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Abstract: The present investigation analyzes the performance of a Hatz diesel engine that has 912
cubic centimeters (cc), stationary type, two cylinders, an air cooled feature and B10 (90% diesel and
10% palm biodiesel), using a test bench to improve statistically the repeatability and reproducibility of
the runs. The experimental reference tests were carried out under defined conditions at a fixed speed
of 1800 revolutions per minute (rpm) and four load levels: 35%, 50%, 65% and 80%. The repeatability
analysis was based on the technical standard NTC-ISO / IEC17025. The variables of torque, fuel
consumption (FC), air consumption (AC) and exhaust gas temperatures (EGT) showed an increase
related with the load increase, showing a lower variation of AC and emissions. With the mechanism’s
implementation of attenuator of air blows, adjustment mechanism for rpm and preheating air
chamber for intake manifold, it was observed that the rpm presented the lowest statistical variability.
The variables that presented the highest Pearson correlation with respect to the FC are the CO2, NOX

and O2, this is because the engine does not have the Common Rail system, which causes the fuel
supply to not be injected accurately and uniformly, therefore the evaluation of performance of the
engine could not be repeatable.

Keywords: biodiesel; GHG emissions; Hatz diesel engine; palm oil

1. Introduction

Nowadays, energy usage is prodigious, and is a significant key factor for the advancement of a
nation. At the same time, the scarcity of energy has become an economic threat for the development of
nations around the world [1]. The demand for energy has been ever increasing since the establishment
of human society. In recent years, the demand for energy has been steadily increasing due to growth of
population and industrial development. At present, fossil fuels (coal, petroleum, and natural gas) are
the main sources of energy because of their high calorific values, good anti-knocking properties, and
high heating values; meanwhile, reserves are limited. Therefore, the development of renewable and
new energies resources can lower the depletion of fossil fuel by reducing their consumption [1,2]. On the
other hand, the world’s warming condition is increasing every day. Atmospheric CO2 has already
exceeded the dangerous level 10 years earlier than had previously been predicted [3]. Furthermore, the
depletion of fossil fuels and extreme change of climate have driven the search for alternative energies
and renewable energy sources that can meet the world’s energy demand, reduce greenhouse gas
emissions, curb pollution, and maintain the planet’s temperature at a stable level [4].
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In the literature, there is broad consensus that biodiesels and their blends have a direct application
in internal combustion engines. Studies conducted on stationary diesel engines show that biodiesels
can replace conventional diesel fuel and achieve similar engine performance, as an alternative, without
major engine modification [5]. As an alternative fuel biodiesel is the better choice because of the
capability of reducing greenhouse gas emissions. Biodiesel is biodegradable, renewable and non-toxic
which have huge potential to be a part of a sustainable energy mixes in the future [2]. Globally, annual
biodiesel production increased from 7.5 billion liters in 2006 to 35 billion liters in 2016 and biodiesel
consumption is projected to increase from 32,000 million liters in 2016 to 41,000 million liters in 2019 [6].

When we experiment with diesel engines in controlled environments, several situations arise,
which must be considered when analyzing the parameters and the variables of the results obtained
to make sure that the tests results can be treated in a reliable way. A scientific and statistical way
to identify such situations or factors is through the analysis of repeatability and reproducibility
results [7]. Repeatability allows us to determine whether the statistical variation of the measurements
is attributable to the measurement instrument itself, to the observer, to the place and the conditions,
is insignificant or negligible. Therefore, the data obtained will be practically identical [8]. In other
words, it lets us perform the experiment and obtain similar results, minimizing the error attributable to
the mentioned factors.

Reproducibility implies that if the methods, measurement instruments, place and conditions of
the test change, similar measured values will be obtained, since said values should depend solely
on the control or handling of the intrinsic variable to the device, which in this case, are parameters
of a biodiesel engine [9]. The above is relevant to determining the reliability of the instrumentation
used, as well as the results obtained, depending on the conditions under which each of the tests is
carried out [10]. Under identical circumstances, an experiment is expected to present identical, or at
least very similar, results. However, sometimes, when conditions change, results are presented with
significant differences, some attributable to controllable factors, while others may be uncontrolled,
either because they are inherent to the process itself, or due to unavoidable errors because of the
resolution, or the quality of the equipment used. It is at this initial point of experimentation, where
the preliminary analysis of the data obtained must be carried out, with statistical tools, to make the
necessary corrections in the instrumentation, and minimize the significant differences that are present
in the results [11].

Regarding to the interpretation of the information obtained as a result of the experiments allowing
to determine the level of reliability of the results, that is, determine if the data are within the accepted
range statically. If there is variation in the information obtained, this can be attributed to factors such
as: the operator’s equipment, the used equipment, the calibration method equipment, environmental
conditions such as relative humidity, ambient temperature and air composition, among others [12] The
analysis of the results obtained with the instruments of measurement and control, in an experimental
design, allows us to determine the relevance or contribution of the different factors in the variation of
the results. That lets us establish better controls on the factors that cause such changes or variations.

Among the methods for the analysis of repeatability, there is the method of averages and ranges,
which is the method used by the technical standard NTC-ISO / IEC 17025 [13] to ensure the quality
of the results obtained are applicable for laboratory tests, calibration and the degree of equipment
uncertainty. In terms of accuracy, the results of the tests must show values close to the reference value,
in this way, the accuracy of a test method can be determined, expressing it in terms of repeatability of
the experiment. To achieve greater accuracy, and therefore, the repeatability of the test, it is necessary
to maintain the conditions of the factors reasonably constant and controlled, so the contribution of
these variations is minimized, and is not significant for the results variability [14]. Therefore, the
objective is to achieve the setup process reproducible, even if factors like the observer, the measuring
instrument, standard reference, place, time, principle or methods are changed [15].

Given these conditions, if the variability is not significant in the results, then we will have a
repeatable and reproducible experiment, for the parameters of interest. For the repeatability and
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reproducibility analysis, experimentation was carried out with a 912 cc HATZ direct injection diesel
engine, without a stationary Common-Rail system, that is air-cooled and operated under defined
and controlled conditions, in order to determine the variability of the data, and define the level of
reliability of the results. To achieve this, the ANOVA method and the average and range method
were used [16–19], which showed significant statistical variability of the results obtained in the SPSS
software [20].

2. Materials and Methods

The use of biodiesel had showed an increased specific fuel consumption (SFC) when compared
with diesel, and as exceptions some biodiesels feedstock like soybean, sunflower and beef tallow have
shown smaller specific fuel consumption than the diesel. In general, biodiesel used in an engine
generator can replace the diesel without significant losses and provides engine efficiency gains of
2%–4%, while other results have shown that an engine generator that uses soybean and sunflower
biodiesels is more efficient than one that uses diesel oil [21]. The effects of using a biodiesel on engines
like generators and its components is important due to the performance and lifetime of the engine.
Biodiesel can be aggressive when some soft metals like Cu and Pb are included in them as components,
also the buildup of deposits on pistons can be a problem without appropriate maintenance. The use of
B5-B50 can reduce the disadvantages of biodiesels and its negative effects, while increasing advantages
and benefits like lubrication that occur because dilution didn´t impose significant effects on the engine
and its components [22]. Biodiesel presents some disadvantages compared with diesel, like engine
oxidation in some parts, when B100 is greater than the diesel. Also biodiesel has solvent properties
which help to wash out deposits and dissolved materials. For small engines that have prolonged use
in hard conditions, palm oil biodiesel B100 can be efficiently and effectively used as an alternate fuel
for small engines used in mechanical work or as a generator, considering that maintenance is very
important in the long term [23]. Due the negative aspects of using biodiesel in compression engines, it
is necessary to improve the characteristics and physico-chemical properties of these alternative fuels to
reduce their negative effects in engine components [24].

There are several oilseeds such as palm, hazelnut, sunflower, jatropha and castor oil that can
be used to produce biodiesel [25,26]. Palm oil is one of the most commonly used oils worldwide to
produce biodiesel [27]. Due to the geographical areas where the palm grows, we obtained specific
types of palm oil and biodiesel, see Table 1 [28]. Palm oil has demonstrated a viability performance for
combustion engines in diesel-biodiesel mixtures and reasonable results with palm oil [29]. Table 2
shows the properties and composition of the material used for conversion into B10 [30,31]. The fuel
used for the tests was B10 (90% diesel and 10% palm biodiesel) and was acquired from the Texaco
Company in Colombia, where all diesel contains 10% palm biodiesel [32]. The B10 mixture was
characterized by the Laboratory of Petrols of the National University, Medellin, Colombia, obtaining
the physical properties of fuel showed in Table 2, which presents the chemical composition of C15.037

H29.410 O 0.197, 1.2% oxygen weight, and a low calorific power (LCP) of 42.9 (kJ/kg).

Table 1. Properties of B100 and palm oil.

Properties Density at 15 ◦C
gm/ml

Kinematic Viscosity at 40 ◦C
mm2/s Flash Point, ◦C Heating Value

MJ/kg

Method ASTM D1298 ASTM D445 ASTM D92 ASTM D270
B100 0.877 4.56 196 40.56

Palm oil 0.925 41 260 39.849
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Table 2. Biodiesel B10 properties.

Properties B10

Higher calorific power (MJ/kg) 45.4
Lower calorific power (MJ/kg) 42.9

Specific gravity (a 20 ◦C) 0.87
Flash point (◦C) 60

Freezing point (◦C) 23
Cloud point (◦C) 45

Soot (%) 0.001
Cetane number (Cst) 45-50
Viscosity (20 ◦C) (Cst) 4.1
Viscosity (40 ◦C) (Cst) 2.6
Viscosity (60 ◦C) (Cst) 2.046

Viscosity (100 ◦C) (Cst) 1.1

Figure 1 shows the methodology used in the development of the work that was carried out.
This proposal considering that the setup and instrumentation of the engine has not yet been determined
to comply with the requirements of the norm NTC-ISO / IEC 17025 [13]. The methodology was
proposed with a reference test stage to observe the behavior of the measured variables and the mounted
system. Subsequently, the setup phase was established to improve the measurement of the variables
of interest, and finally the validation phase of the improved setup using the statistical method for
repeatability and reproducibility.
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Figure 1. Schematic diagram of experimental methodology.

2.1. Selection of Control Variables

A stationary diesel engine brand HATZ of 912 cc, of two cylinders, direct injection and normal
aspiration, coupled to a hydraulic dynamometer brake made by GO-POWER SYSTEM, was used as
experimental test equipment, the working variables are shown in Table 3.
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Table 3. Variables for the study.

Variable Units

Engine speed Revolutions per minute (rpm)
Torque N-m

Fuel consumption mg/s
Air consumption m3/h

Exhaust gases temperature ◦C
Motor oil temperature ◦C

Carbon monoxide CO
Carbon dioxide CO2
Hydrocarbons HC

Nitrogen oxides NOX
Oxygen O2

The variables used to evaluate the performance were the exhaust gas temperature, engine coolant
temperature, torque measured with the brake, emissions and the engine speed in rpm. The data
obtained with the instrumentation correspond to an engine located in the thermal machine laboratory
of the University of Antioquia, Colombia. The above with the purpose of evaluating the energy
performance of the engine in operation, using biodiesel fuel, and measuring the emissions resulting
from the combustion of the engine. In the combustion process of a diesel engine, there are operating
variables that may or may not be controllable such as engine size, compression ratio, speed, torque, and
fuel type. The regime, torque and type of fuel were controlled as fixed operating conditions, while the
environmental conditions are non-controlled variables, such as temperature and relative humidity [33].

The use of biodiesel in studies has been reported to cause a decrease in CO emissions; the U.S.
Environmental Protection Agency (EPA) showed a nearly 50% reduction of CO emissions for pure
biodiesel [34]. Compared with the petro-diesel, the average reduction of CO emissions was reported to
be 43%, depending on operating conditions [29]. Out of the factors that influence the NOx emissions,
the biodiesel composition is the most remarkable, as well as others such as the flame temperature,
oxygen availability, fuel spray characteristics and engine design. According to a study developed
in Colombia in 2011 by the Colombian-Swiss consortium CUE and financed by the Inter-American
Development Bank (IDB) and the Ministries of Mines and Energy, Agriculture and Rural Development,
as well as the Environment and Sustainable Development (MADS), based in a life cycle analysis, the
Greenhouse Gas (GHG) reduction caused by Colombian palm biodiesel is between 83% and 108% of
emissions compared to fossil fuel, while with the use of current blends, biofuels are contributing to
reduce carbon emissions by 2.5 million tons/year. Between 1990 and 2010, the global transport sector
has emitted 165 million tons to 220 million of GHG, constituting 32.6% of such emissions [35]. It is
necessary to consider the importance of biofuels in a country’s energy matrix, since it contributes
to improving the quality of the fuels consumed in the country when using a higher octane number
of ethanol and cetane palm, which in turn contributes to energy security and the development of
the agricultural sector [36]. The use of biofuels has contributed to the expansion of the agricultural
frontier in the last 15 years, with 165,000 new hectares of crops being used as the raw material for the
processing plants [35].

2.2. Selection of Analysis Method

In order to evaluate the experiment’s repeatability, tests analysis was performed with the
stationary diesel engine while considering analysis of variance (ANOVA). Given that the method must
be appropriate for the type of experiment and the level of precision desired, ANOVA method and the
Pearson correlation were selected, which are suitable to determining the performance, repeatability
and reproducibility (R&R) of an experiment [37].

For ANOVA analysis, a regression model was used, as shown in Table 4. Before improvement,
there were three samples for each of the load cases (35%, 50%, 65% and 80%). After that, the ANOVA
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was performed for the data after improvement in the engine set up, that consisted in twelve experiments
and three samples. The regression ANOVA analysis let us analyze data for each separate variable
and determine the effect of the improvement on each variable [38]. The sum of squares is shown in
Equation (1).

SST = SSR + SS (1)

Table 4. The regression ANOVA.

Source of
Variance

Sum of
Squares

Degrees of
Freedom (df)

Mean Squares
(SS/df) F-ratio (F statistic) Sig.

Regression Regression SS 1 Regression MS F Pr(F>Fobs)
Residual Residual SS N-k Residual MS

Total SST N-1

For the evaluation of the variance (ANOVA) the statistical program SPSS was used, which allows
us to obtain the average values and range of the processed data, and the analysis of variance [39].
For each variable the p VALUE was obtained, and the R&R (repeatability and reproducibility) variability
was determined through the ANOVA, where those p values greater than 0.05 represent the Statistically
Not Significant Difference for a confidence level of 95%, while the p values less than 0.05 represent the
Statistically Significant Difference of the measured values for each variable given a confidence level of
95% [40].

The Pearson correlation analysis allows us to identify the effect of an input variable on an output.
In the case of the Pearson correlation, such a variable can be between −1 and 1; if the data have a
downward trend it has a negative value and if the data have an ascending behavior, the value is
positive [20]. Pearson’s escalation allows the correlation between the variables to be identified, with
values closer to 1/−1 being an indicator of greater correlation and values close to 0 being those with the
lowest correlation.

2.3. Instrumentation

The variables of interest in the experiment were instrumented with the following equipment:
for the consumption of fuel, an electronic balance with precision of 0.1g was used, so that the fuel
consumption was determined by the given period of operation of the engine. To determine the mass
flow of air consumed by the engine for the combustion process, a Thermatel TA2 Mass Flow hot wire
sensor was used [41], as shown in Table 5.

Table 5. Air flowmeter characteristics.

Parameter Measurement Interval (normalized)

Maximum flow range 0.05 to 200 Nm/s air velocity at standard conditions 100 psi
Minimum flow range 0.05 to 2.5 Nm/s air velocity at standard conditions 100 psi

Precision +/−1% Reading
Repeatability +/−0.5% Reading

Working temperature 70 to 40 ◦C

For the measurement of NOx gases, the portable model Horiba EXSA 240cl was used using hot
chemiluminescence as the operating method [42]. This equipment also provides the reading of oxygen
(O2), present in the exhaust stream using an electrochemical cell. The Table 6 show the parameters
of equipment.
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Table 6. Characteristics of the equipment EXSA 240 cl.

Measurement Range 0–2500 ppm

Operating temperature 5 to 45 ◦C
Response time T90 in 30 s

Linearity +/−2% of full scale
Reproducibility +/−0.5% of full scale
Warm-up time 30 min

Analog out 0–1 V

To quantify the CO, CO2, O2 and NO gases, the VL Dicom 400 equipment was used, basically
with two methods: infrared for the detection of CO and CO2 gases, and electrochemical methods for
the O2 and NO gases. Table 7 shows the specific parameters of the equipment [43].

Table 7. Characteristics of the equipment VL Dicom 400.

Measurement Parameters Unit Range Resolution

Turning rate rpm 250 to 800 10
Oil temperature ◦C 1 to 120 1

CO % vol. 0 to 10 0.01
CO2 % vol. 0 to 20 0.1
HC **ppm in vol. 0 to 20000 1
O2 % vol. 0 to 4 and 4 to 22 0.01 0.1
NO **ppm in vol. 0 to 9000 1

Spark advance angle * ◦ of the crankshaft −10 to 100 0.1

* Respect to top dead center; ** Particles per million (ppm).

To measure the engine revolutions, a 60-tooth disc was used, which is coupled to the hydraulic
brake and a Hall Effect electronic sensor with digital screen and resolution of 5 RPM, see Table 8.

Table 8. Equipment operation range.

Parameter Units Measurement Range Resolution

Rotation rpm 250 to 800 * 10
Oil temperature ◦C 1 to 120 * 1

* Respect to upper dead point.

The measurements were acquired using the TONE tool V1.1, which is a virtual instrument
programmed in LABVIEW version 10.0 by the GIMEL Group of the University of Antioquia, as shown
in Figure 2.
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For the initial test of the experimental setting, the conditions of temperature and humidity
(uncontrolled) oscillated between 23–30 ◦C and 43%–85% humidity respectively. To start the testing
bench, a motor heating period of 30–40 min was established in order to have thermal stability of the
motor and brake components [44]. The tests were carried out randomly with respect to the days in
which the measurements were carried out, and in the same way the schedule for the tests was carried
out at different hours of the day. This was done in order to determine the variability of the measured
data under different conditions and achieve the reproducibility of the testing bench [45].

3. Run Test

The test run of the motor, had the objective of showing variables sensitive to uncontrolled
conditions by the testing bench settled up. Table 9 shows the values of the measurements made in the
test run from which we start to adjust the controls of the variables. The test was carried out for load
conditions of 35%, 50%, 65% and 80%, to establish adequate measures to control the factors that affect
the variables. Three measurements were taken using 15 min intervals to identify the factors that affect
the measurements. In Table 7, a direct relationship is observed between the increase in the load and its
effect on the temperature of the combustion gases, torque and fuel consumption.

Table 9. Data of the run test for controls adjustment.

Load Regime (rpm) Torque (Nm) Fuel Air Exhaust
Gases Temp

Oil
Temp NOx CO CO2 O2 HC

Load Desired Measured Desired Measured mg/s N*m3/h ◦C ◦C ppm %
Vol

%
Vol

%
Vol ppm

35%
1800 1805 17.5 17.39 228 123.1 197.26 79 463 0.07 3.4 16.1 33
1800 1820 17.5 18.11 219 120.13 179.27 83 475 0.07 3.8 15.7 39
1800 1812 17.5 17.69 216 120.08 191.46 98 448 0.06 3.7 15.7 38

50%
1800 1815 25 25.20 315 106.24 254.80 93 784 0.05 5.0 13.9 47
1800 1802 25 25.60 298 107.12 252.50 93 774 0.06 5.1 13.9 49
1800 1820 25 25.05 290 110.51 251.50 106 890 0.06 5.3 13.5 31

65%
1800 1811 32 32.01 348 115.08 310.00 104 1061 0.10 6.6 11.6 45
1800 1791 32 32.10 345 109.66 307.00 104 1326 0.12 6.8 11.2 59
1800 1824 32 31.69 356 114.41 313.56 114 1133 0.09 6.5 11.7 44

80%
1800 1787 40 41.50 487 118.87 422.69 111 1485 0.52 9.0 7.9 63
1800 1790 40 41.25 482 119.32 422.11 112 1478 0.52 8.9 8.0 64
1800 1815 40 40.90 488 115.42 424.00 114 1526 0.47 8.9 8.0 72

In Figure 3a–d, the distributions of the data of the initial test with the HATZ engine are shown,
where a relatively small variability is observed given the magnitude that was measured and the scale
of the measured data. Given the ANOVA statistical test, it was obtained that for the set of 12 measured
data, the probability value p = 0.47, therefore p > 0.05 and p < Fcrit where F = 0.92 and Fcrit = 4.06.
This meant that statistically the difference between the measured values was significant, so in terms of
the testing bench, the measurement of the RPM variable is not reliable. There is a direct relationship
between the load that the submitted engine, and the fuel consumption and air flow, as seen in Figure 4.

Given the initial test conditions in Figure 4, it was observed that there is a direct and proportional
correlation between the fuel consumption of the engine and the exhaust temperature of the combustion
gases, as well as the load effect which the engine tested has a direct impact on diesel consumption and
therefore on combustion gases temperatures. It was also observed that the air consumption below 50%
load is relatively high and higher compared to the consumption given a load of 80%, with the optimum
range of lower air consumption between 50% and 65% load. The increase in air consumption for 80%
of the load is due to the demand for energy generated by the load to which the engine is subjected.
The high air consumption for the load of 35% is because the engine is below the efficiency zone (power
vs. fuel consumption).
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Figure 4. Behavior for different loads of the air consumption, fuel consumption and exhaust
gases temperatures.

Figure 5 shows the comparison of the measured values against the desired value of the torque,
however the measurements made show a variability with respect to the reference value, which is not
significant if it is the measurements taken in the same test. The exhaust gas temperature increase in
relation with the load increase and its value is greater than the reported diesel temperature, at about
302 ◦C [28].
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Figure 5. Comparative between desired and measured torque.

In Figure 6a–d, it can be observed that for the behavior of the measured values in each test, the
resulting torque is close to the desired torque for each case (17.5, 25, 32 and 40 Nm respectively). As for
the statistical analysis of the torque variable, we determined that p = 9× 10−13 so, since this value is
much lower than the value 0.05, it is determined that the variations in the data in general are significant
differences, which agrees with the variation of the load to which the engine is subjected, confirming
the change of the torque variable according to the loads applied to the engine of 35%, 50%, 65% and
80% respectively.
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Figure 7 shows a trend of increase in NOx and HC emissions, with respect to the increase in motor
power demand. The NOx emissions are more than 1500 ppm for 80% load, which means that these
emissions are greater than conventional diesel [28].Sustainability 2019, 11, x FOR PEER REVIEW 12 of 28 
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Figure 7. Emissions NOx and HC vs load applied.

The Figure 8 indicates an increase in the emission of CO and CO2 when operating the engine
under a constant regime and increases the loads, the O2 decreases due the increasing of power demand
and the greater demand of fuel necessary to release the required power, the chemical balance shows
that the combustion process requires a greater amount of O2.
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Figure 8. Emissions CO, CO2 and O2 Vs load.

Control Mechanisms

The improvement that was implemented the measurement of the variables in the test bench, was
to evaluate and analyze the performance of the engine working under a constant regime of 2200 rpm
and torque of 25 Nm. Based on the results of the initial test, the control of the engine cooling regime,
load and air variables was improved, through the incorporation of control and adjustment mechanisms.
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In the measurement of air consumption for combustion, an attenuator of air blows was implemented,
which were caused by the combustion process shown in Figure 9. A manual mechanism was also
implemented to regulate the increase in the regime as shown in Figure 10, the feed air temperature of
the inlet manifold was controlled in a preheating chamber by means of a regulated electric resistance
at 30 ◦C as shown in Figure 11, to control the intake air temperature, due to the ambient temperature
and relative humidity being relevant for the engine performance determination [46].
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The air feeder attenuator chamber has the function of providing a constant velocity air supply,
avoiding the acceleration of the air inlet-outlet due to the vacuum caused by the piston in the combustion
chamber [47,48]. The throttle speed adjustment mechanism consists of a threading axle with fine pitch
that provides more precise manual control of the throttle advance because it moves the position of
the throttle with respect to the pitch of the thread. The air preheating chamber has the function of
heating and maintaining the air entering the engine intake manifold at a constant temperature, using
an electrical resistance to achieve a stable temperature of 30 ◦C at the time of entering the engine
combustion chamber with the purpose of improving the control and reducing the effect on the output
variables [49,50].

4. Experimental Design

For the experimental design of the test bench that was improved with the control mechanisms, it
was determined to work under two control parameters to make the measurements of the variables
of interest: the engine speed (RPM) is the first condition to fulfill and the second is the torque, in
order to obtain the measurements under these same conditions of operation for the values of 2200
RPM and 25 Nm. For each of the 12 tests performed, three measurements were taken at 15-minute
intervals while maintaining the same operating conditions. For the case of ambient temperature and
relative humidity, they were recorded for each experiment only as a reference, since they are factors
that were not controlled. The cooling air temperature of the engine was maintained at 30 ◦C, thus
preserving a constant temperature in the cooling air supply of the engine. The tests were performed
randomly at different times and different days, in order to ensure that the experiment was repeatable
and reproducible. Some variables were considered as constants and therefore repeatable as; the internal
energy of the fuel, the type of fuel, the points of operation (torque and rpm). All the experiments were
carried out in the same motor and with the same instrumentation, in order to establish the performance
of the testing bench, from the measurements of the variables and validate these data by means of the
statistical evaluation of the experiments carried out.

Experimental Test

The tests performed once the engine was improved were made looking for 2200 RPM and torque
of 25 Nm, conditions that were controlled as best as possible. The factor of ambient temperature and
relative humidity were not controlled, since the objective of the testing bench is to overcome the effects
of these variables. Of the variables of interest, the temperature of the exhaust gases shows a direct
relationship with the quantity of fuel consumed by the engine as shown in Figure 12, where the direct
relationship of each of the runs and of each set of measurements made is highlighted. In most tests, the
behavior of their measurement set obeys the same behavior in relation to exhaust gases temperature
and fuel consumption.

In Figure 13a,b, the dispersion of the measured values was observed, in relation to the torque
which was set at 25 Nm and set at 2200 RPM. Figure 13a shows a range of values between 250−425 mg/s
of fuel consumption for a torque range between 24 and 26 Nm. Figure 13b shows the fuel consumption
in the range of 2199−2201 RPM, limiting the variation in ± 1 RPM with respect to the desired value of
2200 RPM. In the graphs of fuel consumption (Figure 13a,b) and exhaust gas temperature (Figure 15a,b),
a relatively dispersed behavior of the measured values was observed, however the precision of the
control mechanisms is reflected in this variability. As a consequence of the torque and rpm variation,
the fuel consumption is directly affected, due to the engine power demand that makes it difficult to
maintain the rpm and torque.
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Figure 12. Measured values of the fuel consumption and exhaust gases temperature after the improved
engine set up.
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Figure 13. Fuel consumption behavior. (a) Fuel consumption vs torque; (b) Fuel consumption vs RPM.

Figure 14a,b show the dispersion of the measured air consumption for the torque set at 25 Nm.
The air consumption observed indicated that it is not affected by the torque or rpm, and the variation
is caused mainly by lacking precise control, which cannot be easily implemented.

The air consumption in Figure 14a presents a variation between 60–70 m3, which with respect to
torque represents a reduced apparent variation, grouping the values to a greater extent between 24.5
and 25.5 Nm, that is, a range ± 0.5 with respect to the torque of reference of 25 Nm. In Figure 14b,
a variation with respect to the RPM is grouped between 2199 and 2201 RPM. Figure 15a,b show the
dispersion of the measured values, which are the temperature of exhaust gases with respect to torque
and RPM. The dispersion of the combustion gas temperature values shown in Figure 15a is relevant,
given that it ranges between 200–350 ◦C under the engine operating range between 24 and 26 Nm of
torque. In Figure 15b the gases temperature dispersion with respect to the RPM is between 2199 and
2203 RPM, although most of the values are grouped between 2199 and 2201 RPM.
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Figure 14. Air consumption behavior. (a) Air consumption vs torque; (b) Air consumption vs RPM.
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Figure 15. Gases temperature behavior. (a) Exhaust gases temperature vs torque; (b) Exhaust gases
temperature vs RPM.

In Figure 16a,b, the oil temperature shows a less dispersed behavior of the measured values,
due to the improvements made in the testing bench of the engine through the control mechanisms
becoming more accurate, which reduces the variation in the measured data. The variation and behavior
of the rpm and torque is caused by the engine operation principle itself, which was set to operate at
25 Nm and 2200 rpm, which cannot be maintained with enough accuracy.

Figure 17a,b shows the minimum dispersion of the CO data with relation to the torque, but the
CO with respect to the RPM has a negligible variation. Figure 18a,b show that the dispersion of data
from the CO2 graph with the torque is greater than the rpm. Figure 19a,b, show that the emission of O2

presents a moderate dispersion with respect to torque and rpm. Figure 20a,b and Figure 21a,b show
that the HC and NOx are the emissions that have a greater dispersion with respect to torque and rpm.
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Figure 16. Oil temperature behavior. (a) Oil temperature vs torque; (b) Oil temperature vs RPM.
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Figure 18. CO2 emissions behavior. (a) Dispersion data of the torque vs CO2; (b) Dispersion data of
the RPM vs CO2.
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Figure 19. O2 Emissions behavior. (a) Dispersion data of the torque vs O2; (b) Dispersion data of the
RPM vs O2.

Sustainability 2019, 11, x FOR PEER REVIEW 18 of 28 

 
 

 
(a) (b) 

Figure 18. CO2 emissions behavior. (a) Dispersion data of the torque vs CO2; (b) Dispersion data of 
the RPM vs CO2. 

 
(a) (b) 

Figure 19. O2 Emissions behavior. (a) Dispersion data of the torque vs O2; (b) Dispersion data of the 
RPM vs O2. 

 
(a) (b) 

Figure 20. HC emissions behavior. (a) Dispersion data of the torque vs HC; (b) Dispersion data of the 
RPM vs HC. 

2

3

4

5

6

7

8

24 24.5 25 25.5 26 26.5

%
vo

l

Torque

CO2 (%vol)

2

3

4

5

6

7

8

2198 2200 2202 2204

%
vo

l

RPM

CO2 (%vol)

10

11

12

13

14

15

16

17

18

24 24.5 25 25.5 26 26.5

%
vo

l

Torque (Nm)

O2

10

11

12

13

14

15

16

17

18

2198 2200 2202 2204

%
vo

l

RPM

O2

0

10

20

30

40

50

60

24 25 26 27

pp
m

Torque (Nm)

HC

0

10

20

30

40

50

60

2198 2200 2202 2204

pp
m

RPM

HC

Figure 20. HC emissions behavior. (a) Dispersion data of the torque vs HC; (b) Dispersion data of the
RPM vs HC.
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Figure 21. NOx emissions behavior. (a) Dispersion data of the torque vs NOX; (b) Dispersion data of
the RPM vs NOX.
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The one factor ANOVA analysis shown in Table 10 allowed us to observe that the variability
of measured data show a significant difference of the statistical means in most of the variables.
A probabilistic value p > 0.05 and Fcrit < F was only obtained in the case of CO and RPM, meaning the
information is statistically reliable only for those variables.

Table 10. One factor ANOVA results.

F value P value Fcrit

CO (%vol) 2.016 0.073 2.216
CO2 (%vol) 12.749 1.687 × 10 −7 2. 216
O2 (%vol) 13.336 1.091 × 10 −7 2. 216
HC (ppm) 3.063 0.010 2. 216

NOx (ppm) 19.325 2.607 × 10 −9 2. 216
TORQUE (N.m) 4.655 7.988 × 10 −4 2. 216

RPM 0.632 0.784 2. 216
GAS TEMP (◦C) 68.026 2.430× 10 −15 2. 216

AIR CONSUM (m3/h) 48.692 1.102× 10 −13 2. 216
EXHAUST GASES TEMP (◦C) 50.680 7.009× 10 −14 2. 216

OIL TEMP (◦C) 7.316 2.531× 10 −5 2. 216

5. Results

A diesel engine was run using Diesel B10 and a biodiesel made of palm oil. Exhaust emissions
were examined at different engine torques of 17.5 Nm to 40 Nm and a constant engine speed of
1800 rpm. Exhaust emissions such as CO, CO2, NOx, HC and O2 emissions were examined and
compared. A comparison of fuel consumption costs was also made for each of the aforementioned
tests, considering the current prices in Colombia for diesel of 2.73 USD/gal, and biodiesel prices of
3.2 USD/gal and B10 2.85 USD/gal for May 2019 [35]. Figure 22 shows that diesel presents a lower
cost, followed by mixture B10. Meanwhile, CO2, CO and HC emissions were lower for the tested
mixture B10 as compared to diesel fuel, but nevertheless NOX emissions from biodiesel mixture B10
increased compared with diesel fuel. The obtained results were compared with previous results of
other authors [51–54], and showed accepted conformity.
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For the case of independent variables; fuel consumption, exhaust gas temperature and air
consumption, the performance of a combustion engine can be correlated by the behavior of fuel
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consumption and the emissions generated. The multivariate ANOVA analysis related the variables of
emissions and the variables of fuel consumption, air consumption and exhaust gas temperature.

The correlation Table 11 shows that in relation to fuel consumption, there is a strong correlation
with the variables resulting from combustion emissions, specifically for CO2, O2 and NOx greater than
0.7, while HC have a medium correlation and emissions of CO have a low correlation of 0.278. This
means the amount of CO2, O2 and NOx emissions produced by the combustion of biodiesel in the
engine depends on the chemical characteristics and the amount of fuel.

Table 11. Pearson Correlation of FC.

Fuelcons CO CO2 O2 HC NOx

Fuelcons 1.000 0.278 0.791 −0.768 −0.542 0.720

CO 0.278 1.000 0.532 −0.538 0.155 0.466

CO2 0.791 0.532 1.000 −0.994 −0.392 0.972

O2 −0.768 −0.538 −0.994 1.000 0.351 −0.972

HC −0.542 0.155 −0.392 0.351 1.000 −0.437

NOx 0.720 0.466 0.972 −0.972 −0.437 1.000

In relation to the significance of change in F of the change statistic (Table 12), small values are
observed where the CO2 is practically zero, indicating a good adjustment. For the value of significance
in the ANOVA Table 13, CO2, O2 and NOx are 0.000, which indicates that the lineal relation of the data
is significant.

Table 12. FC statistic change.

Model R
R

Square
R Adjusted

Square
Standard Error
of the Estimate

Statistic change

Change in
R Square

Change
in F df1 df2 Sig.

change in F

1 0.791a 0.625 0.614 27.341 0.625 56.662 1 34 0.000
2 0.830b 0.689 0.670 25.275 0.064 6.786 1 33 0.014
3 0.876c 0.768 0.746 22.188 0.079 10.819 1 32 0.002

Table 13. Regression ANOVA for FC.

Model Sum of
square df Mean

squares F Sig.

1
Regression 42357.948 1 42357.948 56.662 0.000b

Residue 25416.940 34 747.557
Total 67774.889 35

2
Regression 46693.167 2 23346.583 36.545 0.000c

Residue 21081.722 33 638.840
Total 67774.889 35

3
Regression 52019.993 3 17339.998 35.220 0.000d

Residue 15754.896 32 492.340
Total 67774.889 35

b: CO2, c: CO2, HC, d: CO2, HC, NOx

Figure 23 shows the relationship with fuel consumption and the emissions generated from its
combustion, there is an upward trend which means a positive relationship. It is observed that the
relationship and distribution of the data in the scatter plot is quite adjusted, confirming the level of
correlation between the variables. The relationship with fuel consumption and the emissions generated
from its combustion, has an upward trend which means a positive relationship. It is observed that the
relationship and distribution of the data in the scatter plot approximates the adjustment of the linear
function, confirming the level of correlation between the variables.
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The correlation Table 14 of the temperature of the combustion gases obeys the same behavior
observed in fuel consumption, meaning there is a strong correlation that is higher than 0.8 between
emissions of CO2, O2 and NOx with the temperature of combustion gases. It is noted that the correlation
with O2 is negative trend, this means that when increasing fuel consumption, there is an increase in
the temperature of emission gases and consequently the O2 emitted is reduced as more is consumed
for combustion.

Table 14. Correlations for temperature of combustion gases.

TempGases CO CO2 O2 HC NOx

Pearson
correlation

TempGases 1.000 0.424 0.857 −0.847 −0.497 0.870
CO 0.424 1.000 0.532 −0.538 0.155 0.466
CO2 0.857 0.532 1.000 −0.994 −0.392 0.972
O2 −0.847 −0.538 −0.994 1.000 0.351 −0.972
HC −0.497 0.155 −0.392 0.351 1.000 −0.437

NOx 0.870 0.466 0.972 −0.972 −0.437 1.000

In Table 15, a statistical change for NOx and a negligible change in F is observed, and in the ANOVA
analysis shown in Table 16, the significance value is less than 0.000, which indicates a significant lineal
relation of the NOx emission values.

Table 15. Statistic change of gas temperatures.

Model R
R

Square
R Adjusted

Square
Standard Error
of the Estimate

Statistic Change

Change in R
Square

Change
in F df1 df2 Sig. Change

in F

1 0.870a 0.756 0.749 15.553 0.756 105.365 1 34 0.000

Table 16. Regression ANOVA of gas temperature.

Model Sum of Square df Mean Squares F Sig.

1
Regression 25489.332 1 25489.332 105.365 0.000b

Residue 8225.135 34 241.916
Total 33714.467 35

b: NOx
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Figure 24 shows the dispersion graph of the temperature of gases and emissions. There is a positive
trend and little variability of the data with adjustment in the trend line for the case of air consumption.
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The correlation between the air consumption and the emissions generated is shown in Table 17,
where values lower than 0.5 means a low correlation, due to the efficiency of the combustion process
which takes advantage of the excess of air depending on the constant engine speed (RPM).

Table 17. Pearson correlations air consume.

Aircons CO CO2 O2 HC NOx

Aircons 1.000 −0.138 −0.294 0.284 0.447 −0.441
CO −0.138 1.000 0.532 −0.538 0.155 0.466
CO2 −0.294 0.532 1.000 −0.994 −0.392 0.972
O2 0.284 −0.538 −0.994 1.000 0.351 −0.972
HC 0.447 0.155 −0.392 0.351 1.000 −0.437

NOx −0.441 0.466 0.972 −0.972 −0.437 1.000

The greatest correlation that is presented with 0.447 is with the HC, which is still low. In the
Table 18 showing change statistics, the significance of change of F is small, while ANOVA analysis
presented in Table 19 shows a significance level of 0.006, indicating significant lineal relation of the data.
Therefore, the correlation of air consumption remains constant in a combustion system at constant
speed, in addition to the fact that the engine itself has a good level of efficiency.

Table 18. Statistic of change of air consumption.

Model R
R

Square
R Sum of

Square
Standard Error
of the Estimate

Statistic Change

Change in
R Square

Change
in F df1 df2 Sig. Change

in F

1 0.447a 0.200 0.177 1.566 0.200 8.509 1 34 0.006
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Table 19. Regression of ANOVA of air consumption.

Model Sum of
Square df Mean

Squares F Sig.

1
Regression 20.882 1 20.882 8.509 0.006b

Residue 83.440 34 2.454
Total 104.321 35
b: HC

In the case of air consumption shown in Figure 25, no clear adjustment to the trend line is observed,
therefore a very low correlation between the variables is confirmed due to the air consumption obeying
the constant regime that the data were subjected to.Sustainability 2019, 11, x FOR PEER REVIEW 24 of 28 
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6. Conclusions

• From the initial measurements with the test bench where the performance evaluation of the engine
was performed using diesel-biodiesel mixture working under the conditions of 1800 rpm and
a load percentage of 35%, 50%, 65% and 80%, it was determined that the statistical means of
the data presented differences in the analysis ANOVA p = 0.47, therefore p > 0.05 and p < Fcrit
where F = 0.92 and Fcrit = 4.06 establish that the measured values have no significant relationship
and significative variation of the data. This is due to the increase in temperature inside the
cylinder, allowing the engine to get closer to the area of lower consumption or higher performance.
However, at low speed the fuel consumption increases due to the higher rate of heat transfer
through the walls.

• The implementation of the mechanisms of attenuator of air blows, adjustment mechanism for
rpm and preheating air chamber for intake manifold allowed us to improve the bench of tests
and improve the measurement of the variables fuel, air, oil temperature, exhaust gas temperature
and torque. Emissions were statistically significant with values p < 0.05 and only the rpm with
p = 0.784 showed a statistically insignificant value. These results were due to the instability in the
combustion of the 912 cc HATZ engine.
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• This HATZ engine does not have the common rail system, which is an electronic system of fuel
injection, which supplies diesel by using a high-pressure pump to a common duct where all the
injectors are connected. Therefore, the mechanical improvements reduced the variability in the
measured data. This did not guarantee the statistical reproducibility of the experiment, but did
obtain repeatability in the test.

• The ANOVA analysis of multiple linear regression and Pearson correlation allowed for identifying
the emissions variables with the highest correlation in the FC, CO2 = 0.791, O2 = −0.768 and
NOx = 0.72 indicating high correlation and a significant linear relationship; the air consumption
with HC = 0.447 and NOx = −0.441 showed a medium correlation with CO, while showing a
very low correlation with CO2 and O2 variables. For the gas temperatures with CO2 = 0.857,
O2 = −0.847 and NOx = 0.870, NOx is the only variable that has a significant linear relationship
with the temperature of the gases.

• The elements used in the improvement of the test bench allow better control over the variables
of interest to determine the performance of the engine. Humidity and temperature were only
partially controlled, which affects the statistical result. These experiments were conducted order
to determine the performance of diesel-biodiesel engines reliably and accurately in Colombia,
where palm oil is produced as an energy product.
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