3390/app15105406 - 12 May 2025
Viewed by 516
Abstract
Exhaust manifolds accumulate creep and fatigue damage under cyclic thermal loading, leading to localized failure. Understanding a material’s mechanical behavior is crucial for accurate life assessment. This study systematically investigated the low-cycle fatigue (LCF) and creep–fatigue interaction behaviors of medium-silicon molybdenum ductile iron. [...] Read more.
Exhaust manifolds accumulate creep and fatigue damage under cyclic thermal loading, leading to localized failure. Understanding a material’s mechanical behavior is crucial for accurate life assessment. This study systematically investigated the low-cycle fatigue (LCF) and creep–fatigue interaction behaviors of medium-silicon molybdenum ductile iron. It was found that QTRSi4Mo exhibited cyclic hardening at room temperature and 400 °C, whereas it exhibited cyclic softening at 600 °C and 700 °C for low-cycle stress–strain responses. During creep–fatigue tests with hold time, variations in the strain amplitude did not alter the hysteresis loop shape or the hardening/softening characteristics of the material. They only induced a slight upward shift in the yield center. Additionally, stress relaxation primarily occurred in the initial phase of the hold period, so the hold duration had little effect on the final stress value. The investigation of creep–fatigue life models highlighted that accurately characterizing the damage induced by stress relaxation during the hold stage is critical for creep damage evaluation. The calculated creep damage results differed greatly from the experimental results of the time fraction model (TF). A combined approach using the strain energy density dissipation model (T-SEDE) and the Ostergren method demonstrated excellent predictive capability for creep–fatigue life. Full article
(This article belongs to the Special Issue Advances and Applications in Mechanical Fatigue and Life Assessment)
Show Figures

Figure 1

49 pages, 4782 KiB  
Review
Key Parameters for Design Analysis and Optimization of Dynamic Inter-Array Power Cable Configurations in Floating Offshore Wind Farms
by Anja Schnepf and Ove Tobias Gudmestad
J. Mar. Sci. Eng. 2025, 13(5), 875; https://doi.org/10.3390/jmse13050875 - 28 Apr 2025
Viewed by 1343
Abstract
Power cables transmit electricity from offshore wind turbines (OWTs) to consumers. The configuration, design, and optimization of power cables for floating offshore wind turbines (FOWTs) are subject to various objectives, variables, and constraints. These components are outlined, and existing research gaps that need [...] Read more.
Power cables transmit electricity from offshore wind turbines (OWTs) to consumers. The configuration, design, and optimization of power cables for floating offshore wind turbines (FOWTs) are subject to various objectives, variables, and constraints. These components are outlined, and existing research gaps that need to be addressed for a more sustainable and robust design for future developments are highlighted. The main aim of power cable configuration design is to optimize performance and minimize costs. This can be achieved through thoughtful consideration of variables like power cable selection, configuration design, and the integration of specialized components and ancillaries. An extensive overview of constraints for power cable configuration design is provided, and the most important ones are identified. The local conditions determine which constraints are of key importance in optimization. Environmental factors like wind, waves, and especially currents significantly influence design processes, introducing uncertainties when comprehensive data are lacking. Marine growth posed a significant challenge in prior FOWT projects and must be considered carefully. Considering the potential impact of climate change is crucial, especially for extreme weather events. Early integration of environmental considerations and assessment of effects on socio-economic impacts is essential for a successful project. The power cable response is also influenced by its inherent limitations, including tension and compression thresholds, curvature constraints, and the necessary minimum fatigue life. A flowchart is provided to aid in choosing variables and constraints in the design and optimization processes. Full article
(This article belongs to the Special Issue Advanced Research in Flexible Riser and Pipelines)
Show Figures

Figure 1

Back to TopTop