Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,552)

Search Parameters:
Keywords = load influence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 26312 KB  
Article
Experimental Study on the Damage Mechanism of Reinforced Concrete Shear Walls Under Internal Explosion
by Hongkun Shang, Weiqi Guo, Youhao Li, Wenqiang Pang and Hongxu Liu
Appl. Sci. 2026, 16(1), 48; https://doi.org/10.3390/app16010048 (registering DOI) - 19 Dec 2025
Abstract
Reinforced concrete shear wall structures (RCSWs) are commonly used as explosion-resistant chambers for storing hazardous chemical materials and housing high-pressure reaction equipment, serving to isolate blast waves and prevent chain reactions. In this study, full-scale experiments and numerical simulations were conducted to investigate [...] Read more.
Reinforced concrete shear wall structures (RCSWs) are commonly used as explosion-resistant chambers for storing hazardous chemical materials and housing high-pressure reaction equipment, serving to isolate blast waves and prevent chain reactions. In this study, full-scale experiments and numerical simulations were conducted to investigate the blast resistance of RC shear wall protective structures subjected to internal explosions. A full-scale RC shear wall structure measuring 9.7 m × 8 m × 6.95 m with a wall thickness of 0.8 m was constructed, and an internal detonation equivalent to 200 kg of TNT was initiated to simulate the extreme loading conditions that may occur in explosion control chambers. Based on experimental data analysis and numerical simulation results, the damage mechanisms and dynamic response characteristics of the structure were clarified. The results indicate that under internal explosions, severe damage first occurs at the wall–joint regions, primarily exhibiting through-thickness shear cracking near the supports. The structural damage process can be divided into two stages: local response and global response. Using validated finite element models, a parametric study was carried out to determine the influence of TNT charge weight and reinforcement configuration on the structural dynamic response. The findings of this research provide theoretical references for the design and strengthening of blast-resistant structures. Full article
(This article belongs to the Section Civil Engineering)
17 pages, 1605 KB  
Article
Inverse Dynamics Analysis of Knee Joint Kinetics During Squatting: A Cross-Sectional Comparative Study Between Native Healthy Knees and Posterior-Stabilized Total Knee Arthroplasty
by Kasiwat Chaiyasit, Chotchuang Phombut and Supakit Rooppakhun
Technologies 2026, 14(1), 2; https://doi.org/10.3390/technologies14010002 - 19 Dec 2025
Abstract
A biomechanical evaluation of knee loading during squatting is essential for understanding functional capacity after total knee arthroplasty (TKA). This study compares knee joint kinetics in healthy native knees and in posterior-stabilized TKA (PS-TKA) across BMI categories using 3D motion capture and inverse [...] Read more.
A biomechanical evaluation of knee loading during squatting is essential for understanding functional capacity after total knee arthroplasty (TKA). This study compares knee joint kinetics in healthy native knees and in posterior-stabilized TKA (PS-TKA) across BMI categories using 3D motion capture and inverse dynamics. Sixty-two knees (31 healthy, 31 PS-TKA) were analyzed. Native knees demonstrated greater flexion capacity and higher joint loading than PS-TKA knees. Peak resultant joint forces reached 3.50 ± 1.00 BW in healthy knees compared with 2.90 ± 1.20 BW in PS-TKA knees. Healthy knees also generated higher joint moments, with maximum adduction and rotation moments of 5.07% BW × height and 1.29% BW × height, respectively. Body mass index (BMI) significantly influenced loading patterns in native knees, increasing anterior–posterior forces, quadriceps demand, and resultant moments, whereas loading in PS-TKA knees showed minimal BMI dependence. These findings highlight fundamental biomechanical differences between native and prosthetic knees and provide population-specific insights relevant to rehabilitation and high-flexion activities common in Asian populations. Full article
25 pages, 7772 KB  
Article
Stiffness and Deformation Limit Performance of PC Beams Reinforced with Steel Sections
by Dan Wu, Siqi Yang, Lu Li, Ruifan Yang, Weiwei Luo and Chun Lv
Buildings 2026, 16(1), 16; https://doi.org/10.3390/buildings16010016 - 19 Dec 2025
Abstract
The prestressed steel-reinforced concrete beam (PSRCB) is a new type of composite beam developed by placing and tensioning prestressed tendons within ordinary steel-reinforced concrete beams (SRCBs). This type of beam combines the multiple advantages of steel, concrete, and prestressed reinforced concrete (PC) beams. [...] Read more.
The prestressed steel-reinforced concrete beam (PSRCB) is a new type of composite beam developed by placing and tensioning prestressed tendons within ordinary steel-reinforced concrete beams (SRCBs). This type of beam combines the multiple advantages of steel, concrete, and prestressed reinforced concrete (PC) beams. It has high rigidity, high load-bearing capacity, small deformation, and good seismic performance. Compared to conventional SRCBs, PSRCBs have their own characteristics, and especially research on their stiffness and deformation has not been systematically reported. To investigate the stiffness and deformation resistance of PSRCBs, the design, fabrication, and loading tests of five PSRCBs were carried out, and relevant test data were obtained. By analyzing the test data, the calculation equation for the normal section stiffness of this type of composite beam was proposed. The stiffness of the PSRCB can be taken as the sum of the stiffness of the prestressed concrete beam and that of the built-in steel beam. Meanwhile, the calculation equations for the short-term stiffness of the PSRCB under the standard combination of load effects and the stiffness of the PSRCB considering the long-term influence of loads are obtained. Full article
(This article belongs to the Section Building Structures)
19 pages, 1753 KB  
Article
Stability Analysis Approach to Block Toppling in Rock Slopes Under Seismic Loads
by Kai Fan, Caihua Liu and Chaoyi Sun
Appl. Sci. 2026, 16(1), 22; https://doi.org/10.3390/app16010022 - 19 Dec 2025
Abstract
Rock slope toppling failure is a typical type of slope disaster. It is crucial for engineering practice to quickly and accurately evaluate the toppling stability of rock slopes under seismic loads. Based on Liu’s pseudo-continuous medium method, the geomechanical model for evaluating the [...] Read more.
Rock slope toppling failure is a typical type of slope disaster. It is crucial for engineering practice to quickly and accurately evaluate the toppling stability of rock slopes under seismic loads. Based on Liu’s pseudo-continuous medium method, the geomechanical model for evaluating the stability of rock slope block toppling subjected to seismic loads, considering non-orthogonal characteristics of the structural planes, is established, and the analytical solution for toppling failure is proposed. The relationship between the normal and shear stresses acting at the block base is discussed, and the formula for determining the location of the failure mode transition point in different cases is deduced. Through programmed analysis, the impact of the seismic load on slope stability and the influence of key parameters on the critical seismic influence coefficient are systematically investigated. The research results indicate that the seismic load has a significant impact on slope stability. With increases in the seismic influence coefficient, or decreases in the angle between the seismic load and the horizontal plane, the supporting force required for slope stability increases, and the transition point from toppling to sliding moves towards the slope toe. It is also shown that, when the seismic influence coefficient reaches the critical value, the slope will slide as a whole without toppling. The value of the critical seismic influence coefficient is positively correlated with the internal friction angle of the block base, and negatively correlated with the direction of the seismic load, the internal friction angle of the block side and the dip angle of the block base. This study provides theoretical support for evaluating the block toppling stability of slopes in seismic-prone areas. Full article
15 pages, 4175 KB  
Article
Low-Frequency Transient Model of Single-Phase Four-Limb Converter Transformer Considering the Nonlinear Excitation Characteristics of the Iron Core
by Xichen Pei, Lan Xiong, Zhanlong Zhang, Zijian Dong, Yu Yang, Jiatai Gao and Tao Feng
Appl. Sci. 2026, 16(1), 16; https://doi.org/10.3390/app16010016 - 19 Dec 2025
Abstract
Transformer modeling is a crucial method for analyzing transient phenomena such as inrush currents. The primary characteristic of a transformer transient model is its ability to reflect how the transformer’s structure and material properties influence the magnetic and electric fields. In high-voltage direct [...] Read more.
Transformer modeling is a crucial method for analyzing transient phenomena such as inrush currents. The primary characteristic of a transformer transient model is its ability to reflect how the transformer’s structure and material properties influence the magnetic and electric fields. In high-voltage direct current (HVDC), the single-phase converter adopts a double-core-limb and double-side-limb configuration, whose core structure, magnetic flux distribution, and ferromagnetic materials differ from conventional power transformers. This paper conducts research on low-frequency transient modeling of single-phase four-limb converter transformers. This study first determines the magnetic field distribution of the single-phase converter transformer with the inclusion of leakage flux. Subsequently, a corresponding model is derived from the principle of duality. Due to the laminated structure, the iron core exhibits different excitation characteristics from those of a single silicon steel sheet. For the excitation branch, AC-DC hybrid excitation is used to measure incremental excitation inductance and the nonlinear excitation curve is calculated based on this inductance. Furthermore, the allocation method of this curve in the core limb, side limb, and yoke is proposed to establish the converter transformer model. The results of no-load and inrush current tests based on the scaled model validate the effectiveness of this model, which can accurately calculate the inrush current under different remanence and closing conditions. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

21 pages, 9280 KB  
Article
The Characterization of the Installation Effects on the Flow and Sound Field of Automotive Cooling Modules
by Tayyab Akhtar, Safouane Tebib, Stéphane Moreau and Manuel Henner
Int. J. Turbomach. Propuls. Power 2026, 11(1), 1; https://doi.org/10.3390/ijtpp11010001 - 19 Dec 2025
Abstract
This study investigates the aerodynamic and aeroacoustics behavior of automotive cooling modules in both conventional internal combustion engine (ICE) vehicles and electric vehicles (EVs), with a particular focus on installation effects. Numerical simulations based on the Lattice Boltzmann Method (LBM) are conducted to [...] Read more.
This study investigates the aerodynamic and aeroacoustics behavior of automotive cooling modules in both conventional internal combustion engine (ICE) vehicles and electric vehicles (EVs), with a particular focus on installation effects. Numerical simulations based on the Lattice Boltzmann Method (LBM) are conducted to analyze noise generation mechanisms and flow characteristics across four configurations. The study highlights the challenges of adapting classical cooling module components to EV setups, emphasizing the influence of heat exchanger (HE) placement and duct geometry on noise levels and flow dynamics. The results show that the presence of the HE smooths the upstream flow, improves rotor loading distribution and disrupts long, coherent vortical structures, thereby reducing tonal noise. However, the additional resistance introduced by the HE leads to increased rotor loading and enhanced leakage flow through the shroud-rotor gap. Despite these effects, the overall sound pressure level (OASPL) remains largely unchanged, maintaining a similar magnitude and dipolar directivity pattern as the configuration without the HE. In EV modules, the inclusion of ducts introduces significant flow disturbances and localized pressure fluctuations, leading to regions of high flow rate and rotor loading. These non-uniform flow conditions excite duct modes, resulting in troughs and humps in the acoustic spectrum and potentially causing resonance at the blade-passing frequency, which increases the amplitude in the lower frequency range. Analysis of the loading force components reveals that rotor loading is primarily driven by thrust forces, while duct loading is dominated by lateral forces. Across all configurations, fluctuations at the leading and trailing edges of the rotor are observed, originating from the blade tip and extending to approximately mid-span. These fluctuations are more pronounced in the EV module, identifying it as the dominant source of pressure disturbances. The numerical results are validated against experimental data obtained in the anechoic chamber at the University of Sherbrooke and show good agreement. The relative trends are accurately predicted at lower frequencies, with slight over-prediction, and closely match the experimental data at mid-frequencies. Full article
(This article belongs to the Special Issue Advances in Industrial Fan Technologies)
21 pages, 13790 KB  
Article
Tailoring Microstructure and Properties of CoCrNiAlTiNb High-Entropy Alloy Coatings via Laser Power Control During Laser Cladding
by Zhe Zhang, Yue Yu, Xiaoming Chen, Li Fu, Xin Wei, Wenyuan Zhang, Zhao Dong, Mingming Wang, Tuo Wang and Xidong Hui
Materials 2026, 19(1), 5; https://doi.org/10.3390/ma19010005 - 19 Dec 2025
Abstract
To enhance the operational damage resistance of hydraulic machinery, this study employed laser cladding technology to fabricate a Co37.4Cr30Ni20Al5Ti5Nb2.6 high-entropy alloy coating on 04Cr13Ni5Mo substrate. The influence of [...] Read more.
To enhance the operational damage resistance of hydraulic machinery, this study employed laser cladding technology to fabricate a Co37.4Cr30Ni20Al5Ti5Nb2.6 high-entropy alloy coating on 04Cr13Ni5Mo substrate. The influence of laser power on the microstructure and properties of the coating was systematically investigated. Based on preliminary research, the friction-wear performance and cavitation erosion behavior of the coatings prepared at 3000 W, 3200 W, and 3400 W were specifically examined. Results indicate that as the laser power increased from 3000 W to 3400 W, the microhardness of the coating gradually decreased from 345.3 HV0.2. At 3000 W, the precipitation of trace strengthening phases significantly enhanced the mechanical properties. In wear tests under a 20 N load for 30 min, the wear rate of the coating prepared at 3000 W was 1.41 × 10−4 mm3/(N·m), which is 13.5% lower than that of the 3200 W coating (1.63 × 10−4 mm3/(N·m)) and 16.07% higher in wear resistance compared to the substrate. Cavitation erosion tests revealed that after 20 h of ultrasonic vibration, the mass loss of the 3000 W coating was only 2.35 mg, representing an 88.89% reduction compared to the substrate (21.15 mg), and significantly lower than that of the 3200 W (4.57 mg) and 3400 W (3.85 mg) coatings. This study demonstrates that precise control of laser power can effectively optimize the cavitation erosion resistance of high-entropy alloy coatings, providing technical support for their application in harsh environments. Full article
Show Figures

Figure 1

25 pages, 3627 KB  
Review
Structural Performance of Semi-Rigid Beam-to-Column Connections in Steel Storage Racks: A Review Focused on FEM Analysis
by Mirjana Piskulic, Rodoljub Vujanac, Snezana Vulović, Nenad Miloradovic, Mirko Blagojevic and Zorica Djordjevic
Metals 2026, 16(1), 2; https://doi.org/10.3390/met16010002 - 19 Dec 2025
Abstract
In practical applications, steel storage racks include a wide range of beam-to-column connections (BCCs), which have a significant impact on their structural stability, particularly under various loading conditions. This systematic review focuses on the application of the finite element method (FEM) as a [...] Read more.
In practical applications, steel storage racks include a wide range of beam-to-column connections (BCCs), which have a significant impact on their structural stability, particularly under various loading conditions. This systematic review focuses on the application of the finite element method (FEM) as a complementary tool to evaluate the mechanical behavior of these connections. Key parameters that influence connection performance include the connector’s class and hook configuration, column thickness, beam height and weld position on the connector. Although the Eurocode 3 standard provides design guidelines for connections, experimental testing remains the most reliable method due to the complexity of semi-rigid connections, particularly in the context of pallet racks. Validated FEM analysis emerges as a dependable and cost-effective alternative to experiments, enabling more detailed parametric studies and improving the prediction of structural response. This review focuses on the advantages of FEM integration into design workflows via quantitative synthesis, while also emphasizing the role of contact formulations in modeling accuracy. To establish FEM as an independent predictive tool for the design and optimization of steel storage racks, future research should focus on cohesive zone modeling, ductile damage criteria, advanced contact strategies and additional machine learning (ML) techniques. Full article
(This article belongs to the Special Issue Numerical and Experimental Advances in Metal Processing)
Show Figures

Figure 1

26 pages, 33586 KB  
Article
Olfactory Environment Design in Office Buildings: A Study on the Recovery Effect of Specific Fragrances on Work Fatigue Based on Multimodal Measurement
by Mizhi Feng, Chengmin Zhou, Fangfang Yuan and Jake Kaner
Buildings 2026, 16(1), 3; https://doi.org/10.3390/buildings16010003 - 19 Dec 2025
Abstract
The office environment significantly influences employees’ work efficiency and health. With the increasing prevalence of modern, enclosed and monotonous office settings, employees often work under high-intensity conditions for extended periods. This situation leads to physiological and psychological fatigue, which in turn affects work [...] Read more.
The office environment significantly influences employees’ work efficiency and health. With the increasing prevalence of modern, enclosed and monotonous office settings, employees often work under high-intensity conditions for extended periods. This situation leads to physiological and psychological fatigue, which in turn affects work efficiency and overall well-being. This study explores how olfactory stimulation influences physiological and psychological fatigue in office environments. It also examines its effects on cognitive recovery. Through market research and user surveys, three types of scents were selected as experimental materials (floral, fruity, and forest scents). Utilizing multi-channel fatigue identification technology and wearable biosensors, the study monitored in real-time the physiological responses of employees to different olfactory stimuli, such as pupil diameter, heart rate variability (HRV), electromyography (EMG), and electroencephalogram (EEG) signals. Additionally, subjective evaluation questionnaires were used to comprehensively assess the effects of olfactory stimulation on psychological fatigue. The results showed that all three olfactory interventions to some extent alleviated employee fatigue and improved cognitive abilities. Among them, the floral intervention had a better effect on the recovery of physiological fatigue, the fruity intervention had a better effect on the recovery of psychological fatigue and cognitive abilities, and the forest intervention had a slightly inferior recovery effect but could effectively reduce time load. This research aims to provide new ideas for the design of sustainable office working environments. Introducing appropriate olfactory stimuli can effectively alleviate employees’ office fatigue, enhance their work efficiency and overall well-being. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

30 pages, 55183 KB  
Article
Fatigue Life Assessment of Notched PLA Manufactured Using FDM 3D-Printing Technique
by Mahsima Seifollahi and Mohammad Zaman Kabir
Polymers 2026, 18(1), 1; https://doi.org/10.3390/polym18010001 - 19 Dec 2025
Abstract
Fused Deposition Modeling (FDM) is an extensively employed additive manufacturing method for producing precise and complicated polymer models, with its industrial applications expanding under various loading conditions. A review of existing research highlights the insufficient investigation of the influence of geometric discontinuities in [...] Read more.
Fused Deposition Modeling (FDM) is an extensively employed additive manufacturing method for producing precise and complicated polymer models, with its industrial applications expanding under various loading conditions. A review of existing research highlights the insufficient investigation of the influence of geometric discontinuities in additively manufactured polylactic acid (PLA) members under fatigue loads. This study aims to analyze the combined effects of build orientation and geometric discontinuities on the static and fatigue performance and damage evolution of 3D-printed PLA. To achieve improved fabrication quality and minimize process-induced defects, the quasi-static tensile tests were conducted on specimens printed in on-edge orientation with a concentric infill pattern and the flat direction with a rectilinear infill pattern. The test results have shown that on-edge-printed objects have reduced micro-voids and improved layer bonding, resulting in a 19% increase in tensile strength compared to the flat-printed specimens. Consequently, this configuration was adopted for three specimen types, e.g., smooth, semi-circular edge-notched, and central-holed, tested under axial fatigue with a 0.05 load ratio. Fatigue test findings indicate that the stress concentration is more pronounced around central holes than near edge notches, leading to shorter fatigue life. This phenomenon is consistent with its effects under static tensile loading. Furthermore, using Digital Image Correlation (DIC) technique, damage initiation, progression, and failure mechanisms were analyzed in detail. According to fractographic analysis, the micro-voids in the 3D-printed specimens serve as potential regions for the initiation of multiple fatigue cracks. Additionally, the inherent internal defects can interact with geometric discontinuities, thereby weakening the fatigue performance. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

18 pages, 3446 KB  
Article
Weak-Axis Double Reduced Beam Section Connection: Seismic Performance Analysis and Design Method
by Linfeng Lu, Zihao Li, Qiuxue Xiang and Peng Pan
Buildings 2026, 16(1), 2; https://doi.org/10.3390/buildings16010002 - 19 Dec 2025
Abstract
A weak-axis moment connection incorporating a double reduced beam section and a box-reinforced panel zone (WDRBS) is introduced for hot-rolled H-shaped columns. The configuration is intended to shift inelastic demand away from the column face and to constrain weak-axis panel-zone distortion. A series [...] Read more.
A weak-axis moment connection incorporating a double reduced beam section and a box-reinforced panel zone (WDRBS) is introduced for hot-rolled H-shaped columns. The configuration is intended to shift inelastic demand away from the column face and to constrain weak-axis panel-zone distortion. A series of finite element models is established and calibrated to examine the cyclic response of this connection type. By varying the geometric parameters of the second reduction zone, a closed-form expression for determining its cutting depth (c2) is formulated, allowing both reduced regions to yield concurrently, i.e., the Optimum State. The numerical investigation demonstrates that connections designed according to this equation exhibit stable hysteresis, limited weld-adjacent plastic ll rightstrain, and sufficient deformation and energy-dissipation capacities. All specimens exhibit plastic rotations greater than 0.03 rad, ductility ratios greater than 3.0, and equivalent viscous damping ratios greater than 0.3. To facilitate engineering implementation using common hot-rolled sections, a simplified method is further proposed to approximate the admissible range of c2 with practical accuracy. While the length of the second reduction region has only a modest influence on peak strength (approximately 1.5–6%), it markedly affects the failure mechanism and plastic-hinge distribution. A stepwise design procedure for WDRBS connections is accordingly recommended. The study does not consider composite-slab interaction or gravity-load effects, and the findings—based solely on finite element simulations—require future verification through full-scale experimental testing. Full article
(This article belongs to the Special Issue Seismic and Durability Performance of Steel Connections)
Show Figures

Figure 1

16 pages, 5757 KB  
Article
Assessment of the Influence of Specimen Size on the Performance of CLF-1 Steel Based on the GTN Model
by Xiang Ruan, Zhanze Shi, Bintao Yu, Bing Bai, Xinfu He, Changyi Zhang and Wen Yang
Metals 2026, 16(1), 1; https://doi.org/10.3390/met16010001 - 19 Dec 2025
Abstract
Irradiation embrittlement occurs in the cladding materials of fusion reactors during irradiation. Determining the ductile–brittle transition temperature via Charpy impact testing is the primary method for evaluating irradiation embrittlement. Standard-sized V-shaped Charpy impact specimens (CVN) are too large in size and have high [...] Read more.
Irradiation embrittlement occurs in the cladding materials of fusion reactors during irradiation. Determining the ductile–brittle transition temperature via Charpy impact testing is the primary method for evaluating irradiation embrittlement. Standard-sized V-shaped Charpy impact specimens (CVN) are too large in size and have high induced radioactivity. Small-sized specimens (KLST) can solve these problems, but the performance data measured from small-sized specimens are different from those of standard specimens. In other words, there is a size effect in impact performance. The notch size and hammer impact speed of KLST specimens are different from those of CVN specimens. The influence of these factors on impact performance requires further study. In response to these issues, on the basis of the previous experiments conducted by the research group, GTN damage models of CVN specimens and KLST specimens are constructed using the inverse operation method. Numerical simulation of the impact on the upper platform area is carried out for KLST specimens and variable-sized KLST specimens. Compared with the test results, the numerical simulation results are in good agreement, verifying the accuracy and reliability of the model. The results show that the notch angle and radius have little influence on the plastic zone. The cross-sectional area of the notch has a significant impact on the plastic zone. The impact velocity within the range of 3.8 m/s to 5.24 m/s affects the impact response process, but does not affect the load–displacement curve, the length of the non-plastic deformation zone, or the volume of the plastic zone. Full article
(This article belongs to the Special Issue Fracture Mechanics and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

20 pages, 4203 KB  
Article
Experimental Study on Seismic Behavior of Novel Prefabricated RC Joints with Welded Cover-Plate Steel Sleeve and Bolted Splice
by Dong-Ping Wu, Kang Rao, Wei Wei, Fei Han and Sheng Peng
Buildings 2025, 15(24), 4579; https://doi.org/10.3390/buildings15244579 - 18 Dec 2025
Abstract
In order to ensure the structural safety and serviceability of existing reinforced concrete (RC) structures, there is a compelling need to develop efficient techniques for the rapid replacement of damaged RC beams within strong-column–weak-beam structural systems. This study introduces a novel prefabricated RC [...] Read more.
In order to ensure the structural safety and serviceability of existing reinforced concrete (RC) structures, there is a compelling need to develop efficient techniques for the rapid replacement of damaged RC beams within strong-column–weak-beam structural systems. This study introduces a novel prefabricated RC beam with welded cover-plate steel sleeve and bolted splice designed to facilitate accelerated replacement and enhance construction efficiency. The proposed beam is connected to cast-in-place RC columns, forming a prefabricated novel prefabricated RC joint with a welded cover-plate steel sleeve and a bolted splice; this configuration contrasts with conventional monolithic RC joints, which are formed by integrally casting beams and columns. The assembly speed of the prefabricated system markedly surpasses that of its cast-in-place counterpart, and the resulting beam–column system is fully demountable. Finite element simulations of the novel prefabricated RC joint with welded cover-plate steel sleeve and bolted splice, performed using ABAQUS, identified the thickness of the welded end-plate as a pivotal parameter influencing the joint’s mechanical behavior. Accordingly, quasi-static tests were carried out on three novel prefabricated RC joints with welded cover-plate steel sleeves and bolted splices and one cast-in-place RC joint, with the welded end-plate thickness serving as the primary test variable. The failure patterns, hysteretic responses, energy dissipation capacity, ductility, and stiffness degradation were systematically analyzed. Experimental findings indicate that increasing the end-plate thickness effectively improves both the peak load-bearing capacity and the ductility of the joint. All prefabricated specimens exhibited fully developed spindle-shaped hysteresis loops, with ductility coefficients ranging from 3.47 to 3.64 and equivalent viscous damping ratios exceeding 0.13. All critical seismic performance metrics either met or exceeded those of the reference cast-in-place RC joint, affirming the reliability and superior behavior of the proposed novel prefabricated RC joints with welded cover-plate steel sleeves. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 4106 KB  
Article
Optimizing Structural Parameters of Load Distributive Compression Anchor for Enhanced Grout Performance in Deep Excavations
by Erchao Fu, Wei Yao, Xianqi Zhou, Lyuliang Lin and Jin Yu
Processes 2025, 13(12), 4092; https://doi.org/10.3390/pr13124092 - 18 Dec 2025
Abstract
Prestressed flexible support systems have become essential in deep excavation engineering, with the load distributive compression anchor (LDCA) widely adopted to enhance load-bearing performance through effective load dispersion among multiple anchoring units. Structural parameters of the anchor, particularly perforation ratio and height-to-diameter ratio, [...] Read more.
Prestressed flexible support systems have become essential in deep excavation engineering, with the load distributive compression anchor (LDCA) widely adopted to enhance load-bearing performance through effective load dispersion among multiple anchoring units. Structural parameters of the anchor, particularly perforation ratio and height-to-diameter ratio, play a critical role in determining the mechanical behavior of the surrounding grout. In this study, grout located 500 mm behind the anchor body was selected as the test specimen. Unconfined compression tests were conducted to evaluate the ultimate load-bearing capacity under varying anchor configurations. Based on experimental measurements, a numerical simulation model was established and calibrated to investigate the internal stress distribution of the grout under different perforation ratios and height-to-diameter ratios. Results indicate that the perforation ratio significantly influences both the magnitude and location of stress peaks within the grout, with higher perforation ratios shifting the x-directional stress peak toward the anchor orifice and gradually reducing ultimate load-bearing capacity. Reducing the height-to-diameter ratio leads to a more uniform stress distribution, mitigating stress concentration while maintaining near-constant load-bearing capacity, although it increases anchor deformation. Optimal perforation ratio ranges were determined as [11%, 23%], [31%, 37%], and [42%, 50%] for anchors 1, 2, and 3, respectively, and the recommended height-to-diameter ratio is [15%, 17%]. The integration of experimental testing and numerical simulation provides quantitative insights into the effects of anchor design on grout performance, offering practical guidance for optimizing LDCA structures in deep excavation projects. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
21 pages, 1620 KB  
Article
Investigation of the Performance and Mechanism of CO2 Capture Using Novel MEA/Polyamine/Sulfolane Biphasic Absorbents
by Guangjie Chen, Guangying Chen, Li Sze Lai, Zhiwei Zhang, Xiaodi Chen and Yun Hin Taufiq-Yap
Separations 2025, 12(12), 342; https://doi.org/10.3390/separations12120342 - 18 Dec 2025
Abstract
Mixed amine/sulfolane (TMS) biphasic solutions have gained attention for their adjustable structure–activity relationships and lower regeneration energy. In this study, monoethanolamine (MEA) is employed as the main absorbent and polyamine as the co-absorbent, which are subsequently mixed with the phase separation promoter sulfolane [...] Read more.
Mixed amine/sulfolane (TMS) biphasic solutions have gained attention for their adjustable structure–activity relationships and lower regeneration energy. In this study, monoethanolamine (MEA) is employed as the main absorbent and polyamine as the co-absorbent, which are subsequently mixed with the phase separation promoter sulfolane (TMS) to form ternary biphasic solvent systems. Polyamine co-absorbents include 3-Dimethylaminopropylamine (DMAPA), 3-Diethylaminopropylamine (DEAPA), and Diethylenetriamine (DETA). Phase separation, absorption, and desorption performances were systematically studied. Reaction and phase separation mechanisms were elucidated through 13C nuclear magnetic resonance (NMR) spectroscopy. The overall mass transfer coefficients (KG) were measured using a wetted wall column (WWC). Variations in the amine-to-sulfolane concentration ratio showed minimal impact on phase volume, while temperature and solvent composition significantly influenced phase separation behavior. All three solvents exhibited superior CO2 capture performance, with CO2 loadings in the rich phases ranging from 4.09 to 4.71 mol/L and over 96.82% of CO2 concentrated in them, cyclic capacities reached or exceeded 3 mol/L, and regeneration energy consumption was 29.63–55.51% lower than 5 M MEA. 13C NMR analysis indicated that multiple N atoms in polyamines promoted the formation of additional ionic species during CO2 absorption, thereby enhancing phase separation completeness. Furthermore, KG values for the ternary systems exceeded that of conventional MEA, with the MEA/DEAPA/TMS system exhibiting a 1.7-fold increase. These findings demonstrated the industrial potential of MEA/polyamine/TMS biphasic solvents for efficient CO2 capture. Full article
(This article belongs to the Topic Carbon Capture Science and Technology (CCST), 2nd Edition)
Show Figures

Figure 1

Back to TopTop