Interplay Among Muscle Oxygen Saturation, Activation, and Power on a Swim-Bench
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Methodology
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Concurrent Agreement Between NIMO and MOXY Oximeter Sensors
Appendix A.1. Introduction
Appendix A.2. Method
Appendix A.3. Results
Appendix A.4. Discussion
References
- Miura, H.; Araki, H.; Matoba, H.; Kitagawa, K. Relationship Among Oxygenation, Myoelectric Activity, and Lactic Acid Accumulation in Vastus Lateralis Muscle During Exercise with Constant Work Rate. Int. J. Sports Med. 2000, 21, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Martens, J.; Figueiredo, P.; Daly, D. Electromyography in the four competitive swimming strokes: A systematic review. J. Electromyogr. Kinesiol. 2015, 25, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Perrey, S.; Quaresima, V.; Ferrari, M. Muscle Oximetry in Sports Science: An Updated Systematic Review. Sports Med. 2024, 54, 975–996. [Google Scholar] [CrossRef]
- Perrey, S.; Ferrari, M. Muscle Oximetry in Sports Science: A Systematic Review. Sports Med. 2018, 48, 597–616. [Google Scholar] [CrossRef]
- McGowan, C.J.; Pyne, D.B.; Thompson, K.G.; Raglin, J.S.; Osborne, M.; Rattray, B. Elite sprint swimming performance is enhanced by completion of additional warm-up activities. J. Sports Sci. 2017, 35, 1493–1499. [Google Scholar] [CrossRef]
- Grossman, K.J.; Lim, D.J.; Murias, J.M.; Belfry, G.R. The Effect of Breathing Patterns Common to Competitive Swimming on Gas Exchange and Muscle Deoxygenation During Heavy-Intensity Fartlek Exercise. Front. Physiol. 2021, 12, 723951. [Google Scholar] [CrossRef]
- Dalamitros, A.A.; Semaltianou, E.; Toubekis, A.G.; Kabasakalis, A. Muscle Oxygenation, Heart Rate, and Blood Lactate Concentration During Submaximal and Maximal Interval Swimming. Front. Sports Act. Living 2021, 3, 759925. [Google Scholar] [CrossRef]
- Pratama, A.B.; Yimlamai, T. Effects of Active and Passive Recovery on Muscle Oxygenation and Swimming Performance. Int. J. Sports Physiol. Perform. 2020, 15, 1289–1296. [Google Scholar] [CrossRef]
- Jones, B.; Parry, D.; Cooper, C.E. Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers. PeerJ 2018, 2018, e4393. [Google Scholar] [CrossRef]
- Semmler, J.G. Motor Unit Synchronization and Neuromuscular Performance. Exerc. Sport Sci. Rev. 2002, 30, 8–14. [Google Scholar] [CrossRef]
- Lauer, J.; Figueiredo, P.; Vilas-Boas, J.P.; Fernandes, R.J.; Rouard, A.H. Phase-dependence of elbow muscle coactivation in front crawl swimming. J. Electromyogr. Kinesiol. 2013, 23, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Stirn, I.; Jarm, T.; Kapus, V.; Strojnik, V. Evaluation of muscle fatigue during 100-m front crawl. Eur. J. Appl. Physiol. 2011, 111, 101–113. [Google Scholar] [CrossRef]
- Vaz, J.R.; Olstad, B.H.; Cabri, J.; Kjendlie, P.-L.; Pezarat-Correia, P.; Hug, F. Muscle coordination during breaststroke swimming: Comparison between elite swimmers and beginners. J. Sports Sci. 2016, 34, 1941–1948. [Google Scholar] [CrossRef]
- Di Giminiani, R.; Cardinale, M.; Ferrari, M.; Quaresima, V. Validation of fabric-based thigh-wearable EMG sensors and oximetry for monitoring quadricep activity during strength and endurance exercises. Sensors 2020, 20, 4664. [Google Scholar] [CrossRef]
- Moalla, W.; Merzouk, A.; Costes, F.; Tabka, Z.; Ahmaidi, S. Muscle Oxygenation and EMG Activity during Isometric Exercise in Children. J. Sports Sci. 2006, 24, 1195–1201. [Google Scholar] [CrossRef]
- Daniel, N.; Sybilski, K.; Kaczmarek, W.; Siemiaszko, D.; Małachowski, J. Relationship Between EMG and fNIRS during Dynamic Movements. Sensors 2023, 23, 5004. [Google Scholar] [CrossRef]
- Kimoto, A.; Fujiyama, H.; Machida, M. A Wireless Multi-Layered EMG/MMG/NIRS Sensor for Muscular Activity Evaluation. Sensors 2023, 23, 1539. [Google Scholar] [CrossRef]
- Praagman, M.; Veeger, H.E.J.; Chadwick, E.K.J.; Colier, W.N.J.M.; van der Helm, F.C.T. Muscle oxygen consumption, determined by NIRS, in relation to external force and EMG. J. Biomech. 2003, 36, 905–912. [Google Scholar] [CrossRef]
- Cortesi, M.; Gatta, G.; Swaine, I.; Zamparo, P.; Konstantaki, M. Laboratory-based ergometry for swimmers: A systematic review. J. Sports Med. Phys. Fitness 2019, 59, 1503–1512. [Google Scholar] [CrossRef]
- Ruiz-Navarro, J.J.; López-Belmonte, Ó.; Gay, A.; Cuenca-Fernández, F.; Arellano, R. A new model of performance classification to standardize the research results in swimming. Eur. J. Sport Sci. 2022, 23, 478–488. [Google Scholar] [CrossRef]
- Zamparo, P.; Swaine, I.L. Mechanical and propelling efficiency in swimming derived from exercise using a laboratory-based whole-body swimming ergometer. J. Appl. Physiol. 2012, 113, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Gatta, G.; Cortesi, M.; Swaine, I.; Zamparo, P. Mechanical power, thrust power and propelling efficiency: Relationships with elite sprint swimming performance. J. Sports Sci. 2018, 36, 506–512. [Google Scholar] [CrossRef] [PubMed]
- McManus, C.J.; Collison, J.; Cooper, C.E. Performance comparison of the MOXY and PortaMon near-infrared spectroscopy muscle oximeters at rest and during exercise. J. Biomed. Opt. 2018, 23, 015007. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Puce, L.; Pallecchi, I.; Marinelli, L.; Mori, L.; Bove, M.; Diotti, D.; Ruggeri, P.; Faelli, E.; Cotellessa, F.; Trompetto, C. Surface Electromyography Spectral Parameters for the Study of Muscle Fatigue in Swimming. Front. Sports Act. Living 2021, 3, 644765. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Cortesi, M.; Di Michele, R.; Fantozzi, S.; Bartolomei, S.; Gatta, G. Arm-Stroke Descriptor Variability During 200-m Front Crawl Swimming. Sensors 2021, 21, 324. [Google Scholar] [CrossRef]
- Jones, B.; Cooper, C.E. Underwater Near-Infrared Spectroscopy: Muscle Oxygen Changes in the Upper and Lower Extremities in Club Level Swimmers and Triathletes. In Oxygen Transport to Tissue XXXVII; Springer: Berlin/Heidelberg, Germany, 2016; pp. 35–40. [Google Scholar]
- Piras, A.; Cortesi, M.; Campa, F.; Perazzolo, M.; Gatta, G. Recovery Time Profiling After Short-, Middle- and Long-Distance Swimming Performance. J. Strength Cond. Res. 2019, 33, 1408–1415. [Google Scholar] [CrossRef]
- Quagliarotti, C.; Coloretti, V.; Dello Stritto, E.; Cuccurullo, S.; Acalai, J.; Lepers, R.; Fantozzi, S.; Cortesi, M.; Piacentini, M.F. Does Smartphone Use Affect a Subsequent Swimming Training Session? Preliminary Results in Amateur Triathletes. Sensors 2023, 23, 5837. [Google Scholar] [CrossRef]
- Seifert, L.; Chollet, D.; Bardy, B. Effect of swimming velocity on arm coordination in the front crawl: A dynamic analysis. J. Sports Sci. 2004, 22, 651–660. [Google Scholar] [CrossRef]
- Vigotsky, A.D.; Halperin, I.; Lehman, G.J.; Trajano, G.S.; Vieira, T.M. Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences. Front. Physiol. 2018, 8, 985. [Google Scholar] [CrossRef] [PubMed]
- Kauppi, K.; Korhonen, V.; Ferdinando, H.; Kallio, M.; Myllylä, T. Combined surface electromyography, near-infrared spectroscopy and acceleration recordings of muscle contraction: The effect of motion. J. Innov. Opt. Health Sci. 2017, 10, 1650056. [Google Scholar] [CrossRef]
- Barstow, T.J. Understanding near infrared spectroscopy and its application to skeletal muscle research. J. Appl. Physiol. 2019, 126, 1360–1376. [Google Scholar] [CrossRef]
- Yoshitake, Y.; Ue, H.; Miyazaki, M.; Moritani, T. Assessment of lower-back muscle fatigue using electromyography, mechanomyography, and near-infrared spectroscopy. Eur. J. Appl. Physiol. 2001, 84, 174–179. [Google Scholar] [CrossRef]
- Taelman, J.; Vanderhaegen, J.; Robijns, M.; Naulaers, G.; Spaepen, A.; Van Huffel, S. Estimation of Muscle Fatigue Using Surface Electromyography and Near-Infrared Spectroscopy. In Oxygen Transport to Tissue XXXII; Springer: Berlin/Heidelberg, Germany, 2011; pp. 353–359. [Google Scholar]
- Felici, F.; Quaresima, V.; Fattorini, L.; Sbriccoli, P.; Filligoi, G.C.; Ferrari, M. Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises. J. Electromyogr. Kinesiol. 2009, 19, e1–e11. [Google Scholar] [CrossRef]
- De Luca, C.J. Myoelectrical manifestations of localized muscular fatigue in humans. Crit. Rev. Biomed. Eng. 1984, 11, 251–279. [Google Scholar]
- Farina, D. Interpretation of the surface electromyogram in dynamic contractions. Exerc. Sport Sci. Rev. 2006, 34, 121–127. [Google Scholar] [CrossRef]
- Bonato, P.; Roy, S.H.; Knaflitz, M.; de Luca, C.J. Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions. IEEE Trans. Biomed. Eng. 2001, 48, 745–753. [Google Scholar] [CrossRef]
- Hussain, J.; Sundaraj, K.; Low, Y.F.; Kiang, L.C.; Sundaraj, S.; Ali, M.A. A systematic review on fatigue analysis in triceps brachii using surface electromyography. Biomed. Signal Process. Control 2018, 40, 396–414. [Google Scholar] [CrossRef]
- Fantozzi, S.; Coloretti, V.; Piacentini, M.F.; Quagliarotti, C.; Bartolomei, S.; Gatta, G.; Cortesi, M. Integrated Timing of Stroking, Breathing, and Kicking in Front-Crawl Swimming: A Novel Stroke-by-Stroke Approach Using Wearable Inertial Sensors. Sensors 2022, 22, 1419. [Google Scholar] [CrossRef]
- Quagliarotti, C.; Cortesi, M.; Coloretti, V.; Fantozzi, S.; Gatta, G.; Bonifazi, M.; Zamparo, P.; Piacentini, M.F. The Effects of a Wetsuit on Biomechanical, Physiological, and Perceptual Variables in Experienced Triathletes. Int. J. Sports Physiol. Perform. 2023, 18, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Hamaoka, T.; McCully, K.K.; Niwayama, M.; Chance, B. The use of muscle near-infrared spectroscopy in sport, health and medical sciences: Recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 4591–4604. [Google Scholar] [CrossRef]
- Ferrari, M.; Muthalib, M.; Quaresima, V. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: Recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 4577–4590. [Google Scholar] [CrossRef]
- Van Beekvelt, M.C.P.; Borghuis, M.S.; Van Engelen, B.G.M.; Wevers, R.A.; Colier, W.N.J.M. Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin. Sci. 2001, 101, 21. [Google Scholar] [CrossRef]
- Wassenaar, E.B.; Van den Brand, J.G.H. Reliability of Near-Infrared Spectroscopy in People with Dark Skin Pigmentation. J. Clin. Monit. Comput. 2005, 19, 195–199. [Google Scholar] [CrossRef]
- Buono, M.J.; Miller, P.W.; Hom, C.; Pozos, R.S.; Kolkhorst, F.W. Skin Blood Flow Affects In Vivo Near-Infrared Spectroscopy Measurements in Human Skeletal Muscle. Jpn. J. Physiol. 2005, 55, 241–244. [Google Scholar] [CrossRef]
- Amendola, C.; Contini, D.; Re, R.; Spinelli, L.; Frabasile, L.; Levoni, P.; Torricelli, A. Robustness of tissue oxygenation estimates by continuous wave space-resolved near infrared spectroscopy. J. Biomed. Opt. 2023, 28, 075002. [Google Scholar] [CrossRef]
- Grassi, B.; Quaresima, V. Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: A review from an exercise physiology perspective. J. Biomed. Opt. 2016, 21, 091313. [Google Scholar] [CrossRef]
- Scholkmann, F.; Metz, A.J.; Wolf, M. Measuring tissue hemodynamics and oxygenation by continuous-wave functional near-infrared spectroscopy—How robust are the different calculation methods against movement artifacts? Physiol. Meas. 2014, 35, 717–734. [Google Scholar] [CrossRef]
- Jaén-Carrillo, D.; Roche-Seruendo, L.E.; Cartón-Llorente, A.; García-Pinillos, F. Agreement between muscle oxygen saturation from two commercially available systems in endurance running: Moxy Monitor versus Humon Hex. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2022, 236, 231–237. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, Y.-H.; Kim, H.-S.; Kim, J.-T. Comparison of two devices using near-infrared spectroscopy for the measurement of tissue oxygenation during a vascular occlusion test in healthy volunteers (INVOS® vs. InSpectraTM). J. Clin. Monit. Comput. 2015, 29, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Nygren, A.; Rennerfelt, K.; Zhang, Q. Detection of changes in muscle oxygen saturation in the human leg: A comparison of two near-infrared spectroscopy devices. J. Clin. Monit. Comput. 2014, 28, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Fellahi, J.-L.; Butin, G.; Fischer, M.-O.; Zamparini, G.; Gérard, J.-L.; Hanouz, J.-L. Dynamic evaluation of near-infrared peripheral oximetry in healthy volunteers: A comparison between INVOS and EQUANOX. J. Crit. Care 2013, 28, 881.e1–881.e6. [Google Scholar] [CrossRef]
- Feldmann, A.; Schmitz, R.; Erlacher, D. Near-infrared spectroscopy-derived muscle oxygen saturation on a 0% to 100% scale: Reliability and validity of the Moxy Monitor. J. Biomed. Opt. 2019, 24, 115001. [Google Scholar] [CrossRef]
- Crum, E.M.; O’Connor, W.J.; Van Loo, L.; Valckx, M.; Stannard, S.R. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur. J. Sport Sci. 2017, 17, 1037–1043. [Google Scholar] [CrossRef]
- Born, D.-P.; Stöggl, T.; Swarén, M.; Björklund, G. Near-Infrared Spectroscopy: More Accurate Than Heart Rate for Monitoring Intensity in Running in Hilly Terrain. Int. J. Sports Physiol. Perform. 2017, 12, 440–447. [Google Scholar] [CrossRef]
- Scholkmann, F.; Scherer-Vrana, A. Comparison of Two NIRS Tissue Oximeters (Moxy and Nim) for Non-Invasive Assessment of Muscle Oxygenation and Perfusion. In Oxygen Transport to Tissue XLI; Ryu, P.D., La Manna, J., Harrison, D., Lee, S.S., Eds.; Springer: Cham, Switzerland, 2020; pp. 253–259. ISBN 978-3-030-34461-0. [Google Scholar]
- Ferrari, M.; Mottola, L.; Quaresima, V. Principles, Techniques, and Limitations of Near Infrared Spectroscopy. Can. J. Appl. Physiol. 2004, 29, 463–487. [Google Scholar] [CrossRef]
Right Arm | Left Arm | |||||
---|---|---|---|---|---|---|
Mechanical Power | Stroke Frequency | SmO2 | Mechanical Power | Stroke Frequency | SmO2 | |
SmO2 | r = −0.670 * | r = −0.665 * | - | r = −0.634 * | r = −0.612 * | - |
Onset | r = 0.581 * | r = 0.564 * | r = −0.283 | r = 0.668 * | r = 0.664 * | r = −0.353 |
Amplitude | r = 0.856 * | r = 0.866 * | r = −0.541 * | r = 0.795 * | r = 0.800 * | r = −0.508 * |
Mean frequency | r = −0.353 | r = −0.318 | r = 0.080 | r = −0.212 | r = −0.184 | r = 0.111 |
Median frequency | r = −0.350 | r = −0.306 | r = 0.073 | r = −0.216 | r = −0.175 | r = 0.024 |
Right Arm | Left Arm | |||||
---|---|---|---|---|---|---|
STEP 1 | STEP 2 | STEP 3 | STEP 1 | STEP 2 | STEP 3 | |
Slope SmO2— Slope mean frequency | −0.187 | −0.322 | −0.595 | 0.005 | −0.384 | −0.249 |
Slope SmO2— Slope median frequency | 0.001 | −0.266 | −0.384 | 0.222 | −0.193 | −0.434 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coloretti, V.; Quagliarotti, C.; Gatta, G.; Piacentini, M.F.; Cortesi, M.; Fantozzi, S. Interplay Among Muscle Oxygen Saturation, Activation, and Power on a Swim-Bench. Sensors 2025, 25, 4148. https://doi.org/10.3390/s25134148
Coloretti V, Quagliarotti C, Gatta G, Piacentini MF, Cortesi M, Fantozzi S. Interplay Among Muscle Oxygen Saturation, Activation, and Power on a Swim-Bench. Sensors. 2025; 25(13):4148. https://doi.org/10.3390/s25134148
Chicago/Turabian StyleColoretti, Vittorio, Claudio Quagliarotti, Giorgio Gatta, Maria Francesca Piacentini, Matteo Cortesi, and Silvia Fantozzi. 2025. "Interplay Among Muscle Oxygen Saturation, Activation, and Power on a Swim-Bench" Sensors 25, no. 13: 4148. https://doi.org/10.3390/s25134148
APA StyleColoretti, V., Quagliarotti, C., Gatta, G., Piacentini, M. F., Cortesi, M., & Fantozzi, S. (2025). Interplay Among Muscle Oxygen Saturation, Activation, and Power on a Swim-Bench. Sensors, 25(13), 4148. https://doi.org/10.3390/s25134148