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Abstract: With the growing utilization of disc motors, the enhancement of their operational stability
has become a critical research area. The existing studies usually focus on improving the pole structure
of the rotor or the stator structure to optimize one performance of the motor and less on optimizing
multiple performances. This paper simultaneously improves the rotor pole structure and stator tooth
structure of the motor in order to optimize the sinusoidal waveform of the no-load back electromotive
force and the cogging torque at the same time to achieve the goal of reducing the vibration and noise
of the permanent-magnet synchronous dual-rotor statorless magnetically coupled disc motor and
improve its operational stability. A finite element simulation model of a 20-pole, 24-slot permanent-
magnet synchronous dual-rotor statorless magnetically coupled disc motor is established to analyze
the influence of various factors, including the number of magnetic pole steps, the opening position,
depth, and width of the stator auxiliary slot, on the motor performance. The results show that this
stator–rotor combination improvement method effectively reduces the total harmonic distortion (THD)
and attenuates multiple harmonics, and the peak cogging torque pulsation is significantly improved
while other properties of the motor meet the technical requirements, and the motor performance
is improved.

Keywords: disc permanent-magnet synchronous motor; stator auxiliary slot; stepped magnetic pole;
cogging torque; no-load harmonic

1. Introduction

Due to their high efficiency, high torque density, small size, and good reliability,
permanent-magnet motors are being increasingly utilized in practical engineering. They
can be categorized into two main types: axial-flux permanent-magnet motors and radial-
flux permanent-magnet motors, with the latter being more common and maturely devel-
oped. Therefore, in recent years, research by both domestic and foreign scholars has been
increasingly focused on the development of new topology motors, specifically axial-flux
motors [1]. The disc-shaped permanent-magnet synchronous double-rotor stator without a
magnetic yoke motor is an axial composite motor structure whose topology is illustrated in
Figure 1. In comparison with traditional radial motors, the double-outer-rotor single-stator
structure offers a compact axial structure, high efficiency, and high power density. The
stator design without a magnetic yoke not only reduces the weight of the motor but also
results in a small starting torque. As a result, it is being increasingly employed in wind
power generation, new energy vehicles, and other fields.

With increasing attention, higher demands are being placed on performance improve-
ment in axial-flux motors by various industries. The sinusoidality of the no-load back
electromotive force waveform of synchronous generators is strictly required in industrial
production. Therefore, reducing the harmonic components of the no-load back electromo-
tive force has become an important goal. The sinusoidality of the no-load back electromotive
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force waveform was improved by Y. Li et al. [2] through the optimization of the number of
magnetic poles, size, and magnet thickness of the permanent-magnet synchronous motor.
The influence of the rotor pole arc on the no-load back electromotive force waveform was
evaluated by W. Hua et al. [3], indicating that there exists an optimal rotor pole arc for the
minimum harmonic content of the no-load back electromotive force waveform. M. Shokri
et al. [4] showed that changing the pole structure can optimize the no-load back electro-
motive force waveform by comparing the no-load back electromotive force waveform of
sinusoidal-shaped, cylindrical-shaped, and normal sector-shaped poles. J. Liu et al. [5]
investigated the attenuation of the harmonic content of no-load reverse electromotive force
by rotor slanted poles and segmented slanted poles. J. Wu et al. [6–8] investigated an ec-
centric design of the permanent magnets in order to improve the aberration of the no-load
back electromotive force waveform rate. Y. Liu et al. [9] designed orthogonal experiments
using the Taguchi method to optimize the performance of a dual-rotor flux-switching
motor, reducing the higher harmonic content of the no-load back electromotive force and
improving its sinusoidality. The performance of the motor was improved by Bo Cheng
et al. [10] by combining Halbach-array permanent magnets with soft magnetic composite
stator cores using a nonlinear optimization algorithm to solve multi-objective optimization
problems. X. Zhang et al. [11] changed the shape of each magnet from rectangular to
trapezoidal based on the traditional Halbach-array permanent-magnet synchronous motor,
optimizing the air-gap flux density and reducing the distortion rate of the no-load back
electromotive force. In the above studies, by changing the number of rotor poles, the size,
or the pole arc coefficient, using skewed poles or segmented poles, etc., researchers aimed
at optimizing the no-load back electromotive force waveform and did not take the motor
cogging torque as the main target performance improvement. However, the cogging torque
is also one of the important indexes affecting the stable operation of the motor.
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Figure 1. Structural diagram of double-rotor stator yokeless disc motor.

The cogging torque is generated by the magnetic flux variation between the rotor
and stator slots during synchronous motor operation. The existence of cogging torque
can cause torque ripple, vibration noise, and other issues, which can reduce the reliability
and stability of motor operation. Some research and analysis have been conducted by
scholars at home and abroad to suppress cogging torque. The influence of a stepped skewed
stator yoke on the cogging torque of a transverse flux motor was studied by Taravat S.
et al. [12]. The cogging torque was weakened by C. Ma et al. [13] through the combination
of magnetic pole segmentation with rotor open auxiliary slots. Effective reduction in the
cogging torque and obtaining a more sinusoidal no-load back electromotive force waveform
were achieved by Güleç M. et al. [14] by using inclined poles and rotor pole displacement,
making the motor operate more stably at low speeds. M. Aydin et al. [15] proposed
a new coreless spoke-type sinusoidal rotor segmented permanent-magnet synchronous
motor, which achieved higher performance and torque compared to traditional AFPM
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motors. The reasonable selection of auxiliary slot numbers to weaken the cogging force was
verified through theoretical derivation and experimental research by K. Huang et al. [16].
L. Xu et al. [17] optimized an axial-flux motor by optimizing parameter combinations and
using a genetic algorithm to optimize the pole arc coefficient, stator width coefficient, slot
displacement, and inclined poles, resulting in a significant reduction in cogging torque and
an improvement in the sinusoidality of the no-load back electromotive force waveform.
The cogging torque suppression mechanism of different-shaped segmented magnetic pole
strategies was revealed using the finite element method by L. Xiao et al. [18], and the
motor’s cogging torque was optimized by controlling parameters using the rectangular
magnetic pole segmentation strategy. B. Zhao et al. [19] proposed a novel winding topology
to reduce the cogging torque of a five-phase fractional slot concentrated winding motor.
K. Sun et al. [20] proposed a method to optimize the torque performance of IPMSM using
single-layer FSCW to obtain the optimal solution and reduce the torque pulsation using the
SOA algorithm. The above studies have made progress in optimizing the cogging torque
of the motor in terms of stator yoke tilt, addition of auxiliary slots, rotor inclined poles, and
optimization of motor parameters by combining algorithms, where structural improvement
in rotor poles has been widely studied in disk motors, but less research has been carried
out on the change in stator structure.

Although many studies have been conducted on performance improvement in disk
motors, most of them still choose a single performance parameter as the optimization
objective. This paper proposes a combined optimization method based on stator opening
auxiliary slots with stepped magnets to achieve the goal of simultaneous optimization of the
no-load back electromotive force waveform and the cogging torque of the disk generator to
improve the stability of the motor during operation. A 20-pole, 24-slot permanent-magnet
synchronous dual-rotor stator yokeless disk motor model is established to improve the
overall performance of the motor by comparing the influence of different orders of magnetic
poles on the distortion rate (THD) of the no-load back EMF waveform, that is, whether the
no-load back EMF waveform is closer to the sinusoidal type; and the effects of different slot
widths, depths, and slotting positions of auxiliary slots of the stator on the cogging torque,
so as to select optimal parameters and improve the overall performance of the motor.

2. Methods
2.1. No-Load Back EMF Waveform Characteristics

It has been shown that the magnetic pole structure can be effectively optimized to
improve the waveform of the no-load back electromotive force during no-load operation [2].
Designing the permanent magnet as a sinusoidal shape can make the waveform of the
no-load back electromotive force closer to a sinusoidal wave, weaken the harmonic content
of the back electromotive force during no-load operation, and obtain a larger air-gap flux
density. However, designing the surface-mounted permanent magnet to a shape close to
sinusoidal in actual manufacturing processes is complex and incurs a significant amount
of cost. Therefore, this paper chooses to change the rectangular permanent magnet to a
stepped magnetic pole, which satisfies the structural change close to sinusoidal and is
easy to manufacture without causing a significant increase in motor cost. The evaluation
index for the sinusoidality of the no-load back electromotive force waveform is the total
harmonic distortion (THD) [21], defined as the percentage of the root-mean-square value of
the harmonic components (after removing the fundamental component) to the root-mean-
square value of the fundamental component, expressed as

THD =

√
∞
∑

j=2
E2

j

E1
(1)
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where E1 represents the fundamental component of the no-load back electromotive force,
and Ej represents the odd-order harmonic components of the no-load back electromo-
tive force.

A smaller THD indicates that there are fewer harmonic components in the no-load
back electromotive force, which means that the waveform is closer to a sinusoidal shape
and the motor has lower losses.

2.2. Cogging Torque Characteristics

The cogging torque of a permanent-magnet motor is defined as the negative derivative
of the magnetic field energy W inside the motor with respect to the position angle α when
the motor is not energized [22], expressed as

Tcog = −∂W
∂α

(2)

where α refers to the relative position angle between the rotors, which is the angle between
the centerline of a stator tooth and the centerline of the corresponding magnetic pole. The
magnetic field energy inside the motor can be approximated as the sum of the magnetic
field energy in the motor air gap and the permanent magnet, expressed as

W =
1

2µ0

∫
V

Br
2(θ)

[
hm(θ)

hm(θ) + δ(θ, α)

]2

dV (3)

where B(θ, α) represents the distribution function of air-gap magnetic flux density, µ0
represents the magnetic permeability of the air gap, and θ represents the mechanical angle
of rotation of the motor.

The distribution function of air-gap magnetic flux density is expressed by the remanent
magnetization induction and relative magnetic conductivity function of the permanent
magnet, expressed as

W =
1

2µ0

∫
V

Br
2(θ)

[
hm(θ)

hm(θ) + δ(θ, α)

]2

dV (4)

after conducting a Fourier decomposition of B2
r (θ) and

[
hm(θ)

hm(θ)+δ(θ,α)

]2
, expressed as

Br
2(θ) = Br0 +

∞

∑
n=1

Brn cos 2npθ (5)

where p represents the number of pole pairs in the rotor; Br represents the remanent
magnetization of the permanent magnet; Br0 = αpB2

r ; and Brn = 2
nπ B2

r sin
(
nαpπ

)
, where

αp is the pole arc coefficient of the permanent magnet.[
hm(θ)

hm(θ) + δ(θ, α)

]2

= G0 +
∞

∑
n=1

Gn cos nz(θ + α) (6)

where z represents the number of stator slots, and Gn represents the Fourier coefficient of
the magnetic conductivity function.

By substituting Equations (4)–(6) into Equation (2), we obtain the expression for the
cogging torque, expressed as

Tcog(α) =
πzLa

4µ0
(R2

2 − R1
2)

∞

∑
n=1

nGnNL BnNL sin nNLα (7)
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where R1 represents the outer radius of the armature, R2 represents the inner radius of the
stator yoke, La represents the axial length of the armature core, and NL = LCM(z, p).

There is not much difference between the axial-flux permanent-magnet motor and the
conventional radial motor, except that the air gap of the radial motor is a hollow cylinder,
while that of the axial-flux motor is a ring. The integration method for storing energy in
the air gap is slightly different for the two motors [23]. Therefore, the cogging torque in an
axial-flux permanent-magnet motor is given by the following equation, expressed as

Tcog(α) =
gDgLeπz

4µ0

∞

∑
n=1

nGnNL BnNL sin nNLα (8)

where Dg = R1 + R2 is the average diameter of the motor, Le = R2 − R1 is the effective
length of the armature, and g is the effective air-gap length of the motor.

From Formula (8), it can be seen that gDg Leπz
4µ0

is a basic design parameter of the motor.
To reduce the cogging torque without changing the basic parameters of the motor, it is
effective to reduce B, which is the Fourier decomposition coefficients of the air-gap mag-
netic density squared for permanent magnets, and G, which is the Fourier decomposition
coefficients of the relative air-gap permeability squared. According to the simplified stator
slot structure model shown in Figure 2, the Fourier coefficients of the magnetic conductivity
function can be idealized, expressed as

Gn =
z
π

[∫ − b0
2

− π
z

cos(nNLθ)dθ +
∫ π

z

b0
2

cos(nNLθ)dθ

]
= − 2z

nπNL
sin(nNL

b0

2
) (9)

It can be seen that the stator open auxiliary slots will have an impact on the calculation
of the derivative interval and change the magnitude of Gn, thereby affecting the cogging
torque. Therefore, this paper proposes to optimize the cogging torque by using stator open
auxiliary slots. However, since the above analytical derivation ignores factors such as core
saturation, only the cogging torque of the motor is analyzed qualitatively; the current in the
armature windings is set to zero at a constant rotational speed, which is used to simulate
an open-circuit winding and a finite element analysis is performed to observe the change
in the cogging torque.
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Figure 2. Model diagram of stator tooth-slot structure.

3. Results and Discussion

In this paper, a 20-pole, 24-slot axial-flux permanent-magnet synchronous double-
rotor stator without a yoke motor is used as an example. A 3D finite element model is
established using Ansoft Maxwell 2021 software, as shown in Figure 3a,b, which show
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the magnetic density cloud diagram of the motor at no load. Neglecting the tooth edge
agglomeration effect, the average tooth magnetic density of this motor is around 1.6 T,
which meets the initial design criteria. The main technical specifications and parameters are
shown in Table 1. To reduce the computational load and take full account of the symmetry
and periodicity of the motor structure, a quarter model of the motor is selected for analysis.
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Table 1. The main parameters of the motor.

Motor Parameters Value

Speed/(r/min) 300
Magnetic pole outer diameter/mm 240
Magnetic pole inner diameter/mm 140

Air-gap length/mm 1
Magnet thickness/mm 5

Polar arc coefficient 0.7
Number of poles 20
Number of slots 24

3.1. No-Load Back EMF Waveform Optimization

Taking a single permanent-magnet pole as an example, assuming that the heights of
each order of pole differ by 1 mm, the pole arc coefficient is used in conjunction with the
center axis of the pole to evenly distribute the pole angle for each order. That is, when the
number of pole steps is ki and the pole arc coefficient is αp, the pole angle occupied by
the first-order pole is k1αp, and we have k1αp = k2αp = · · · = kiαp. The i = 1, 2, and main
optimized structural parameters for the pole are shown in Figure 4.
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Different finite element simulation models were established for permanent magnets
with different numbers of pole steps. The waveform variation and harmonic distribution
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of the no-load back electromotive force conditions are compared by simulation results.
Figure 5a shows the comparison between the no-load back electromotive force waveform
of different pole steps and the corresponding standard sine wave. It can be seen that
the fitting degree between the second pole step and its corresponding sine function is
the highest. As the number of pole steps increases, the waveform of the no-load back
electromotive force gradually deviates from the sine wave. Figure 5b shows the comparison
of the harmonic content of the back electromotive force for different pole steps. Compared
with the traditional flat-type permanent-magnet structure, the number of pole steps is 1;
when the number of pole steps is 2, the harmonic content of the back electromotive force is
the lowest. Figure 5c shows the total harmonic distortion of the no-load back electromotive
force waveform. THD decreases from 4.69% for a first pole step to 1.9% for a second pole
step, while it increases to 4.29% for a third pole step, which is consistent with the harmonic
analysis shown in Figure 5b. Therefore, when the number of pole steps is 2, the 3rd, 7th,
and 9th harmonic components are significantly reduced, THD is reduced by 50%, and the
no-load back electromotive force waveform is effectively optimized.
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3.2. Cogging Torque Optimization

The amplitude of the cogging torque is inversely proportional to the harmonic order,
and the size of each harmonic of different slot-pole combinations is different. With fpn
indicating the number of cycles of the fundamental wave of the cogging torque, then
there is

fpn =
kNL
2p

, k = 1, 2, 3, · · · (10)

If the fpn of the cogging torque increases, its amplitude will decrease. Therefore, the
method of using stator slot opening to change NL is adopted. According to Equation (10),
the more auxiliary slots there are, the larger the fpn and the smaller the cogging torque.
However, excessive auxiliary slots will reduce the air-gap flux density and are also affected
by the processing technology. Generally, two rectangular auxiliary slots are opened [24].
Figure 6 shows a comparison of the cogging torque before and after opening two auxiliary
slots in the stator.
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In order to further reduce the cogging torque, it is necessary to consider the auxiliary
slot parameters that affect the magnitude of the cogging torque to achieve the optimal
weakening effect. When opening auxiliary slots on the stator, in order to avoid introducing
new harmonics as much as possible, the two auxiliary slots are generally symmetric about
the centerline axis of the stator teeth. Figure 7 shows a model of the stator with two open
auxiliary slots, where γ represents the angle between the centerline of the stator tooth and
the centerline of one of the auxiliary slots, which is used to determine the position of the
auxiliary slot opening.
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The air-gap length distribution function δ1 before stator slotting can be expressed as

δ1 =

 δ0,
(

kl − b1
2 ≤ θ ≤ kl + b1

2

)
δ0 + h0,

(
kl + b1

2 ≤ θ ≤ kl + b1
2 + b0

) k = 0, 1, 2, . . . (11)

where δ0 represents the air-gap length between the stator and rotor, h0 refers to the depth
of the stator slot, b1 represents the width of the stator tooth, and l denotes the distance
between the centerlines of two adjacent stator teeth.

By performing a Fourier decomposition of δ1(θ), there is

δ1(θ) =
1
l
[δ0b1 + (h0 + δ0)b0] +

2
π

∞

∑
n=1

[
h0

n
sin

nπ

l

(
b1

2
+ b0

)
− h0

n
sin

nπb1

2l

]
cos

nπ

l
θ (12)

When the number of auxiliary slots is two, the air-gap length distribution function can
be expressed as

δ2(θ) =


δ0,
(

kl − d
2 − a − c ≤ θ ≤ kl + d

2 − a, kl − d
2 ≤ θ ≤ kl + d

2 , kl + d
2 + a ≤ θ ≤ kl + b1

2

)
δ0 + h0,

(
kl + b1

2 ≤ θ ≤ kl + b1
2 + b0

)
δ0 + b,

(
kl − d

2 − a ≤ θ ≤ kl − d
2 , kl + d

2 ≤ θ ≤ kl + d
2 + a

) (13)

where a represents the width of the auxiliary slot, b represents the depth of the auxiliary
slot, c represents the distance between the outer edge of the auxiliary slot and the corre-
sponding stator tooth edge, and d represents the distance between the inner edges of the
two auxiliary slots.

By performing a Fourier decomposition of the equation

δ2(θ) =
1
l
[δ0b1 + (h0 + δ0)b0 + 2ab] +


2
π

∞
∑

n=1,3,5,...
Aµ1 cos nπ

l θ

2
π

∞
∑

n=2,4,6,...
Aµ2 cos nπ

l θ
(14)

and
Aµ1 = 2

π

[
h0
n sin nπ

l

(
b1
2 + b0

)
− h0

n sin nπb1
2l + 2b

n cos nπ
l

(
b0
2 + c

)]
Aµ2 = 2

π

[
h0
n sin nπ

l

(
b1
2 + b0

)
− h0

n sin nπb1
2l + 2b

n cos nπ
l

(
b0
2 + c

)
− 2b

n sin nπd
2l

] (15)

The above equation shows that the width, depth, and position of the auxiliary slots
all affect the air-gap length distribution function and, thus, the magnitude of the cogging
torque. Therefore, selecting appropriate parameters for the auxiliary slots is crucial to
effectively reduce the amplitude of the cogging torque.

By building finite element models of motors with different slot depths, widths, and
locations and solving them, the optimal structural parameters of the auxiliary slots can
be found. First, the positions of the two auxiliary slots are studied. The width a of the
auxiliary slot is set to 1.4 mm, and the depth b is set to 1 mm. The angle γ between the
centerline of the auxiliary slot and the centerline of the stator tooth is defined, and γ is
varied in steps of 1◦ within the range of 1◦ to 5◦. When γ = 5◦, the cogging torque reaches
its minimum value, but the slot is located at the edge of the stator tooth, which is difficult
to machine, and the cogging torque is unstable when optimizing other parameters later.
Therefore, γ = 3◦ is chosen as the slot location. Next, with the depth of the auxiliary slot set
to 1 mm and γ set to 3◦, the width a of the auxiliary slot is optimized in steps of 0.4 mm
within the range of 0.8 mm to 3.6 mm. The minimum value of the cogging torque, 1.07 N·m,
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is obtained when a = 2 mm. Finally, with γ = 3◦ and a = 2 mm, the width b of the auxiliary
slot is optimized in steps of 0.2 mm within the range of 0.6 mm to 1.4 mm. The minimum
value of the cogging torque, 0.75 N·m, is obtained when b = 0.8 mm. The variation in peak
cogging torque is shown in Figure 8.
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Therefore, when the stator auxiliary slots with γ = 3◦, a = 2 mm, and b = 0.8 mm
are selected, the minimum peak cogging torque is 0.75 N·m, which is a reduction of
2.05 N·m or approximately 73.2% compared to the cogging torque of 2.8 N·m before
slotting, and it is close to the optimal solution. Formula (14) shows that the stator slotting
will affect the air-gap flux density function, which in turn affects the waveform of the
no-load back electromotive force. Therefore, Figure 9a compares the changes in the no-load
back electromotive force waveform before and after slotting, and Figure 9b shows the
harmonic changes in the no-load back electromotive force waveform obtained by Fourier
analysis. It can be seen that the effect of opening two auxiliary slots in the stator on
the waveform of the no-load back electromotive force is small, the content of the third
harmonic is reduced from 1% to 0.67%, and THD is reduced from 1.9% to 1.87%. Therefore,
optimizing the stator by opening two auxiliary slots is an effective method for reducing the
cogging torque.

3.3. Comparison of Motor Performance before and after Optimization

Based on the above analysis, it is finally determined that the number of pole steps is 2,
and the parameters of the stator auxiliary slots are γ = 3◦, a = 2 mm, and b = 0.8 mm. A
new finite element analysis model is built, and the simulated performance parameters of
the motor before and after optimization are shown in Table 2.

Table 2. Comparison table of motor performance parameters before and after optimization.

Motor Parameters Before Optimization After Optimization

No-load back EMF/V 20.4 19.6
THD 4.69% 1.87%

Cogging torque peak/N·m 2.8 0.75
Output torque peak/N·m 12.74 10.49

Average output torque/N·m 10 9.50
Torque ripple coefficient 25.27% 9.79%

The comparison of the no-load back electromotive force waveforms in Figure 10a
shows that the no-load back electromotive force value decreases from 20.4 V to 19.6 V, which
is related to the stepped magnetic pole reducing the amount of magnetic pole. However,
the fitting degree to the standard sine function waveform is significantly improved. The
comparison of the no-load back electromotive force harmonic analysis in Figure 10b shows
that the fundamental frequency amplitude of the no-load back electromotive force increases
significantly, and all harmonic frequencies are weakened to varying degrees. THD is



Energies 2023, 16, 7512 11 of 15

reduced from 4.69% to 1.87%, and the distortion rate of the optimized voltage waveform
is reduced by 60.13%. The comparison of the cogging torque in Figure 10c shows that
the peak cogging torque is reduced from 2.8 N·m to 0.75 N·m after opening the auxiliary
slots, and the cogging torque is weakened by 73.2%. The motor output torque changes
in Figure 10d show that the output torque fluctuation is large before optimization, with
a peak torque of 12.74 N·m and an average output torque of 10 N·m. After optimization,
the output torque fluctuation is reduced, with a peak torque of 10.49 N·m and an average
torque of 9.50 N·m.

Energies 2023, 16, x FOR PEER REVIEW 11 of 16 
 

 

reduced from 1% to 0.67%, and 𝑇𝐻𝐷 is reduced from 1.9% to 1.87%. Therefore, optimizing 

the stator by opening two auxiliary slots is an effective method for reducing the cogging 

torque. 

Before slotting

After slotting

Sine function

 
(a) 

 
(b) 

Figure 9. Performance analysis diagrams of no-load back EMF of the motor before and after opening 

the auxiliary slot: (a) comparison chart of no-load back EMF waveform before and after slotting and 

(b) analysis chart of no-load back EMF harmonic content before and after slotting. 

3.3. Comparison of Motor Performance before and after Optimization 

Based on the above analysis, it is finally determined that the number of pole steps is 

2, and the parameters of the stator auxiliary slots are γ = 3°, a = 2 mm, and b = 0.8 mm. A 

new finite element analysis model is built, and the simulated performance parameters of 

the motor before and after optimization are shown in Table 2. 

  

Before slotting

After slotting

H
ar

m
o
n
ic

 c
o
n
te

n
t 

(%
)

Harmonic frequency

Figure 9. Performance analysis diagrams of no-load back EMF of the motor before and after opening
the auxiliary slot: (a) comparison chart of no-load back EMF waveform before and after slotting and
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4. Conclusions

In this paper, the disk generator is no longer optimized for a single objective, and
a combination method using stepped magnetic poles and stator open auxiliary slots is
proposed to improve the performance of the generator. The effects of various different pole-
step structures and different auxiliary slot structures on the performance of the generator are
comparatively analyzed, and the optimal rotor structure and auxiliary slot parameters are
determined based on the distortion rate of the no-load back electromotive force waveform
and the magnitude of the cogging torque changes. The following conclusions can be drawn
from this study:

1. When the permanent magnet is the second-order magnetic pole, the no-load back
EMF distortion rate of the motor is minimized from the previous 4.69% to 1.9%.

2. Two rectangular auxiliary slots opened by the stator teeth are studied after the im-
provement in the magnetic pole structure. When the slot width is 2 mm, the slot depth
is 0.8 mm, and the angle between the centerline of the auxiliary slots is at an angle of
3◦ with the centerline of the stator teeth, the peak motor cogging torque is reduced
to 0.75 N·m, and the cogging torque is obviously weakened; the THD is reduced to
1.87%, and the no-load back electromotive force fundamental content rises obviously,
and the multiple harmonic content is reduced.

3. After the simultaneous improvement in the rotor pole structure and stator tooth
structure, the motor output torque pulsation of the motor is reduced, the pulsation
coefficient is reduced from 25.27% to 9.79%, and the average value of the torque is
reduced from 10 N·m to 9.5 N·m; this is related to the fact that the stepped magnet
structure reduces the volume of the permanent magnets on the basis of the original
magnets structure.

Overall, the combination of stepped poles and stator auxiliary slots not only improves
the sinusoidal waveform of the no-load back electromotive force but also reduces the peak of
the cogging torque, which greatly reduces the vibration and noise of the permanent-magnet
synchronous dual-rotor statorless magnetically coupled disc motor during operation, and
improves its operational stability.
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Nomenclature

THD Total harmonic distortion EMF Electromotive force

E1
The fundamental component of the

Ej
The odd-order harmonic components

no-load back electromotive force of the no-load back electromotive force
W The magnetic field energy α The position angle

B(θ, α)
The distribution function of air-gap

µ0
The magnetic permeability of the air

magnetic flux density gap

θ
The mechanical angle of rotation of

p The number of pole pairs in the rotor
the motor

Br
The remanent magnetization of the

αp
The pole arc coefficient of the

permanent magnet permanent magnet
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z The number of stator slots Gn
The Fourier coefficient of the magnetic
conductivity function

R1 The outer radius of the armature R2 The inner radius of the stator yoke
La The axial length of the armature core Dg The average diameter of the motor
Le The effective length of the armature g The effective air-gap length of the motor

fpn
Number of cycles of the fundamental

δ1
Air-gap length distribution function

wave of the cogging torque before stator slotting

δ0
The air-gap length between the stator

h0 The depth of the stator slot
and rotor

b1 The width of the stator tooth l
The distance between the centerlines of
two adjacent stator teeth

a The width of the auxiliary slot b The depth of the auxiliary slot

c
The distance between the outer edge

d
The distance between the

of the auxiliary slot and the inner edges of the two auxiliary
corresponding stator tooth edge slots

γ

The angle between the centerline of the
ki The number of pole stepsstator tooth and the centerline of one of

the auxiliary slots
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