Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = load torque attenuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5446 KiB  
Article
Influence of Magnetic Pole Stepping Combined with Auxiliary Stator Slots on the Stability of Dual-Rotor Disc Motors
by Tong Guo, Yang Cao, Zhong Qian, Jianping Xia, Xuhong Kang, Guanben Xia, Yanan Yang, Wendong Zhang, Yujie Wang and Guoqing Wu
Energies 2023, 16(22), 7512; https://doi.org/10.3390/en16227512 - 9 Nov 2023
Cited by 1 | Viewed by 1514
Abstract
With the growing utilization of disc motors, the enhancement of their operational stability has become a critical research area. The existing studies usually focus on improving the pole structure of the rotor or the stator structure to optimize one performance of the motor [...] Read more.
With the growing utilization of disc motors, the enhancement of their operational stability has become a critical research area. The existing studies usually focus on improving the pole structure of the rotor or the stator structure to optimize one performance of the motor and less on optimizing multiple performances. This paper simultaneously improves the rotor pole structure and stator tooth structure of the motor in order to optimize the sinusoidal waveform of the no-load back electromotive force and the cogging torque at the same time to achieve the goal of reducing the vibration and noise of the permanent-magnet synchronous dual-rotor statorless magnetically coupled disc motor and improve its operational stability. A finite element simulation model of a 20-pole, 24-slot permanent-magnet synchronous dual-rotor statorless magnetically coupled disc motor is established to analyze the influence of various factors, including the number of magnetic pole steps, the opening position, depth, and width of the stator auxiliary slot, on the motor performance. The results show that this stator–rotor combination improvement method effectively reduces the total harmonic distortion (THD) and attenuates multiple harmonics, and the peak cogging torque pulsation is significantly improved while other properties of the motor meet the technical requirements, and the motor performance is improved. Full article
Show Figures

Figure 1

20 pages, 7643 KiB  
Article
Sensorless Scheme for Permanent-Magnet Synchronous Motors Susceptible to Time-Varying Load Torques
by Christian Aldrete-Maldonado, Ramon Ramirez-Villalobos, Luis N. Coria and Corina Plata-Ante
Mathematics 2023, 11(14), 3066; https://doi.org/10.3390/math11143066 - 11 Jul 2023
Cited by 2 | Viewed by 1685
Abstract
This paper is devoted to designing a sensorless high-speed tracking control for surface-mount permanent-magnet synchronous motors, considering a time-varying load torque. This proposal consists of an extended-state observer interconnected with a PI-compensated controller, considering only the measurement of electrical variables for feedback. First, [...] Read more.
This paper is devoted to designing a sensorless high-speed tracking control for surface-mount permanent-magnet synchronous motors, considering a time-varying load torque. This proposal consists of an extended-state observer interconnected with a PI-compensated controller, considering only the measurement of electrical variables for feedback. First, to design the extended-state observer, a rotary coordinate model of the motor is extended in one state to estimate the load torque and the rotor’s position and speed. Later, the estimations are fedback to a PI-compensated controller to attenuate the time-varying load torques. Our proposed methodology aims to overcome a restriction regarding the solution of the Riccati equation respecting the Lipschitz condition for observer stability analysis. Therefore, a PI-compensated controller described as a closed-loop provides a sensorless scheme. Lyapunov stability analysis is applied to determine sufficient conditions to ensure that the states of the closed-loop system are ultimately bounded, which is one of our main contributions. The proposed observer-based controller scheme deals with unmeasured load torque fluctuations. Furthermore, we carry out high-precision emulations to provide testing scenarios of the permanent-magnet synchronous motor with some challenging load torque magnitudes and behaviors. Finally, we conduct experiments on the Technosoft® development platform to corroborate the feasibility of the proposed control scheme in a real-world scenario. Full article
(This article belongs to the Special Issue Dynamics and Control Theory with Applications)
Show Figures

Figure 1

16 pages, 3576 KiB  
Article
Vibration Characteristics Analysis of O-Shaped Damping Ring to Balance Damping Gear Transmission System for Three-Cylinder Engine
by Pingjun Wang, Gangyan Li and Xueping Li
Processes 2022, 10(9), 1685; https://doi.org/10.3390/pr10091685 - 25 Aug 2022
Cited by 1 | Viewed by 2420
Abstract
Balance shafts are often used to improve the engine vibration characteristics of three-cylinder engines. The balance damping gear with a damping ring is an important part connecting the crankshaft and the balance shaft transmission. The stiffness characteristics of the damping ring and the [...] Read more.
Balance shafts are often used to improve the engine vibration characteristics of three-cylinder engines. The balance damping gear with a damping ring is an important part connecting the crankshaft and the balance shaft transmission. The stiffness characteristics of the damping ring and the unbalance of the gear have an important influence on its vibration suppression performance, but the coupled influence of the stiffness characteristics of the damping ring and the unbalanced characteristics of the vibration damping gear is unknown. In this paper, a multi-body dynamic bending–torsional coupling model of the transmission system of a three-cylinder engine with a balance damping gear is constructed considering the equivalent stiffness of the balance shaft support. Based on the fourth-order Runge–Kutta method, the influence laws of different rotational speeds, load torques, gear unbalance, radial stiffness and torsional stiffness of the damping ring on the vibration characteristics of the transmission system are obtained. The results show that the vibration amplitude increases linearly with the increase in the rotational speed and the amount of unbalance. As the load torque increases, the noise radiation of the system increases. The change in the equivalent torsional stiffness of the damping ring has little effect on the radial vibration suppression effect of the gear. As the equivalent radial stiffness of the damping ring increases, the vibration suppression rate decreases linearly. Combined with the calculation formula of damping ring stiffness, when the inner and outer diameters of the damping ring are relatively large, the vibration suppression performance decreases sharply with the increase in the thickness of the damping ring. Therefore, in order to achieve a better vibration attenuation effect, the inner to outer diameter ratio of the damping ring should be given priority in the design of the damping gear. Thus, the thickness of the design can meet the requirements of the vibration attenuation performance and a vibration attenuation of more than 90% of the radial vibration can be achieved. The model of the damping ring size and the vibration suppression effect established based on the method presented in this paper can be used to guide the design of balance damping gears. Full article
Show Figures

Figure 1

15 pages, 2047 KiB  
Article
DC Drive Adaptive Speed Controller Based on Hyperstability Theory
by Anton Glushchenko, Konstantin Lastochkin and Vladislav Petrov
Computation 2022, 10(3), 40; https://doi.org/10.3390/computation10030040 - 14 Mar 2022
Cited by 4 | Viewed by 2311
Abstract
The scope of this research is to develop a hyperstable adaptive control system of a direct current (DC) drive speed for effective load torque attenuation. The proposed speed controller is based on the model reference adaptive control framework and integrated into the conventional [...] Read more.
The scope of this research is to develop a hyperstable adaptive control system of a direct current (DC) drive speed for effective load torque attenuation. The proposed speed controller is based on the model reference adaptive control framework and integrated into the conventional DC drive cascade control system. Its main features are as follows: (1) the boundedness of the control action signal, as well as the armature current control loop non-stationarities, are taken into consideration with the help of the reference model hedging technique; (2) its inputs include only measurable signals, thus there is no need to use any kind of state estimators; (3) it attenuates the disturbances, which are matched with its control action signal, particularly, the inertia moment non-stationarity and load torque. The asymptotic hyperstability of the obtained DC drive control system is proven with the help of Lyapunov’s theorems and Popov’s criterion. The numerical experiments corroborate the obtained results. They include the demonstration of disadvantages of the conventional cascade control system under conditions of the drive parameters’ non-stationarity and advantages of the proposed solution for different disturbance types and amplitudes. Full article
(This article belongs to the Special Issue Control Systems, Mathematical Modeling and Automation)
Show Figures

Figure 1

14 pages, 3971 KiB  
Article
Influence of Implant-Abutment Contact Surfaces and Prosthetic Screw Tightening on the Stress Concentration, Fatigue Life and Microgap Formation: A Finite Element Analysis
by João Paulo Mendes Tribst, Amanda Maria de Oliveira Dal Piva, Laís Regiane da Silva-Concílio, Pietro Ausiello and Les Kalman
Oral 2021, 1(2), 88-101; https://doi.org/10.3390/oral1020009 - 19 Apr 2021
Cited by 14 | Viewed by 5890
Abstract
The purpose of this in silico study was to investigate the effect of abutment screw torque and implant-abutment contact surfaces on the stress generation, microgap formation and simulated fatigue life of an external hexagon connection under oblique loading. Three-dimensional numerical models of the [...] Read more.
The purpose of this in silico study was to investigate the effect of abutment screw torque and implant-abutment contact surfaces on the stress generation, microgap formation and simulated fatigue life of an external hexagon connection under oblique loading. Three-dimensional numerical models of the external hexagon implant were modeled containing two different implant-abutment contact surfaces (with and without contacting the hexagon axial walls) as well as using screw torques of 20 Ncm or 30 Ncm. Following the ISO 14801, an oblique load of 100 N was applied to the prosthesis. The von Mises stress, microgap formation, safety factor and fatigue life were obtained. The stresses in the abutment screw and implant were minimally influenced by the screw torque. However, this minimal stress in the screw with a 30 Ncm torque reduced the calculated fatigue life in comparison with 20 Ncm when the external hexagon axial walls were not in contact at the implant-abutment interface. The safety factor for the implant was higher when using minimal surfaces at the abutment-interfaces; however, it compromised the screw safety factor increasing its failure probability. The higher the screw torque, the lower was the microgap formation at the implant-abutment interface. However, the calculated residual stress is proportional to the applied torque, reducing the fatigue life in the screw. This effect can be attenuated using an implant-abutment system with more contacting surfaces. Full article
Show Figures

Figure 1

16 pages, 1843 KiB  
Article
Induction Motor Adaptive Backstepping Control and Efficiency Optimization Based on Load Observer
by Chuanguang Chen, Haisheng Yu, Fei Gong and Herong Wu
Energies 2020, 13(14), 3712; https://doi.org/10.3390/en13143712 - 19 Jul 2020
Cited by 13 | Viewed by 3236
Abstract
In this paper, an adaptive load torque observer based on backstepping control is designed, which achieves accurate load estimation where the load is unknown. Based on this, in order to reduce the loss of the motor at low load, a smooth switching strategy [...] Read more.
In this paper, an adaptive load torque observer based on backstepping control is designed, which achieves accurate load estimation where the load is unknown. Based on this, in order to reduce the loss of the motor at low load, a smooth switching strategy of rotor flux based on speed error is designed. According to the real-time speed error of the induction motor, the smooth switching strategy achieves dynamic flux switching. Firstly, when the uncertain load occurs for the first time in the recursive design, the adaptive law of the load is designed, and a novel adaptive load torque observer is obtained, which accurately estimates the uncertain load torque in real time. Secondly, the relationship between the loss and the rotor flux is established by analyzing the loss model of induction motor, and the optimal rotor flux is obtained. The smooth switching control strategy based on speed error is designed to realize the efficiency optimization of induction motor. Finally, the control strategy proposed in this paper is experimentally verified on the LINKS-RT platform. The results show that the proposed control strategy has excellent load disturbance attenuation performance and reduces the energy loss. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

14 pages, 3176 KiB  
Article
Investigation of E-Core Modular Permanent Magnet Wind Turbine
by Aimeng Wang and Shanshan Li
Energies 2020, 13(7), 1751; https://doi.org/10.3390/en13071751 - 6 Apr 2020
Cited by 4 | Viewed by 2487
Abstract
Under the adverse trend of fossil energy attenuation and air pollution, wind power effectively alleviates the global energy crisis and environmental pollution. For wind turbines, especially large offshore wind turbines, their transportation, installation, and maintenance are very inconvenient. In order to solve this [...] Read more.
Under the adverse trend of fossil energy attenuation and air pollution, wind power effectively alleviates the global energy crisis and environmental pollution. For wind turbines, especially large offshore wind turbines, their transportation, installation, and maintenance are very inconvenient. In order to solve this problem, this paper presents an E-core stator modular machine which inserts stator gap into the unwounded teeth of the fractional-slot concentrated winding (FSCW) permanent magnet (PM) machine. The winding factor of the new stator structure machine was derived. The electromagnetic models of 12-slot/10-pole and 12-slot/14-pole modular FSCW PM machines and traditional FSCW PM machines were established using the finite element analysis (FEA) software, and the open-circuit flux density, cogging torque, load torque, loss, and efficiency were simulated and analyzed. The results showed that the modular structure of E-core stator not only simplified the transportation, installation, and maintenance of wind turbines, but also optimized the electromagnetic performance of the 12-slot/14-pole machine, i.e., improved the output torque and operation efficiency. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Graphical abstract

16 pages, 1145 KiB  
Article
Estimation of Actuator and System Faults Via an Unknown Input Interval Observer for Takagi–Sugeno Systems
by Citlaly Martínez-García, Vicenç Puig, Carlos-M. Astorga-Zaragoza, Guadalupe Madrigal-Espinosa and Juan Reyes-Reyes
Processes 2020, 8(1), 61; https://doi.org/10.3390/pr8010061 - 2 Jan 2020
Cited by 12 | Viewed by 3008
Abstract
This paper presents a simultaneous state variables and system and actuator fault estimation, based on an unknown input interval observer design for a discrete-time parametric uncertain Takagi–Sugeno system under actuator fault, with disturbances in the process and measurement noise. The observer design is [...] Read more.
This paper presents a simultaneous state variables and system and actuator fault estimation, based on an unknown input interval observer design for a discrete-time parametric uncertain Takagi–Sugeno system under actuator fault, with disturbances in the process and measurement noise. The observer design is synthesized by considering unknown but bounded process disturbances, output noise, as well as bounded parametric uncertainties. By taking into account these considerations, the upper and lower bounds of the considered faults are estimated. The gain of the unknown input interval observer is computed through a linear matrix inequalities (LMIs) approach using the robust H criteria in order to ensure attenuation of process disturbances and output noise. The interval observer scheme is experimentally evaluated by estimating the upper and lower bounds of a torque load perturbation, a friction parameter and a fault in the input voltage of a permanent magnet DC motor. Full article
(This article belongs to the Special Issue Optimization for Control, Observation and Safety)
Show Figures

Figure 1

26 pages, 5048 KiB  
Article
Performance Analysis of a Compression Ignition Engine Using Mixture Biodiesel Palm and Diesel
by Fabián Vargas, Armando Pérez, Rene Delgado, Emilio Hernández and José Alejandro Suástegui
Sustainability 2019, 11(18), 4918; https://doi.org/10.3390/su11184918 - 9 Sep 2019
Cited by 7 | Viewed by 3810
Abstract
The present investigation analyzes the performance of a Hatz diesel engine that has 912 cubic centimeters (cc), stationary type, two cylinders, an air cooled feature and B10 (90% diesel and 10% palm biodiesel), using a test bench to improve statistically the repeatability and [...] Read more.
The present investigation analyzes the performance of a Hatz diesel engine that has 912 cubic centimeters (cc), stationary type, two cylinders, an air cooled feature and B10 (90% diesel and 10% palm biodiesel), using a test bench to improve statistically the repeatability and reproducibility of the runs. The experimental reference tests were carried out under defined conditions at a fixed speed of 1800 revolutions per minute (rpm) and four load levels: 35%, 50%, 65% and 80%. The repeatability analysis was based on the technical standard NTC-ISO / IEC17025. The variables of torque, fuel consumption (FC), air consumption (AC) and exhaust gas temperatures (EGT) showed an increase related with the load increase, showing a lower variation of AC and emissions. With the mechanism’s implementation of attenuator of air blows, adjustment mechanism for rpm and preheating air chamber for intake manifold, it was observed that the rpm presented the lowest statistical variability. The variables that presented the highest Pearson correlation with respect to the FC are the CO2, NOX and O2, this is because the engine does not have the Common Rail system, which causes the fuel supply to not be injected accurately and uniformly, therefore the evaluation of performance of the engine could not be repeatable. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Technologies for Sustainability)
Show Figures

Graphical abstract

Back to TopTop