Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (143)

Search Parameters:
Keywords = local collapse mechanisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1098 KiB  
Article
Dynamic Nucleation in Zr-2.5Nb During Reduced-Gravity Electromagnetic Levitation Experiments
by Gwendolyn P. Bracker, Stephan Schneider, Sarah Nell, Mitja Beckers, Markus Mohr and Robert W. Hyers
Crystals 2025, 15(8), 703; https://doi.org/10.3390/cryst15080703 (registering DOI) - 31 Jul 2025
Abstract
Levitation techniques reduce the available heterogeneous nucleation sites and provide stable access to deeply undercooled melts. However, some samples have repeatably demonstrated that, in the presence of strong stirring, solidification may be induced at moderate, sub-critical undercoolings. Dynamic nucleation is a mechanism by [...] Read more.
Levitation techniques reduce the available heterogeneous nucleation sites and provide stable access to deeply undercooled melts. However, some samples have repeatably demonstrated that, in the presence of strong stirring, solidification may be induced at moderate, sub-critical undercoolings. Dynamic nucleation is a mechanism by which solidification may be induced through flow effects within a sub-critically undercooled melt. In this mechanism, collapsing cavities within the melt produce very high-pressure shocks, which shift the local melting temperature. In these regions of locally shifted melt temperatures, thermodynamic conditions enable nuclei to grow and trigger solidification of the full sample. By deepening the local undercooling, dynamic nucleation enables solidification to occur in conditions where classical nucleation does not. Dynamic nucleation has been observed in several zirconium and zirconium-based samples in the Electromagnetic Levitator onboard the International Space Station (ISS-EML). The experiments presented here address conditions in which a zirconium sample alloyed with 2.5 atomic percent niobium spontaneously solidifies during electromagnetic levitation experiments with strong melt stirring. In these experimental conditions, classical nucleation predicts the sample to remain liquid. This solidification behavior is consistent with the solidification behavior observed in prior experiments on pure zirconium. Full article
11 pages, 3627 KiB  
Article
The Influence of Traps on the Self-Heating Effect and THz Response of GaN HEMTs
by Huichuan Fan, Xiaoyun Wang, Xiaofang Wang and Lin Wang
Photonics 2025, 12(7), 719; https://doi.org/10.3390/photonics12070719 - 16 Jul 2025
Viewed by 235
Abstract
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum [...] Read more.
This study systematically investigates the effects of trap concentration on self-heating and terahertz (THz) responses in GaN HEMTs using Sentaurus TCAD. Traps, inherently unavoidable in semiconductors, can be strategically introduced to engineer specific energy levels that establish competitive dynamics between the electron momentum relaxation time and the carrier lifetime. A simulation-based exploration of this mechanism provides significant scientific value for enhancing device performance through self-heating mitigation and THz response optimization. An AlGaN/GaN heterojunction HEMT model was established, with trap concentrations ranging from 0 to 5×1017 cm3. The analysis reveals that traps significantly enhance channel current (achieving 3× gain at 1×1017 cm3) via new energy levels that prolong carrier lifetime. However, elevated trap concentrations (>1×1016 cm3) exacerbate self-heating-induced current collapse, reducing the min-to-max current ratio to 0.9158. In THz response characterization, devices exhibit a distinct DC component (Udc) under non-resonant detection (ωτ1). At a trap concentration of 1×1015 cm3, Udc peaks at 0.12 V when VgDC=7.8 V. Compared to trap-free devices, a maximum response attenuation of 64.89% occurs at VgDC=4.9 V. Furthermore, Udc demonstrates non-monotonic behavior with concentration, showing local maxima at 4×1015 cm3 and 7×1015 cm3, attributed to plasma wave damping and temperature-gradient-induced electric field variations. This research establishes trap engineering guidelines for GaN HEMTs: a concentration of 4×1015 cm3 optimally enhances conductivity while minimizing adverse impacts on both self-heating and the THz response, making it particularly suitable for high-sensitivity terahertz detectors. Full article
Show Figures

Figure 1

17 pages, 2881 KiB  
Article
Seismic Vulnerability Assessment and Sustainable Retrofit of Masonry Factories: A Case Study of Industrial Archeology in Naples
by Giovanna Longobardi and Antonio Formisano
Sustainability 2025, 17(13), 6227; https://doi.org/10.3390/su17136227 - 7 Jul 2025
Viewed by 266
Abstract
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential [...] Read more.
Masonry industrial buildings, common in the 19th and 20th centuries, represent a significant architectural typology. These structures are crucial to the study of industrial archeology, which focuses on preserving and revitalizing historical industrial heritage. Often left neglected and deteriorating, they hold great potential for adaptive reuse, transforming into vibrant cultural, commercial, or residential spaces through well-planned restoration and consolidation efforts. This paper explores a case study of such industrial architecture: a decommissioned factory near Naples. The complex consists of multiple structures with vertical supports made of yellow tuff stone and roofs framed by wooden trusses. To improve the building’s seismic resilience, a comprehensive analysis was conducted, encompassing its historical, geometric, and structural characteristics. Using advanced computer software, the factory was modelled with a macro-element approach, allowing for a detailed assessment of its seismic vulnerability. This approach facilitated both a global analysis of the building’s overall behaviour and the identification of potential local collapse mechanisms. Non-linear analyses revealed a critical lack of seismic safety, particularly in the Y direction, with significant out-of-plane collapse risk due to weak connections among walls. Based on these findings, a restoration and consolidation plan was developed to enhance the structural integrity of the building and to ensure its long-term safety and functionality. This plan incorporated metal tie rods, masonry strengthening through injections, and roof reconstruction. The proposed interventions not only address immediate seismic risks but also contribute to the broader goal of preserving this industrial architectural heritage. This study introduces a novel multidisciplinary methodology—integrating seismic analysis, traditional retrofit techniques, and sustainable reuse—specifically tailored to the rarely addressed typology of masonry industrial structures. By transforming the factory into a functional urban space, the project presents a replicable model for preserving industrial heritage within contemporary cityscapes. Full article
Show Figures

Figure 1

20 pages, 4487 KiB  
Article
Investigation on Corrosion-Induced Wall-Thinning Mechanisms in High-Pressure Steam Pipelines Based on Gas–Liquid Two-Phase Flow Characteristics
by Guangyin Li, Wei He, Pengyu Zhang, Hu Wang and Zhengxin Wei
Processes 2025, 13(7), 2096; https://doi.org/10.3390/pr13072096 - 2 Jul 2025
Viewed by 304
Abstract
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with [...] Read more.
In high-pressure thermal power systems, corrosion-induced wall thinning in steam pipelines poses a significant threat to operational safety and efficiency. This study investigates the effects of gas–liquid two-phase flow on corrosion-induced wall thinning in pipe bends of high-pressure heaters in power plants, with particular emphasis on the mechanisms of void fraction and inner wall surface roughness. Research reveals that an increased void fraction significantly enhances flow turbulence and centrifugal effects, resulting in elevated pressure and Discrete Phase Model (DPM) concentration at the bend, thereby intensifying erosion phenomena. Simultaneously, the turbulence generated by bubble collapse at the bend promotes the accumulation and detachment of corrosion products, maintaining a cyclic process of erosion and corrosion that accelerates wall thinning. Furthermore, the increased surface roughness of the inner bend wall exacerbates the corrosion process. The rough surface alters local flow characteristics, leading to changes in pressure distribution and DPM concentration accumulation points, subsequently accelerating corrosion progression. Energy-Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM) analyses reveal changes in the chemical composition and microstructural characteristics of corrosion products. The results indicate that the porous structure of oxide films fails to effectively protect against corrosive media, while bubble impact forces damage the oxide films, exposing fresh metal surfaces and further accelerating the corrosion process. Comprehensive analysis demonstrates that the interaction between void fraction and surface roughness significantly intensifies wall thinning, particularly under conditions of high void fraction and high roughness, where pressure and DPM concentration at the bend may reach extreme values, further increasing corrosion risk. Therefore, optimization of void fraction and surface roughness, along with the application of corrosion-resistant materials and surface treatment technologies, should be considered in pipeline design and operation to mitigate corrosion risks. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 22881 KiB  
Article
An Experimental Investigation on the Microscopic Damage and Mechanical Properties of Coal Under Hygrothermal Conditions
by Haisen Zhao, Guichen Li, Jiahui Xu, Yuantian Sun, Fengzhen He, Haoran Hao, Mengzhuo Han and Bowen Tian
Appl. Sci. 2025, 15(13), 7013; https://doi.org/10.3390/app15137013 - 21 Jun 2025
Viewed by 242
Abstract
Investigating the microstructural damage and mechanical properties of coal under deep mine hygrothermal conditions is essential for ensuring the safe and efficient extraction of coal resources. In this study, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and nanoindentation techniques were [...] Read more.
Investigating the microstructural damage and mechanical properties of coal under deep mine hygrothermal conditions is essential for ensuring the safe and efficient extraction of coal resources. In this study, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and nanoindentation techniques were employed to examine the surface morphology and microscale mechanical properties of coal samples exposed to four environmental conditions, initial, humidified, heated, and coupled hygrothermal, under a peak indentation load of 70 mN. The results indicate that humidification led to the formation of dissolution pores and localized surface softening, resulting in a 15.9% increase in the peak indentation depth and reductions in the hardness and elastic modulus by 29.53% and 17.14%, respectively. Heating caused localized disintegration and the collapse of the coal surface, accompanied by surface hardening, with a slight 0.4% decrease in the peak indentation depth and increases in hardness and the elastic modulus by 1.32% and 1.56%, respectively. Under the coupled hygrothermal condition, numerous fine dissolution pores and microcracks developed on the coal surface, and the mechanical properties exhibited intermediate values between those observed in the humidified and heated states. Notably, the elevated temperature suppressed the moisture penetration into the coal matrix to some extent in the hygrothermal environment. A positive correlation was found between the hardness and elastic modulus, independent of the coal sample condition. The mineralogical composition significantly influenced the microscale mechanical behavior, with hard quartz minerals corresponding to lower peak indentation depths and a higher hardness, whereas soft kaolinite showed the opposite trend. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

24 pages, 10811 KiB  
Article
Research on the Shear Performance of Carbonaceous Mudstone Under Natural and Saturated Conditions and Numerical Simulation of Slope Stability
by Jian Zhao, Hongying Chen and Rusong Nie
Appl. Sci. 2025, 15(12), 6935; https://doi.org/10.3390/app15126935 - 19 Jun 2025
Viewed by 246
Abstract
Rainfall can easily cause local sliding and collapse of carbonaceous mudstone deep road cut slopes. In order to study the strength characteristics of carbonaceous mudstone under different water environments, large-scale horizontal push shear tests were conducted on carbonaceous mudstone rock masses in their [...] Read more.
Rainfall can easily cause local sliding and collapse of carbonaceous mudstone deep road cut slopes. In order to study the strength characteristics of carbonaceous mudstone under different water environments, large-scale horizontal push shear tests were conducted on carbonaceous mudstone rock masses in their natural state and after immersion in saturated water. The push shear force–displacement relationship curve and fracture surface shape characteristics of carbonaceous mudstone samples were analyzed, and the shear strength index of carbonaceous mudstone was obtained, and numerical simulations on the stability and support effect of carbonaceous mudstone slopes were conducted. The research results indicate that carbonaceous mudstone can exhibit good structural properties and typical strain softening characteristics under natural conditions. The fracture surface, shear strength, and shear deformation process of carbonaceous mudstone samples will undergo significant changes after being soaked in saturated water. The average cohesion decreases by 33% compared to the natural state, and the internal friction angle decreases by 15%. The numerical simulation results also fully verify the attenuation of mechanical properties of carbonaceous mudstone after immersion, as well as the effectiveness of prestressed anchor cables and frame beams in supporting carbonaceous mudstone slopes. The research results provide an effective method for understanding the shear performance of carbonaceous mudstone and practical guidance for evaluating the stability and reinforcement design of carbonaceous mudstone slopes. Full article
Show Figures

Figure 1

28 pages, 11302 KiB  
Article
Mechanical Response and Failure Mechanisms of Block Caving Bottom Structures Under Dynamic Conditions Induced by Slope Rockfalls
by Xinglong Feng, Guangquan Li, Zeyue Wang, Xiongpeng Zhu, Zhenggao Huang and Hang Lin
Appl. Sci. 2025, 15(12), 6867; https://doi.org/10.3390/app15126867 - 18 Jun 2025
Viewed by 291
Abstract
The stability of bottom structures in block caving mines is significantly challenged by impact loads generated from large rockfalls and ore collapses on slopes. This study aims to investigate the mechanical response and failure characteristics of bottom structures under such dynamic and cyclic [...] Read more.
The stability of bottom structures in block caving mines is significantly challenged by impact loads generated from large rockfalls and ore collapses on slopes. This study aims to investigate the mechanical response and failure characteristics of bottom structures under such dynamic and cyclic loading conditions. Discrete element methods (DEMs) were employed to simulate the impact load amplitudes caused by large rockfalls on bottom structures. Specimens with identical mechanical properties to the bottom structure were fabricated at a 1:100 scale, based on the principle of similarity ratio tests. Three distinct types of impact loads were identified and analyzed: overall impact from large-scale slope collapses, localized impact from partial rock and soil mass collapses, and continuous multiple impacts from progressive slope failures. True triaxial tests were conducted to evaluate the mechanical response of the bottom structure under these loading scenarios. The results indicate that while overall and multiple impact loads from slope collapses do not lead to catastrophic failure of the bottom structure, severe damage occurs under a 100 m thickness of ore and large block impacts. Specifically, the inner walls of ore accumulation troughs peel off, and ore pillars between troughs fracture and fail. This study highlights the need for advanced experimental and numerical approaches to accurately predict the stability and failure modes of bottom structures under complex loading conditions. Full article
(This article belongs to the Special Issue Advances and Techniques in Rock Fracture Mechanics)
Show Figures

Figure 1

28 pages, 68627 KiB  
Article
TBM Enclosure Rock Grade Prediction Method Based on Multi-Source Feature Fusion
by Yong Huang, Xiewen Hu, Shilong Pang, Wei Fu, Shuaipeng Chang, Bin Gao and Weihua Hua
Appl. Sci. 2025, 15(12), 6684; https://doi.org/10.3390/app15126684 - 13 Jun 2025
Viewed by 416
Abstract
Aiming to mitigate engineering risks such as tunnel face collapse and equipment jamming caused by poor geological conditions during the construction of tunnel boring machines (TBMs), this study proposes a TBM surrounding rock grade prediction method based on multi-source feature fusion. Firstly, a [...] Read more.
Aiming to mitigate engineering risks such as tunnel face collapse and equipment jamming caused by poor geological conditions during the construction of tunnel boring machines (TBMs), this study proposes a TBM surrounding rock grade prediction method based on multi-source feature fusion. Firstly, a multi-source dataset is established by systematically integrating TBM tunnelling parameters, horizontal acoustic profile (HSP) detection data and three-dimensional geological spatial information. In the data preprocessing stage, the TBM data is cleaned and divided according to the mileage section, the statistical characteristics of key tunnelling parameters (thrust, torque, penetration, etc.) are extracted, and the rock fragmentation index (TPI, FPI, WR) is fused to construct a composite feature vector. The Direct-LiNGAM causal discovery algorithm is innovatively introduced to analyse the nonlinear correlation mechanism between multi-source features, and then a hybrid model, TRNet, which combines the local feature extraction ability of convolutional neural networks and the nonlinear approximation advantages of Kolmogorov–Arnold networks, is constructed. Verified by a real tunnel project in western Sichuan, China, the prediction accuracy of TRNet for surrounding rock grade on the test set reaches an average of 92.15%, which is higher than other data-driven methods. The results show that the prediction method proposed in this paper can effectively predict the surrounding rock grade of the tunnel face during TBM tunnelling, and provide decision support for the dynamic regulation of tunnelling parameters. Full article
(This article belongs to the Special Issue Tunnel and Underground Engineering: Recent Advances and Challenges)
Show Figures

Figure 1

17 pages, 3986 KiB  
Article
Geo-Identity of the Most Exploited Underground Obsidian Deposit in Mesoamerica: Cartography, Petrography, and Geochemistry of the Sierra de las Navajas, Hidalgo, Mexico
by Gerardo Alonso López-Velarde, Jesús Roberto Vidal-Solano and Alejandro Pastrana
Minerals 2025, 15(6), 629; https://doi.org/10.3390/min15060629 - 10 Jun 2025
Viewed by 554
Abstract
The Sierra de las Navajas is a Late Pliocene volcanic complex with a rhyolitic composition and peralkaline affinity. It is located on the northeastern edge of the Trans-Mexican Volcanic Belt in the state of Hidalgo. Within this rocky massif lies Cerro de las [...] Read more.
The Sierra de las Navajas is a Late Pliocene volcanic complex with a rhyolitic composition and peralkaline affinity. It is located on the northeastern edge of the Trans-Mexican Volcanic Belt in the state of Hidalgo. Within this rocky massif lies Cerro de las Navajas, the site of the most intensively exploited archaeological obsidian deposit in Mesoamerica. Obsidian extraction in this area has been carried out through open-pit mining and unique underground mining. The geological identity of the deposit encompasses the origin, distribution, and petrological characteristics of the obsidian from Cerro de las Navajas, determined through detailed geological mapping, petrographic study, and geochemical analysis. The results reveal the obsidian deposit’s style as well as its temporal and spatial position within the eruptive evolution of the region. The deposit originated from a local explosive eruptive mechanism associated with the partial collapse of a lava dome, forming a Block and Ash Flow Deposit (BAFD). The obsidian blocks, exploited by different cultures, correspond to the pyroclastic blocks within this deposit, which can reach up to 1 m in diameter and are embedded in a weakly consolidated ash matrix. The BAFD was later buried by (a) subsequent volcanic events, (b) structural adjustments of the volcanic edifice, and (c) soils derived from the erosion of other volcanic units. This obsidian deposit was mined underground from the Early Formative period to the Colonial era by the cultures of the Central Highlands and colonized societies. Interest in the vitreous quality and exotic nature of obsidian lithics from the BAFD led to the development of a complex exploitation system, which was generationally refined by the Teotihuacan, Toltec, and Aztec states. Full article
Show Figures

Figure 1

29 pages, 21376 KiB  
Article
Numerical Simulation of Fracture Failure Propagation in Water-Saturated Sandstone with Pore Defects Under Non-Uniform Loading Effects
by Gang Liu, Yonglong Zan, Dongwei Wang, Shengxuan Wang, Zhitao Yang, Yao Zeng, Guoqing Wei and Xiang Shi
Water 2025, 17(12), 1725; https://doi.org/10.3390/w17121725 - 7 Jun 2025
Cited by 1 | Viewed by 508
Abstract
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the [...] Read more.
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the mechanical properties of the rock mass, while non-uniform loading leads to stress concentration. The combined effect facilitates the propagation of microcracks and the formation of shear zones, ultimately resulting in localized instability. This initial damage disrupts the mechanical equilibrium and can evolve into severe geohazards, including roof collapse, water inrush, and rockburst. Therefore, understanding the damage and failure mechanisms of mine roadways at the mesoscale, under the combined influence of stress heterogeneity and hydraulic weakening, is of critical importance based on laboratory experiments and numerical simulations. However, the large scale of in situ roadway structures imposes significant constraints on full-scale physical modeling due to limitations in laboratory space and loading capacity. To address these challenges, a straight-wall circular arch roadway was adopted as the geometric prototype, with a total height of 4 m (2 m for the straight wall and 2 m for the arch), a base width of 4 m, and an arch radius of 2 m. Scaled physical models were fabricated based on geometric similarity principles, using defect-bearing sandstone specimens with dimensions of 100 mm × 30 mm × 100 mm (length × width × height) and pore-type defects measuring 40 mm × 20 mm × 20 mm (base × wall height × arch radius), to replicate the stress distribution and deformation behavior of the prototype. Uniaxial compression tests on water-saturated sandstone specimens were performed using a TAW-2000 electro-hydraulic servo testing system. The failure process was continuously monitored through acoustic emission (AE) techniques and static strain acquisition systems. Concurrently, FLAC3D 6.0 numerical simulations were employed to analyze the evolution of internal stress fields and the spatial distribution of plastic zones in saturated sandstone containing pore defects. Experimental results indicate that under non-uniform loading, the stress–strain curves of saturated sandstone with pore-type defects typically exhibit four distinct deformation stages. The extent of crack initiation, propagation, and coalescence is strongly correlated with the magnitude and heterogeneity of localized stress concentrations. AE parameters, including ringing counts and peak frequencies, reveal pronounced spatial partitioning. The internal stress field exhibits an overall banded pattern, with localized variations induced by stress anisotropy. Numerical simulation results further show that shear failure zones tend to cluster regionally, while tensile failure zones are more evenly distributed. Additionally, the stress field configuration at the specimen crown significantly influences the dispersion characteristics of the stress–strain response. These findings offer valuable theoretical insights and practical guidance for surrounding rock control, early warning systems, and reinforcement strategies in water-infiltrated mine roadways subjected to non-uniform loading conditions. Full article
Show Figures

Figure 1

17 pages, 5644 KiB  
Article
Role of CORO1A in Regulating Immune Homeostasis of Mammary Glands and Its Contribution to Clinical Mastitis Development in Dairy Cows
by Bohao Zhang, Na Chen, Xing Yu, Jianfu Li, Weitao Dong, Yong Zhang, Xingxu Zhao and Quanwei Zhang
Biomolecules 2025, 15(6), 827; https://doi.org/10.3390/biom15060827 - 6 Jun 2025
Viewed by 435
Abstract
Immune homeostasis refers to the immune system’s ability to maintain a dynamic balance, defend against infections while preventing excessive inflammation, and preserve normal physiological activity. However, its regulatory role in the mammary glands (MGs) of cows with clinical mastitis (CM) remains unclear. This [...] Read more.
Immune homeostasis refers to the immune system’s ability to maintain a dynamic balance, defend against infections while preventing excessive inflammation, and preserve normal physiological activity. However, its regulatory role in the mammary glands (MGs) of cows with clinical mastitis (CM) remains unclear. This study examined MG tissue samples collected from healthy Holstein cows and those with CM caused by Staphylococcus aureus (n = three per group) to identify candidate biomolecular targets involved in immune homeostasis in dairy cows affected by mastitis through a proteomics-based bioinformatic analysis and analyze their expression and localization in MG tissues. A pathological examination revealed that the MG tissues of the CM group exhibited significant alveoli collapse and inflammatory cell infiltration. The presence of activated phagolysosomes and lysosomes indicated active immune and phagocytic responses. Bioinformatics highlighted coronin1A (CORO1A) as a potential modulator of immune responses through phagosome formation. Dysregulation could impair immune homeostasis, thereby exacerbating mastitis. Immunofluorescence and immunohistochemistry staining showed that CORO1A was localized in monocytes, macrophages, and neutrophils. Molecular mechanism analysis revealed that Toll-like receptor 2 (TLR2) recognizes pathogens and recruits CORO1A to the phagosome formation site, thereby enhancing the phagocytic activity of immune cells. The expression levels of CORO1A and TLR2 mRNA and proteins were positively correlated with the incidence of mastitis. In conclusion, CORO1A upregulation may activate immune and phagocytic responses, disrupting MGs’ immune homeostasis during Staphylococcus aureus-induced mastitis. These findings provide novel insights into mastitis pathogenesis and potential therapeutic targets. Full article
(This article belongs to the Collection Molecular Biology: Feature Papers)
Show Figures

Figure 1

22 pages, 5015 KiB  
Article
Study on Dynamic Response and Progressive Collapse Resistance of Space Steel Frame Under Impact Load
by Junling Jiang, Zhishuang Zhang and Changren Ke
Buildings 2025, 15(11), 1888; https://doi.org/10.3390/buildings15111888 - 29 May 2025
Viewed by 483
Abstract
The dynamic response of multi-story steel frames under impact loading exhibits a complex nonlinear behavior. This study develops a three-story, multi-scale spatial steel frame finite element model using ABAQUS 2023 software, and the contact algorithm and material parameters were validated through published drop-weight [...] Read more.
The dynamic response of multi-story steel frames under impact loading exhibits a complex nonlinear behavior. This study develops a three-story, multi-scale spatial steel frame finite element model using ABAQUS 2023 software, and the contact algorithm and material parameters were validated through published drop-weight impact beam tests. A total of 48 impact parameter combinations were defined, covering rational mass–velocity ranges while accounting for column position variations at the first story. Systematic comparisons were conducted on the influence of varying impact parameters on structural dynamic responses. This study investigates deformation damage and progressive collapse mechanisms in spatial steel frames under impact loading. Structural dynamic responses show significant enhancement with increasing impact mass and velocity. As impact kinetic energy increases, the steel frame transitions from localized denting at impact zones to global bending deformation, inducing structural tilting. The steel frame exhibits potential collapse risk under severe impact conditions. Under identical impact energy, corner column impact displacements differ by <1% from edge-middle column displacements, with vertical displacement variations ranging 0–17.6%. The displacement of the first-floor joints of the structure with three spans in the impact direction was reduced by about 50% compared to that with two spans. When designing the structure, it is necessary to increase the number of frame spans in the impact direction to improve the overall stability of the structure. Based on the development of the rotation angle of the beam members during the impact process, the steel frame collapse process was divided into three stages, the elastic stage, the plastic and catenary stage, and the column member failure stage; the steel frame finally collapsed due to an excessive beam rotation angle and column failure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 6050 KiB  
Article
Multiphysics Coupling Effects on Slope Deformation in Jiangte Xikeng Lithium Deposit Open-Pit Mining
by Yongming Yin, Zhengxing Yu, Jinglin Wen, Fangzhi Gan and Couxian Shu
Processes 2025, 13(6), 1686; https://doi.org/10.3390/pr13061686 - 27 May 2025
Viewed by 428
Abstract
Geotechnical slope failures—often precursors to catastrophic landslides and collapses—pose significant risks to mining operations and regional socioeconomic stability. Focusing on the Jiangte Xikeng lithium open-pit mine, this study integrates field reconnaissance, laboratory testing, and multi-physics numerical modeling to elucidate the mechanisms governing slope [...] Read more.
Geotechnical slope failures—often precursors to catastrophic landslides and collapses—pose significant risks to mining operations and regional socioeconomic stability. Focusing on the Jiangte Xikeng lithium open-pit mine, this study integrates field reconnaissance, laboratory testing, and multi-physics numerical modeling to elucidate the mechanisms governing slope stability. Geological surveys and core analyses reveal a predominantly granite lithostratigraphy, bisected by two principal fault systems: the NE-striking F01 and the NNE-oriented F02. Advanced three-dimensional finite element simulations—accounting for gravitational loading, hydrogeological processes, dynamic blasting stresses, and extreme rainfall events—demonstrate that strain localizes at slope crests, with maximum displacements reaching 195.7 mm under blasting conditions. They indicate that differentiated slope angles of 42° for intact granite versus 27° for fractured zones are required for optimal stability, and that the integration of fault-controlled instability criteria, a coupled hydro-mechanical-blasting interaction model, and zonal design protocols for heterogeneous rock masses provides both operational guidelines for hazard mitigation and theoretical insights into excavation-induced slope deformations in complex metallogenic environments. Full article
(This article belongs to the Topic Green Mining, 2nd Volume)
Show Figures

Figure 1

20 pages, 1502 KiB  
Article
Quantum Firefly Algorithm: A Novel Approach for Quantum Circuit Scheduling Optimization
by Zuoqiang Du, Jiepeng Wang and Hui Li
Electronics 2025, 14(11), 2123; https://doi.org/10.3390/electronics14112123 - 23 May 2025
Viewed by 512
Abstract
In the noisy intermediate-scale quantum (NISQ) era, as the scale of existing quantum hardware continues to expand, the demand for effective methods to schedule quantum gates and minimize the number of operations has become increasingly urgent. To address this demand, the Quantum Firefly [...] Read more.
In the noisy intermediate-scale quantum (NISQ) era, as the scale of existing quantum hardware continues to expand, the demand for effective methods to schedule quantum gates and minimize the number of operations has become increasingly urgent. To address this demand, the Quantum Firefly Algorithm (QFA) has been designed by incorporating quantum information into the traditional firefly algorithm. This integration enables fireflies to explore multiple positions simultaneously, thereby increasing search space coverage and utilizing quantum tunneling effects to escape local optima. Through wave function evolution and collapse mechanisms described by the Schrödinger equation, a balance between exploring new solutions and exploiting known solutions is achieved by the QFA. Additionally, random perturbation steps are incorporated into the algorithm to enhance search diversity and prevent the algorithm from being trapped in local optima. In quantum circuit scheduling problems, the QFA optimizes quantum gate operation sequences by evaluating the fitness of scheduling schemes, reducing circuit depth and movement operations, while improving parallelism. Experimental results demonstrate that, compared to traditional algorithms, the QFA reduces SWAP gates by an average of 44% and CNOT gates by an average of 16%. When compared to modern algorithms, it reduces SWAP gates by an average of 7% and CNOT gates by an average of 12%. Full article
Show Figures

Figure 1

19 pages, 4819 KiB  
Article
Antecedent Rainfall Duration Controls Stage-Based Erosion Mechanisms in Engineered Loess-Filled Gully Beds: A Laboratory Flume Study
by Yanjie Ma, Xingrong Liu, Heping Shu, Yunkun Wang, Jinyan Huang, Qirun Li and Ziyang Xiao
Water 2025, 17(9), 1290; https://doi.org/10.3390/w17091290 - 25 Apr 2025
Viewed by 418
Abstract
Engineered loess-filled gullies, which are widely distributed across China’s Loess Plateau, face significant stability challenges under extreme rainfall conditions. To elucidate the regulatory mechanisms of antecedent rainfall on the erosion and failure processes of such gullies, this study conducted large-scale flume experiments to [...] Read more.
Engineered loess-filled gullies, which are widely distributed across China’s Loess Plateau, face significant stability challenges under extreme rainfall conditions. To elucidate the regulatory mechanisms of antecedent rainfall on the erosion and failure processes of such gullies, this study conducted large-scale flume experiments to reveal their phased erosion mechanisms and hydromechanical responses under different antecedent rainfall durations (10, 20, and 30 min). The results indicate that the erosion process features three prominent phases: initial splash erosion, structural reorganization during the intermission period, and runoff-induced gully erosion. Our critical advancement is the identification of antecedent rainfall duration as the primary “pre-regulation” factor: short-duration (10–20 min) rainfall predominantly induces surface crack networks during the intermission, whereas long-duration (30 min) rainfall directly triggers substantial holistic collapse. These differentiated structural weakening pathways are governed by the duration of antecedent rainfall and fundamentally control the initiation thresholds, progression rates, and channel morphology of subsequent runoff erosion. The long-duration group demonstrated accelerated erosion rates and greater erosion amounts. Concurrent monitoring demonstrated that transient pulse-like increases in pore-water pressure were strongly coupled with localized instability and gully wall failures, verifying the hydromechanical coupling mechanism during the failure process. These results quantitatively demonstrate the critical modulatory role of antecedent rainfall duration in determining erosion patterns in engineered disturbed loess, transcending the prior understanding that emphasized only the contributions of rainfall intensity or runoff. They offer a direct mechanistic basis for explaining the spatiotemporal heterogeneity of erosion and failure observed in field investigations of the engineered fills. The results directly contribute to risk assessments for land reclamation projects on the Loess Plateau, underscoring the importance of incorporating antecedent rainfall history into stability analyses and drainage designs. This study provides essential scientific evidence for advancing the precision of disaster prediction models and enhancing the efficacy of mitigation strategies. Full article
Show Figures

Figure 1

Back to TopTop