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Abstract: The scope of this research is to develop a hyperstable adaptive control system of a direct
current (DC) drive speed for effective load torque attenuation. The proposed speed controller is based
on the model reference adaptive control framework and integrated into the conventional DC drive
cascade control system. Its main features are as follows: (1) the boundedness of the control action
signal, as well as the armature current control loop non-stationarities, are taken into consideration
with the help of the reference model hedging technique; (2) its inputs include only measurable signals,
thus there is no need to use any kind of state estimators; (3) it attenuates the disturbances, which are
matched with its control action signal, particularly, the inertia moment non-stationarity and load
torque. The asymptotic hyperstability of the obtained DC drive control system is proven with the help
of Lyapunov’s theorems and Popov’s criterion. The numerical experiments corroborate the obtained
results. They include the demonstration of disadvantages of the conventional cascade control system
under conditions of the drive parameters’ non-stationarity and advantages of the proposed solution
for different disturbance types and amplitudes.

Keywords: DC drive; load torque attenuation; adaptive control; reference model hedging; asymp-
totic hyperstability

1. Introduction

Nowadays, electric motors are the main actuators, which are applied to control tech-
nological processes of various branches of industry [1]. Owing to the simplicity of their
control, the direct current (DC) motors with separate excitation of the armature and ro-
tor windings are the most widespread among all electric motors. However, due to the
structural features, such motors are energy inefficient and require periodic maintenance of
the collector-and-brush assembly unit. Therefore, in recent decades, because of the power
electronics development, there is a tendency in the industry to replace DC motors with
asynchronous and synchronous ones, which do not have the above-mentioned disadvan-
tages. However, under conditions of real production, such replacement, as a rule, requires
significant capital investments for the renewal of the electric motors and accompanying
control electronic and computer equipment (replacement of the thyristor converters with
frequency converters, etc.). Today, many enterprises are not ready to make such capital
investments, and therefore, the most promising solution is to find ways to improve the
energy and economic efficiency of DC motors.

There is an opinion [2], that it is possible to increase the DC motors efficiency indirectly,
i.e., by means of control quality improvement of the technological processes, in which such
motors are used as the actuating mechanisms. The main factor, which has an impact on
such quality, is the deterioration of the motor speed and/or rotor position control, which
are/is caused by the non-stationarity of such motor characteristics. In turn, this instability
is usually caused by changes of values of such parameters as the motor inertia moment and
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the load torque. For example, according to expert opinion [3], a factor of the inertia moment
variation of such units as coilers and industrial robots can reach 2–10 times compared to its
nominal value. At the same time, the factor of the load torque variation of such units as
rolling mills reaches 2–3 times compared to its nominal value. In this regard, the problem of
the DC motor non-stationarity compensation to improve its speed control quality is actual.

To date, the speed control of the DC motors is usually implemented as a cascade
control system [1,3] based on a proportional-integral (PI) controller with stationary values
of the parameters of its proportional and integral parts. Such parameters are calculated to
make the speed loop follow the symmetrical optimum requirements [1,4]. Accordingly, to
compensate for the influence of the non-stationarity of the motor, it is necessary either to
provide such a PI-controller with the adaptive properties by its parameters adjustment or
to develop a new adaptive speed controller.

Let us consider the main methods related to both mentioned solutions, as the com-
putational power of the modern industrial programmable logic controllers (PLCs) and
micro-controller devices is high enough for the practical implementation of such more
complex, but also more efficient control systems. This means that, from the point of view
of software and technical implementation, there are no obstacles to solving the above-
stated problem.

In [5,6], the neural network and fuzzy tuners of the speed PI-controller parameters are
proposed, respectively. The advantages of these tuners include the rules of the PI-controller
parameters adjustment, which are understandable by the process automation engineers. As
for their disadvantages, the main of them is the open question of such closed-loop control
systems stability. In [7], based on the feedback linearization and the second Lyapunov
methods, an adaptive speed controller is developed, which has another structure that is
different from the PI one. The disadvantage of this controller is the necessity to know
some values, which are immeasurable in practice, as well as the facts that: (1) it does
not include an algorithm to compensate for the load torque and (2) the boundedness of
the control action signal is not taken into consideration. In [8], according to the model
reference adaptive control (MRAC) method, a tuner of the speed PI-controller parameters
is proposed, which takes into account the control signal boundedness. But it, as well as
in [7], is based on the practically immeasurable values and provides only the robustness of
the closed-loop control system to the load torque, but not its compensation.

This paper is to take all the shortcomings of the methods from [5–8] into consideration
and propose an adaptive DC motor speed control system, which: (1) uses only measurable
signals; (2) considers the boundedness of the control signal; and (3) adaptively compensates
for the load torque.

To develop such a system, the results of [8], the method of the adaptive laws synthesis
based on the hyperstability criterion [9], and the notion of strictly positive real transfer
functions [10], which have been successfully applied to control composite [11] and non-
square systems [12], are used. Considering the known method of the reference model
hedging to adapt to the boundedness of the control signal [13], the approach to hedge the
reference model to take into account the bounded input–bounded output (BIBO) stable
unmodeled dynamics of the plant will be proposed and then applied in this research.

The study is organized as follows. Section 2 contains a problem statement and the
main result. Section 3 is to demonstrate the results of the numerical experiments. The study
is wrapped-up with the concluding remarks. The proof of the proposed theorem is in the
Appendix A.

2. Problem Statement and Methods
2.1. Disadvantages of Conventional Cascade DC Drive Control System

The conventional cascade DC drive control system is shown in Figure 1.
Here, c is the torque constant; Φe is the magnetic flux; I is the armature current;ω is

the rotor speed; u is the control action signal (output of the speed controller) and a setpoint
value for the armature current loop (umin ≤ u ≤ umax); Mc is the load torque; and M is
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the motor electrodynamic torque. Wmech(p) is a transfer function of the drive mechanics(
p := d

dt

)
, Wc(p) is a transfer function of the armature winding, ei is an armature current

control error, e is a back electromotive force (back-EMF), Wc.reg(p) is an armature current
controller, Ws.reg(p) is a speed controller, ui is the armature current controller output
(uimin ≤ ui ≤ uimax), WKtr (p) is a thyristor converter transfer function, and rω is a speed
setpoint. The transfer functions Wmech(p), Wc(p), WKtr (p) are shown below:

Wmech(p) =
1

JΣ p
, Wc(p) =

1
R

L
R p + 1

, WKtr (p) =
Ktr

Tµp + 1
, (1)

where JΣ is the inertia moment of a motor shaft, R is an armature resistance, Tµ is the
thyristor converter time constant, Ktr is a thyristor converter gain, and L is an armature
inductance. The transfer functions of the controllers will be defined below.

Figure 1. DC drive cascade control system scheme.

Certainly, this control scheme has a lot of advantages, because of which it is broadly
used in practice: (1) the fact that the physical limits on the values of the motor armature
current and voltage are taken into account; (2) the scheme provides the astatism of the first
order for the speed control loop when its controller parameters are calculated in accordance
with the symmetrical optimum; and (3) there is no need to know the derivatives of the
measured output variables (speed and armature current) to calculate the control action.
The armature current controller in this scheme is usually calculated using the technical
(modulus) optimum requirements (step response with 4.3% overshoot and phase margin
630) and structurally implemented as a PI-controller:

Wc.reg(p) =
L

aI TµKtr
+

R
aI TµKtr p

. (2)

Here aI = 2 is the conventional parameter used to meet the modulus optimum requirements.
The speed controller in such a scheme usually follows the modulus or symmetrical

optimum requirements and is chosen as a proportional (P) or PI controller, respectively.
Typically, considering speed, automatic electric drive systems are required to provide zero
steady-state error, thus the symmetrical optimum (step response with 43% overshoot and
phase margin 370) is applied more often. In such a case, the speed PI-controller is defined as:

Ws.reg(p) =
JΣ

a2
I TµcΦe

+
JΣ

aωa3
I T2
µcΦe p

. (3)

Here aω = 4 is the conventional parameter used to meet the symmetrical opti-
mum requirements.

In the general case, the structural scheme parameters Mc, JΣ, and cΦe are considered
to be a priori unknown values.

From Equations (2) and (3), it follows that the parameters of the controllers of the
electric drive depend on the values of its electrical and mechanical parameters. In particular,
the armature current PI controller depends on the parameters of the electric circuits of
the motor and the low-value uncompensated time constant Tµ. The speed PI controller
depends on the parameters of the motor mechanics and Tµ as well. As it is mentioned
in the Introduction section, considering real electric drives, in the course of their normal
functioning, the change of the motor electric circuits parameters (in particular, the armature
resistance R) may reach up to 50% of the nominal values. At the same time, the motor
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mechanics parameters (the inertia moment) may change in a step-like way or as smooth
functions of time. This is defined by the types of mechanical gears of a certain mechanism
to be controlled. The most significant changes of the inertia moment occur in such mecha-
nisms as winding machines used in the metallurgical and pulp and paper industries and
excavators in the mining industry, as well as in transport mechanisms and manipulators.
Considering such non-stationarity of the mechanics and electric circuits of the electric
drive, the speed control quality may differ significantly from the required one. This will be
demonstrated in the third section of this study.

2.2. Problem Statement

The general structural scheme of the plant of the separately excited DC motor speed
control loop is shown in Figure 2 [1]. The transfer function to transform u into I is obtained
as a closed-loop transfer function:

Wc.reg(p)WKtr (p)Wc(p)/
(
1 + Wc.reg(p)WKtr (p)Wc(p)

)
.

Figure 2. Plant of DC drive speed control loop.

The scheme in Figure 2 is relevant when the armature current loop is tuned to follow
the modulus optimum (aI = 2), and the back-EMF is compensated (red lines in Figure 1 do
not exist). The following assumption is introduced for further analysis.

Assumption 1. The load torque Mc is matched with the control action signal u.

The scheme in Figure 2 can be transformed into the one shown in Figure 3 as:

1
aI Tµp(Tµp + 1) + 1

= 1 +
−aI Tµp(Tµp + 1)

aI Tµp(Tµp + 1) + 1
,

IcΦe︸︷︷︸
M

−Mc =
(

I − Mc
cΦe

)
cΦe.

Figure 3. Transformed scheme of plant of DC drive speed control loop.

Considering Assumption 1, the plant of the DC drive speed control loop is described
in the extended state space as:

.
x = Ax + B(u + ∆(u)− τe)

x =

[
θ

ω

]
; A =

[
0 1
0 0

]
; B =

[
0
b

]
; b = cΦe J−1

Σ ; τe =
1

cΦe
Mc,

(4)

where x ∈ R2 is the state vector; τe is the disturbance, which is caused by the load torque
Mc and matched with the control action signal; ∆(u) is a function to describe unmodeled
dynamics (the disturbance, which is caused by the armature current loop dynamics and
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could not be compensated by the control signal u), A ∈ R2×2 is the state matrix, and
B ∈ R2×1 is the input matrix. The pair (A, B) is controllable. The following assumption is
introduced about the disturbance, ∆(u).

Assumption 2. The disturbance ∆(u), which could not be compensated by the control signal u, is
bounded ∆(u) ∈ L∞ if the control action signal u is bounded u ∈ L∞.

Then, it is rational to choose the control law u for the system (4) as an adaptive
PI-controller with saturations:

u = sat

K̂I

t∫
0

satI(e)dτ+ K̂Pe + ûad

. (5)

Here, K̂P is the parameter of the PI-controller proportional part; K̂I is the parameter of
the PI-controller integral part, ûad is an additional term to compensate for τe; e = rω −ω
is the tracking error, i.e., the difference between the rotor speed setpoint rω and its actual
value. The fact that u (the armature current) is bounded is taken into consideration in (5)
with the help of the saturation function sat(.) and the Anti-Windup procedure satI(.):

sat(vsat) =


umax if vsat ≥ umax
vsat if umin < vsat < umax
umin if vsat ≤ umin

,

satI(e) =
{

0 if [vsat ≥ umax ∨ vsat ≤ umin] ∧ [e > 0∨ e < 0]
e otherwise

.

(6)

where vsat is the control action u value after application of the Anti-Windup procedure
satI(.), which is used in the integral part of the controller.

Remark 1. It follows from the chosen control law (5) with the Anti-Windup procedure (6) that
Assumption 2 is met for (5).

Remark 2. In accordance with Figure 3, the disturbance ∆(u) is generated as a BIBO transfer function:

W1(p) =
−aI Tµp(Tµp + 1)

aI Tµp(Tµp + 1) + 1
(7)

only if the following holds simultaneously for the motor armature current control loop: (1) the
armature current controller is tuned to follow the modulus optimum requirements; (2) the back-EMF
is fully compensated (we consider the scheme in Figure 1, but without red lines); (3) the motor
armature current controller output is not saturated.

Otherwise, the disturbance is generated by some BIBO transfer function W2(p) of higher order
compared to (7), but the requirements of Assumption 2 are still met.

Using (5), let the notion of the control law v, which is formed without (6), be introduced:

v = K̂(r− y) + ûad,

K̂ =
[
K̂I K̂P

]
, r =

[
t∫

0
rωdτ rω

]T

, y = [θ ω]T .
(8)

The control signal u is added and subtracted with v in Equation (4). Then, u− v is
denoted as ũ. This notion is needed to define the reference model and arrange its hedging.
As a result, (4) is rewritten as:

.
x = Ax + B(u± v + ∆(u)− τe) = Ax + B(v + ũ + ∆(u)− τe). (9)



Computation 2022, 10, 40 6 of 15

The required control quality of the plant (9), which is achievable under the conditions
of the saturation (6) and disturbance ∆(u), is defined as:

.
xre f = Are f xre f + Bre f r + B0K̂re f (ũ + ∆(u))

Are f =

[
0 1
−a0

re f −a1
re f

]
; Bre f =

[
0 0

a0
re f a1

re f

]
; B0 =

[
0
1

]
,

(10)

where xre f ∈ R2 is the reference model state vector, Are f ∈ R2×2 is the reference model state
matrix, Bre f ∈ R2×2 is the reference model input matrix. The disturbance ∆(u) is calculated
as the difference between the current value of the armature current I and the control action
u: ∆(u) = I − u. The values of the parameters a0

re f and a1
re f are chosen so as to make

the matrix Are f be Hurwitz one. If, additionally, a0
re f and a1

re f are chosen according to the
following expressions (aω = 4 is the conventional value):

a0
re f =

1
aωa3

I T2
µ

; a1
re f =

1
a2

I Tµ
, (11)

Then, the reference model (10) follows the symmetrical optimum requirements, as far
as the speed loop is concerned. They are obtained from (3) by making cΦe and JΣ equal
to one.

The Equation (10) is subtracted from (9), and the obtained expression is added and
subtracted with Are f x to obtain:

.
ere f = Are f ere f + B(v− τe)− B0K̃re f (ũ + ∆(u)) +

(
A− Are f

)
x− Bre f r, (12)

where K̃re f = K̂re f − B†
0 B, B†

0 is the pseudoinverse of B0.
Using the definitions of A, Are f and B, Bre f , the following equality is obtained

from (12):
B†
(

A− Are f

)
x− B†Bre f r = −K(r− y). (13)

Finally, considering (8) and (13), the Equation (12) is transformed into:

.
ere f = Are f ere f + B

(
K̃e + ũad

)
− B0K̃re f (ũ + ∆(u)). (14)

If K̃ = 0, ũad = 0 and K̃re f = 0, then, taking into account that Are f is the Hurwitz
matrix, the tracking error (14) is asymptotically stable, and the required control quality (10)
of the plant (4) is achieved. As Mc, JΣ, and cΦe are considered to be a priori unknown
values, then the equalities K̂ = K, ûad = τe and K̂re f = B†

0 B cannot be used to calculate the
controller parameters. Therefore, the adaptive laws of functional form are to be derived for
such parameters:

.
K̂ = f1

(
ere f , e

)
;

.
ûad = f2

(
ere f , 1

)
,

.
K̂re f = f3

(
ere f , ũ + ∆(u)

)
(15)

to meet the objective:

lim
t→∞

∥∥∥∥ ere f (t)
∥∥∥ = 0. (16)

2.3. Main Result

To derive the adaptive laws of the controller parameters, which guarantee that the
Equation (16) holds, the hyperstability theory results [9,14] are used. In accordance with
them, the linear block of (14) is a combination of the two transfer functions:

H1(p) = BT P
(

pI − Are f

)−1
B; H2(p) = BT

0 P
(

pI − Are f

)−1
B0, (17)
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where P = PT > 0 is a solution of the Lyapunov equation:

AT
re f P + PAre f = −Q. (18)

Q is a positively defined matrix. The nonlinear components of (14)
(

K̃e + ũad

)
, K̃re f (ũ + ∆(u))

are inputs of such transfer functions, respectively.
As Are f is the Hurwitz matrix, then the matrix P exists, and, following the Kalman–

Yakubovich–Popov lemma, the transfer functions (17) are strictly positive real. According
to [3,9,14], the nonlinear block of (14) is formed as sum of the multiplications of the linear
block outputs and respective nonlinear components:

q = −eT
re f PB

(
K̃e + ũad

)
+ eT

re f PB0K̃re f (ũ + ∆(u)). (19)

According to Popov’s criterion [14], to make the system (14) be asymptotically hyper-
stable, it is necessary and sufficient that the following inequality holds for the non-linear
block of (14):

t∫
0

[
−eT

re f PB
(

K̃e + ũad

)
+ eT

re f PB0K̃re f (ũ + ∆(u))
]
dτ ≥ −ε, (20)

where ε > 0 is a time-independent constant.
The following theorem is to define the adaptive laws of the form (15) to meet (20).

Theorem 1. The integral inequality (20) holds if the adaptive laws of the controller parameters are
chosen as (21), where ΓI , γI

1, γI
2 and ΓP, γP

1 , γP
2 are the parameters of the integral and proportional

parts of the adaptive laws, respectively.

.
K̃

T
=

.
K̂

T
= −ΓIeeT

re f P̃sgn(b)− ΓP
d
dt

[
eeT

re f P̃sgn(b)
]
;

.
ũad =

.
ûad = −γI

1eT
re f P̃sgn(b)− γP

1
d
dt

[
eT

re f P̃sgn(b)
]
;

.
K̃re f =

.
K̂re f = γI

2(ũ + ∆(u))eT
re f P̃ + γP

1
d
dt

[
(ũ + ∆(u))eT

re f P̃
]
,

(21)

sgn(.) is the sign function.

Proof of Theorem 1. The proof of Theorem 1 and the definition of P̃ are found to
Appendix A. �

As the inequality (20) holds when the adaptive laws (21) are used for (14), the Lya-
punov function candidate is chosen as:

V = eT
re f Pere f + 2ε + 2

t∫
0

[
−eT

re f PB
(

K̃e + ũad

)
+ eT

re f PB0K̃re f (ũ + ∆(u))
]
dτ. (22)

It is positive semi-definite all the time, as: (1) eT
re f Pere f ≥ 0 because P = PT > 0

(see Equation (18)), (2) the sum of the second and third terms of (22) is also equal or above
zero, as the third term is equal or above −2ε (see Equation (20)).

Considering (14), the function (22) is differentiated to obtain the following:

.
V =

.
eT

re f Pere f + eT
re f P

.
ere f − 2eT

re f PB
(

K̃e + ũad

)
+ 2eT

re f PB0K̃re f (ũ + ∆(u)) =

= −eT
re f Qere f ≤ −λmin(Q)

∥∥∥ ere f

∥∥∥2
.

(23)
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Then, the derivative of (22) is a negative semi-definite function when the adaptive
laws (21) are applied. Thus, ere f ∈ L∞ and K̃ ∈ L∞,ũad ∈ L∞, K̃re f ∈ L∞, and the
Equation (22) is the Lyapunov function for the system (14). In addition, having analyzed
the expression

V(t→ ∞) = V(t0) +

∞∫
t0

.
Vdt = V(t0)−

∞∫
t0

eT
re f Qere f dt ≤ V(t0)− λmin(Q)

∥∥∥ere f

∥∥∥2

2
< ∞, (24)

It is concluded that the function (22) has a finite limit when t→ ∞ . Thus. ere f ∈ L2 ∩ L∞
and, consequently x, e, ũ, v ∈ L∞.

The second derivative of (22) is obtained as follows:

..
V = −2eT

re f Q
.
ere f = −2eT

re f Q
[

Are f ere f + B
(

K̃e + ũad

)
−B0K̃re f (ũ + ∆(u))

]
. (25)

Based on the above-proved facts, ere f ∈ L2 ∩ L∞ and x, e, ũ, v ∈ L∞, and, using

Assumption 2, ∆(u) ∈ L∞. Then
..
V ∈ L∞ and the function (23) are uniformly continuous

and, following Barbalat’s lemma, converge to zero when t→ ∞ . This means that the
objective (16) is achieved when the adaptive laws (21) are applied [15].

3. Results and Discussion

The DC motor MD25LHC with separate excitation of the armature and rotor wind-
ings has been chosen to conduct experiments. The nominal values of its mathematical
model parameters were obtained both from the datasheet and identification experiments:
R = 8.35 Ohm; L = 0.0416 H were the resistance and inductivity of the armature circuit;
Ktr = 2.5 was the thyristor converter gain; Tµ = 10−3 s; cΦe = 0.08; JΣ = 10.67 µkg·m2;
umax = −umin = 1 A. The armature current controller was calculated using the motor
parameters values according to the known Equation (2) [9,14] to make the armature current
loop follow the modulus optimum requirements. The output of the armature current
controller was bounded by values of ±10 V.

The experiments were conducted using the DC motor mathematical model in Mat-
lab/Simulink (with the Euler method of the numerical integration with the step size
τs = 10−6 s).

3.1. Demonstration of Disadvantages of Conventional Cascade Control

Let the control system, which is shown in Figure 1, be considered. Its controller
parameters were calculated using (2) and (3) and the nominal values of the motor, as
shown above.

Figure 4 shows a comparison of the speed transient curves obtained from the cascade
control system of the DC drive. The experiments were conducted with the mathematical
model of the electric motor described above. Three curves are shown. The first (ideal)
one was obtained under the condition that all the parameters had their nominal values,
the second one—under the condition that the value of the inertia moment was doubled,
whereas the third one—when it was halved in comparison with the nominal value. At the
same time, the armature resistance and inductance were also increased by a factor of 1.5
compared to their nominal values.

Considering the experiment with the doubled inertia moment, the speed settling time
increased by 22.1 milliseconds and overshoot decreased by 2.58%, as compared to the
ideal (JΣ) output curve. This can be explained by taking into account the motor armature
current limits [−1 A; 1 A]. Because of them, the motor accelerated with bounded maximum
acceleration. In the idle mode (no load torque), its value can be found from the electric
drive model by Equation (26).

dω
dt

=
cΦe

2JΣ
umax (26)
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Thus, if the inertia moment is increased compared to the nominal value, or any other
situation when the motor accelerates with constant acceleration occurs, then the transient
with maximum possible rate, but without the overshoot and oscillations, is considered to
be the best one.

The experiment, which is shown in Figure 4, also indicated that when the inertia
moment was lower than its nominal value, the speed settling time was decreased by
9.95 milliseconds, the overshoot was increased by 9.5%, and three damped oscillations
occurred. In this case, a transient, which coincided with the ideal one (JΣ), was considered
to be the best possible one. The values of the control quality indices (the overshoot σ, the
settling time tsettle, and the number of oscillations n) of the transients (Figure 4) are shown
in Table 1.

Figure 4. Speed transient curves obtained from conventional cascade control system.

Table 1. Control quality indexes.

Plant σ, % tsettle, s n

Nominal values 16.8 0.0243 0
0.5 JΣ/1.5 R/1.5 L 26.3 0.01435 3
2 JΣ/1.5 R/1.5 L 14.2 0.0464 1

It follows from Table 1 and Figure 4 that the conventional cascade control system
was not able to keep the ideal (JΣ curve) control quality due to the above-described non-
stationarities. Thus, the adaptive system application is relevant.

The further experiments were of three types. The first one was to model the influence
of the load torque τe 6= 0 when there was no parameter uncertainty K̂re f (0)− Kre f = 0.
The second one was to model the vice versa situation: τe = 0, K̂re f (0) − Kre f 6= 0 and
K̂(0)− K 6= 0. The third one was to model the influence of both the load torque τe 6= 0 and
the parameter uncertainty K̂re f (0)− Kre f 6= 0 and K̂(0)− K 6= 0.

The parameters of the reference model were calculated according to the Equation (11),
the matrix Q in (18) was chosen as unity one, and the initial values of the speed controller
and the reference model correction parameters were calculated according to the nominal
values of the motor parameters:

K̂I(0) =
JΣ

cΦeaωa3
I T2
µ

; K̂P(0) =
JΣ

cΦea2
I T−1
µ

; K̂re f (0) =
cΦe

10JΣ
(27)
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The transfer functions H1(p), H2(p) for the plant under consideration took the form:

H1(p) =
3.5979p + 0.0288

3.2× 10−5 p2 + 0.008p + 1
; H2(p) =

0.002p + 1.6× 10−5

p2 + 250p + 31250
. (28)

The poles and zeros of these transfer functions are negative, and their relative degree
is one, so they are strictly positive real.

3.2. First Experiment

A constant signal rω = 100 rad/s was used as the speed setpoint. All the motor
parameters had their nominal values, thus the adaptive laws for K̂re f and K̂ were not used

(
.
K̃re f = 0 and

.
K̃ = 0). The gains of the adaptive law for ûad were chosen as γI

1 = 12× 104,
γP

1 = 102. The load torque was modeled with the help of the following function:

Mc = 0.07h(t− 0.15), (29)

where h(t− 0.15) is the unit-step function at the time point t = 0.15 s.
Figure 5 shows the speed ω curves obtained from: (1) the conventional cascade

control system without adaptation—(A), (2) the system with a priori knowledge (ideal case)
of the load torque function (29)—(B), and (3) the developed adaptive system—(C). The
speed controller parameters for the conventional cascade control system were calculated in
accordance with (3).

Figure 5. Comparison of motor speed curves when τe 6= 0 and K̂re f (0)− Kre f = 0.

The ideal value of τe and the obtained transient of its estimation ûad are shown in
Figure 6.

Figure 6. Comparison of ûad with τe.
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As follows from Figures 5 and 6, the developed system approximated the value of dis-
turbance τe with sufficient accuracy and fast response. These resulted in the improvement
of the quality of τe compensation by the control system.

3.3. Second Experiment

The motor speed setpoint rω was a piecewise-continuous function, which was imple-
mented as a cycle of the drive acceleration to 200 rad/s and after 0.2 s its deceleration to
100 rad/s, and so on. The duration of the experiment was 2 s. It contained 10 transients
according to the above-described setpoint schedule. The load torque was equaled to zero,
so the adaptive law for ûad was not used (

.
ũad = 0). The motor inertia moment JΣ was

doubled. The parameters γI
2, γP

2 and the gain matrices ΓP, ΓI were chosen, as follows:

ΓI =

[
5× 104 0

0 1, 2

]
; ΓP =

[
50 0
0 1, 2× 10−3

]
;

γI
2 = 4× 105;

γP
2 = 4× 102.

(30)

Figure 7 shows a comparison of the second transient of the motor speedω to 200 rad/s
obtained from: the conventional cascade control system without adaptation—(A), the
system with the speed controller parameters calculated for the doubled value of the inertia
moment (ideal curve) with the help of (27)—(B), and the developed adaptive system—(C).

Figure 7. Comparison of motor speed curves when τe = 0, K̂re f (0)− Kre f 6= 0 and K̂(0)− K 6= 0.

Figure 8 shows the transient curves of
∣∣∣K̃re f

∣∣∣∣∣∣K̃−1
re f (0)

∣∣∣ and
∥∥∥K̃
∥∥∥ · ∥∥∥K̃(0)

∥∥∥−1
. The ideal

values of these parameters were calculated using (27).

Figure 8. Comparison of transient curves of normalized errors
∥∥∥K̃
∥∥∥ · ∥∥∥K̃(0)

∥∥∥−1
and

∣∣∣K̃re f

∣∣∣∣∣∣K̃−1
re f (0)

∣∣∣.
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As follows from Figures 7 and 8, the developed system estimated the ideal parameters
of the speed controller with sufficient accuracy, which made it possible to significantly
improve the quality of the motor speed control after just one cycle 100–200–100 rad/s of
the setpoint schedule.

3.4. Third Experiment

The setpoint schedule was the same as in the course of the second experiment.
The load torque value was chosen as Mc = 0.04. The inertia moment JΣ value was

doubled in comparison with the nominal one. The parameters γI
2, γP

2 and matrices ΓP, ΓI
were chosen according to (30), whereas the adaptive gains of the adaptive law ûad were
γI

1 = 12× 102, γP
1 = 1.

Figure 9 demonstrates the comparison of the first transient of ω obtained from the
cascade control system: (1) without adaptation—(A), (2) in which the speed controller
parameters were initially calculated under the condition that we knew that the inertia
moment was doubled and Mc = 0.04—(B), (3) with the proposed adaptive laws—(C).

Figure 9. Comparison of transients of motor speed when τe 6= 0, K̂re f (0)−Kre f 6= 0 and K̂(0)−K 6= 0.

The transient curves of
∣∣∣K̃re f

∣∣∣∣∣∣K̃−1
re f (0)

∣∣∣, |ũad|
∣∣∣ũ−1

ad (0)
∣∣∣ and

∥∥∥K̃
∥∥∥ · ∥∥∥K̃(0)

∥∥∥−1
are shown

in Figure 10 (the ideal values were calculated using (27)).

Figure 10. Comparison of transients of normalized errors.

As follows from Figures 9 and 10, the developed system estimated the ideal parameters
of the speed controller and load torque with sufficient accuracy to improve the quality of
the motor speed control.



Computation 2022, 10, 40 13 of 15

4. Conclusions

The adaptive control system of the DC motor speed, which consisted of a PI-controller
with dynamically adjustable parameters and an adaptive compensator for the motor load
torque, was developed in this research. In this system, the proposed reference model
correction method took into account both the boundedness of the control signal and the
unmodeled dynamics of the armature current loop. The obtained adaptive laws allowed
it to meet Popov’s hyperstability criterion for the closed-loop adaptive control system.
The experiments demonstrated that the developed system effectively compensated for the
influence of the load torque and the inertia moment variations on the control quality of the
DC motor speed. The obtained system can be recommended for practical implementation
within a unified industrial thyristor DC drives.
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Appendix A

Proof. To prove Theorem 1, let the equality be considered: 2eT
re f PB = 2eT

re f P̃b

2eT
re f PB0 = 2eT

re f P̃
, P̃ =

[
p12 p22

]T (A1)

where pij is an element of ith row and jth column of the matrix P. Considering (A1), the
left-hand side of (20) is rewritten as:

t∫
0

[
−eT

re f PB
(

K̃e + ũad

)
+ eT

re f PB0K̃re f (ũ + ∆(u))
]
dτ =

t∫
0

[
−K̃eeT

re f P̃b− ũadeT
re f P̃b + K̃re f (ũ + ∆(u))eT

re f P̃
]
dτ

(A2)

Then (21) is integrated and the notions are introduced:

|b|K̃T =
t∫

0
−ΓIeeT

re f P̃bdτ− ΓPeeT
re f P̃b = K̃T

I + K̃T
P ;

|b|ũad =
t∫

0
−γI

1eT
re f P̃bdτ− γP

1 eT
re f P̃b = ũI

ad + ũP
ad;

K̃re f =
t∫

0
γI

2(ũ + ∆(u))eT
re f P̃dτ+ γP

2 (ũ + ∆(u))eT
re f P̃ = K̃ I

re f + K̃P
re f .

(A3)
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Taking into account (A3), (A2) is rewritten:

t∫
0

[
K̃Γ−1

P K̃T
P + 1

γP
1

ũadũP
ad +

1
γP

2
K̃re f K̃P

re f

]
dτ =

=

t∫
0

[
K̃PΓ−1

P K̃T
P +

1
γP

1
ũP

adũP
ad +

1
γP

2
K̃P

re f K̃P
re f

]
dτ

︸ ︷︷ ︸
≥0

+

+
t∫

0

[
K̃IΓ−1

P K̃T
P + ũI

ad
1

γP
1

ũP
ad + K̃ I

re f
1

γP
2

K̃P
re f

]
dτ

(A4)

Let the following notions be introduced for the second integral of the sum in (A4):

ΓIΓ−1
P K̃T

Pdτ = dK̃T
I ;

γI
1

1
γP

1
ũP

addτ = dũI
ad;

γI
2

1
γP

2
K̃P

re f dτ = dK̃ I
re f

(A5)

Considering (A4) and (A5), it is obtained from (20):

t∫
0

[
−eT

re f PB
(

K̃e + ũad

)
+ eT

re f PB0K̃re f (ũ + ∆(u))
]
dτ ≥

≥
t∫

0
K̃IΓ−1

I dK̃T
I +

t∫
0

ũI
ad

1
γI

1
dũI

ad +
t∫

0
K̃ I

re f
1

γI
2
dK̃ I

re f =

= 0. 5
[

K̃I(t)Γ−1
I K̃T

I (t) + ũI
ad(t)

1
γI

1
ũI

ad(t) + K̃ I
re f (t)

1
γI

2
K̃ I

re f (t)−

−K̃I(0)Γ−1
I K̃T

I (0)− ũI
ad(0)

1
γI

1
ũI

ad(0)− K̃ I
re f (0)

1
γI

2
K̃ I

re f (0)

]
︸ ︷︷ ︸

−2ε

≥ −ε

(A6)

which is the required result. The underbraced term in (A6) is denoted as −2ε because
if we choose the initial values of K̃T

I (0), ũI
ad(0), K̃ I

re f (0) to be nonzero and ΓI , γI
1, γI

2 to be

positively defined, then −K̃I(0)Γ−1
I K̃T

I (0) − ũI
ad(0)

1
γI

1
ũI

ad(0) − K̃ I
re f (0)

1
γI

2
K̃ I

re f (0) is below

zero. This value can be defined as −2ε because ε > 0 is an arbitrary constant. The first three
terms are positive semi-definite, so the minimal value of their sum is zero. As a result, the
whole sum is equal or above −ε. �
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