Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,063)

Search Parameters:
Keywords = live attenuated

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1786 KiB  
Article
Lycopene Inhibits PRRSV Replication by Suppressing ROS Production
by Ying-Xian Ma, Ya-Qi Han, Pei-Zhu Wang, Bei-Bei Chu, Sheng-Li Ming and Lei Zeng
Int. J. Mol. Sci. 2025, 26(15), 7560; https://doi.org/10.3390/ijms26157560 (registering DOI) - 5 Aug 2025
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-stranded positive-sense RNA virus, poses a significant threat to global swine production. Despite the availability of modified live virus and inactivated vaccines, their limited efficacy and safety concerns highlight the urgent need for novel [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-stranded positive-sense RNA virus, poses a significant threat to global swine production. Despite the availability of modified live virus and inactivated vaccines, their limited efficacy and safety concerns highlight the urgent need for novel antiviral therapeutics. This study aimed to investigate the molecular mechanisms by which lycopene inhibits PRRSV replication. Initial assessments confirmed that lycopene did not adversely affect cellular viability, cell cycle progression, or apoptosis. Using fluorescence microscopy, flow cytometry, immunoblotting, quantitative real-time PCR (qRT-PCR), and viral titration assays, lycopene was shown to exhibit potent antiviral activity against PRRSV. Mechanistic studies revealed that lycopene suppresses reactive oxygen species (ROS) production, which is critical for PRRSV proliferation. Additionally, lycopene attenuated PRRSV-induced inflammatory responses, as demonstrated by immunoblotting, ELISA, and qRT-PCR assays. These findings suggest that lycopene inhibits PRRSV replication by modulating ROS levels and mitigating inflammation, offering a promising avenue for the development of antiviral therapeutics. This study provides new insights and strategies for combating PRRSV infections, emphasizing the potential of lycopene as a safe and effective antiviral agent. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

17 pages, 4695 KiB  
Article
Living Root-Mediated Soil Temperature Amplifies the Effects of Experimental Warming on Soil Microarthropod Communities in a Quercus mongolica Forest in Northeast China
by Chenglin Chi, Jiannan Wang, Rong Cui, Qianxue Wang and Jili Zhang
Insects 2025, 16(8), 809; https://doi.org/10.3390/insects16080809 (registering DOI) - 5 Aug 2025
Abstract
The living roots of woody plants in forests play a crucial role in sustaining the soil temperature equilibrium. However, there is limited research investigating the effects of soil temperature balance disruption, influenced by living roots, on soil microarthropods, especially in the context of [...] Read more.
The living roots of woody plants in forests play a crucial role in sustaining the soil temperature equilibrium. However, there is limited research investigating the effects of soil temperature balance disruption, influenced by living roots, on soil microarthropods, especially in the context of global climate change. To address this knowledge gap, we conducted a three-year in situ simulation experiment involving either experimental warming or root trenching treatments to mimic environmental changes and their impacts on soil microarthropod communities in a temperate forest ecosystem in Northeast China. Statistical analysis focused on assessing the abundance and family richness of Collembola and Acari. Warming increased soil temperature, while root trenching had contrasting effects. In the absence of root trenching, warming positively influenced Collembola but negatively affected Acari. Conversely, when combined with root trenching, warming had a diminished impact on both Collembola and Acari. Our findings demonstrate that the interactive effects of warming on soil microarthropod communities vary depending on the presence or absence of root trenching. Specifically, within the context of root trenching treatment compared to no-root trenching treatment, warming exhibited a comparatively attenuated influence on soil microarthropod communities. Overall, living roots play a pivotal role in mediating soil temperature conditions, which significantly impact soil microarthropod communities in the context of global climate change. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

11 pages, 217 KiB  
Article
Assessing Canine Parvovirus Vaccine Performance in Puppies with Maternally Derived Antibody: An Improved Study Design
by Jacqueline Pearce, Ellen Versmissen, David Sutton, Qi Cao and Ian Tarpey
Vaccines 2025, 13(8), 832; https://doi.org/10.3390/vaccines13080832 (registering DOI) - 4 Aug 2025
Abstract
Background/Objectives: Typically, studies aiming to assess the ability of canine parvovirus (CPV) vaccines to immunise puppies with maternally derived antibody (MDA) are undertaken using group-housed puppies. Since live attenuated vaccine virus is invariably shed in the faeces, this can result in repeated [...] Read more.
Background/Objectives: Typically, studies aiming to assess the ability of canine parvovirus (CPV) vaccines to immunise puppies with maternally derived antibody (MDA) are undertaken using group-housed puppies. Since live attenuated vaccine virus is invariably shed in the faeces, this can result in repeated oral re-exposure and puppies which failed to respond to the initial vaccination may respond instead to shed vaccine virus in the environment, thus artificially enhancing the efficacy of the vaccine. This problem can be avoided by adopting a pair-housed study design where one vaccinated pup is housed with one unvaccinated sentinel. Using this design, we examine the capability of four commercially available canine parvovirus vaccines to immunise MDA-positive pups. Methods: Thirty-four 6-week-old puppies born to vaccinated dams were divided into four vaccine groups with similar MDA ranges. Within each group puppies were paired based on matching MDA titres, and each pair was housed in separate biocontainment accommodation. In each pair, the pup with the highest MDA was vaccinated and the other left as an unvaccinated sentinel. All vaccinates were given a single dose of one of the vaccines. Vaccinates and sentinels were then bled every 2–4 days and CPV antibody was measured. Daily rectal swabs were also collected from all pups to identify any shed vaccinal CPV. Results: All the pups vaccinated with Nobivac DP PLUS seroconverted, with significantly higher antibody titres compared to the pups in other vaccine groups, all shed vaccine virus, and all bar one of the sentinel pups seroconverted. In the other groups, only vaccinated pups with lower levels of MDA seroconverted and shed vaccine virus but none of the sentinel pups seroconverted. Conclusions: Different canine parvovirus vaccines differ in their ability to replicate in and immunise puppies with MDA, the levels of which may vary widely between individuals. The shedding of vaccinal CPV is an important consideration when designing studies to demonstrate efficacy in MDA-positive puppies. Full article
(This article belongs to the Section Veterinary Vaccines)
15 pages, 319 KiB  
Review
Toxoplasma gondii at the Host Interface: Immune Modulation and Translational Strategies for Infection Control
by Billy J. Erazo Flores and Laura J. Knoll
Vaccines 2025, 13(8), 819; https://doi.org/10.3390/vaccines13080819 (registering DOI) - 31 Jul 2025
Viewed by 271
Abstract
Toxoplasma gondii is an intracellular protozoan found worldwide that is capable of infecting nearly all warm-blooded animals, including humans. Its parasitic success lies in its capacity to create chronic infections while avoiding immune detection, altering host immune responses, and disrupting programmed cell death [...] Read more.
Toxoplasma gondii is an intracellular protozoan found worldwide that is capable of infecting nearly all warm-blooded animals, including humans. Its parasitic success lies in its capacity to create chronic infections while avoiding immune detection, altering host immune responses, and disrupting programmed cell death pathways. This review examines the complex relationship between T. gondii and host immunity, focusing on how the parasite influences innate and adaptive immune responses to survive in immune-privileged tissues. We present recent findings on the immune modulation specific to various parasite strains, the immunopathology caused by imbalanced inflammation, and how the parasite undermines host cell death mechanisms such as apoptosis, necroptosis, and pyroptosis. These immune evasion tactics enable prolonged intracellular survival and pose significant challenges for treatment and vaccine development. We also review advancements in therapeutic strategies, including host-directed approaches, nanoparticle drug delivery, and CRISPR-based technologies, along with progress in vaccine development from subunit and DNA vaccines to live-attenuated candidates. This review emphasizes the importance of T. gondii as a model for chronic infections and points out potential avenues for developing innovative therapies and vaccines aimed at toxoplasmosis and similar intracellular pathogens. Full article
(This article belongs to the Special Issue Intracellular Parasites: Immunology, Resistance, and Therapeutics)
14 pages, 2882 KiB  
Article
Babesia bovis Enolase Is Expressed in Intracellular Merozoites and Contains B-Cell Epitopes That Induce Neutralizing Antibodies In Vitro
by Alma Cárdenas-Flores, Minerva Camacho-Nuez, Massaro W. Ueti, Mario Hidalgo-Ruiz, Angelina Rodríguez-Torres, Diego Josimar Hernández-Silva, José Guadalupe Gómez-Soto, Masahito Asada, Shin-ichiro Kawazu, Alma R. Tamayo-Sosa, Rocío Alejandra Ruiz-Manzano and Juan Mosqueda
Vaccines 2025, 13(8), 818; https://doi.org/10.3390/vaccines13080818 (registering DOI) - 31 Jul 2025
Viewed by 198
Abstract
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to [...] Read more.
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to vaccination against bovine babesiosis involves the use of multiple protective antigens, offering advantages over traditional live-attenuated vaccines. Tools such as immunobioinformatics and reverse vaccinology have facilitated the identification of novel antigens. Enolase, a “moonlighting” enzyme of the glycolytic pathway with demonstrated vaccine potential in other pathogens, has not yet been studied in B. bovis. Methods: In this study, the enolase gene from two B. bovis isolates was successfully identified and sequenced. The gene, consisting of 1366 base pairs, encodes a predicted protein of 438 amino acids. Its expression in intraerythrocytic parasites was confirmed by RT-PCR. Two peptides containing predicted B-cell epitopes were synthesized and used to immunize rabbits. Hyperimmune sera were then analyzed by ELISA, confocal microscopy, Western blot, and an in vitro neutralization assay. Results: The hyperimmune sera showed high antibody titers, reaching up to 1:256,000. Specific antibodies recognized intraerythrocytic merozoites by confocal microscopy and bound to a ~47 kDa protein in erythrocytic cultures of B. bovis as detected by Western blot. In the neutralization assay, antibodies raised against peptide 1 had no observable effect, whereas those targeting peptide 2 significantly reduced parasitemia by 71.99%. Conclusions: These results suggest that B. bovis enolase contains B-cell epitopes capable of inducing neutralizing antibodies and may play a role in parasite–host interactions. Enolase is therefore a promising candidate for further exploration as a vaccine antigen. Nonetheless, additional experimental studies are needed to fully elucidate its biological function and validate its vaccine potential. Full article
(This article belongs to the Special Issue Vaccines against Arthropods and Arthropod-Borne Pathogens)
Show Figures

Figure 1

20 pages, 3054 KiB  
Article
Development of COVID-19 Vaccine Candidates Using Attenuated Recombinant Vesicular Stomatitis Virus Vectors with M Protein Mutations
by Mengqi Chang, Hui Huang, Mingxi Yue, Yuetong Jiang, Siping Yan, Yiyi Chen, Wenrong Wu, Yibing Gao, Mujin Fang, Quan Yuan, Hualong Xiong and Tianying Zhang
Viruses 2025, 17(8), 1062; https://doi.org/10.3390/v17081062 - 30 Jul 2025
Viewed by 396
Abstract
Recombinant vesicular stomatitis virus (rVSV) is a promising viral vaccine vector for addressing the COVID-19 pandemic. Inducing mucosal immunity via the intranasal route is an ideal strategy for rVSV-based vaccines, but it requires extremely stringent safety standards. In this study, we constructed two [...] Read more.
Recombinant vesicular stomatitis virus (rVSV) is a promising viral vaccine vector for addressing the COVID-19 pandemic. Inducing mucosal immunity via the intranasal route is an ideal strategy for rVSV-based vaccines, but it requires extremely stringent safety standards. In this study, we constructed two rVSV variants with amino acid mutations in their M protein: rVSV-M2 with M33A/M51R mutations and rVSV-M4 with M33A/M51R/V221F/S226R mutations, and developed COVID-19 vaccines based on these attenuated vectors. By comparing viral replication capacity, intranasal immunization, intracranial injection, and blood cell counts, we demonstrated that the M protein mutation variants exhibit significant attenuation effects both in vitro and in vivo. Moreover, preliminary investigations into the mechanisms of virus attenuation revealed that these attenuated viruses can induce a stronger type I interferon response while reducing inflammation compared to the wild-type rVSV. We developed three candidate vaccines against SARS-CoV-2 using the wildtype VSV backbone with either wild-type M (rVSV-JN.1) and two M mutant variants (rVSV-M2-JN.1 and rVSV-M4-JN.1). Our results confirmed that rVSV-M2-JN.1 and rVSV-M4-JN.1 retain strong immunogenicity while enhancing safety in hamsters. In summary, the rVSV variants with M protein mutations represent promising candidate vectors for mucosal vaccines and warrant further investigation. Full article
(This article belongs to the Special Issue Structure-Based Antiviral Drugs and Vaccine Design)
Show Figures

Figure 1

12 pages, 1307 KiB  
Article
Protection Against Transplacental Transmission of a Highly Virulent Classical Swine Fever Virus Two Weeks After Single-Dose FlagT4G Vaccination in Pregnant Sows
by Liani Coronado, Àlex Cobos, Adriana Muñoz-Aguilera, Sara Puente-Marin, Gemma Guevara, Cristina Riquelme, Saray Heredia, Manuel V. Borca and Llilianne Ganges
Vaccines 2025, 13(8), 803; https://doi.org/10.3390/vaccines13080803 - 28 Jul 2025
Viewed by 368
Abstract
Background/Objectives: Classical swine fever (CSF) continues to challenge global eradication efforts, particularly in endemic regions, where pregnant sows face heightened risks of vertical transmission following exposure to CSFV. Methods: This study evaluates the early protective efficacy of FlagT4G, a novel live attenuated DIVA-compatible [...] Read more.
Background/Objectives: Classical swine fever (CSF) continues to challenge global eradication efforts, particularly in endemic regions, where pregnant sows face heightened risks of vertical transmission following exposure to CSFV. Methods: This study evaluates the early protective efficacy of FlagT4G, a novel live attenuated DIVA-compatible vaccine. Pregnant sows were vaccinated at mid-gestation and challenged 14 days later with a highly virulent CSFV strain. Results: FlagT4G conferred complete clinical protection, preventing both maternal viremia and transplacental transmission. No CSFV RNA, specific antibodies, or IFN-α were detected in fetal samples from vaccinated animals. In contrast, unvaccinated sows exhibited clinical signs, high viral loads, and widespread fetal infection. Interestingly, early protection was observed even in the absence of strong humoral responses in some vaccinated sows, suggesting a potential role for innate or T-cell-mediated immunity in conferring rapid protection. Conclusions: The demonstrated efficacy of FlagT4G within two weeks of vaccination underscores its feasibility for integration into emergency vaccination programs. Its DIVA compatibility and ability to induce early fetal protection against highly virulent CSFV strains position it as a promising tool for CSF control and eradication strategies. Full article
(This article belongs to the Special Issue Vaccines for Porcine Viruses)
Show Figures

Figure 1

18 pages, 352 KiB  
Article
Kristofer Schipper (1934–2021) and Grotto Heavens: Daoist Ecology, Mountain Politics, and Local Identity
by Peiwei Wang
Religions 2025, 16(8), 977; https://doi.org/10.3390/rel16080977 - 28 Jul 2025
Viewed by 354
Abstract
This article explores Schipper’s scholarly contributions to the study of dongtian fudi (grotto heavens and blessed lands) and specifically situates this project in its broader intellectual context and Schipper’s own research. While Schipper was not the first to open discussions on this topic, [...] Read more.
This article explores Schipper’s scholarly contributions to the study of dongtian fudi (grotto heavens and blessed lands) and specifically situates this project in its broader intellectual context and Schipper’s own research. While Schipper was not the first to open discussions on this topic, his research in this direction still offers profound insights, such as the coinage of the concept of “Daoist Ecology” and his views on mountain politics. This article argues that Schipper’s work on dongtian fudi is a response to the school of Deep Ecology and its critics, and also a result of critical reflection on the modern dichotomy between nature and culture. In Schipper’s enquiry of dongtian fudi, the “mountain” stands as the central concept: it is not only the essential component of Daoist sacred geography, but a holistic site in which nature and society are interwoven, endowed with both material and sacred significance. Through his analysis of the Daoist practice of abstinence from grain (duangu), Schipper reveals how mountains serve as spaces for retreat from agrarian society and state control, and how they embody “shatter zones” where the reach of centralized power is relatively attenuated. The article also further links Schipper’s project of Beijing as a Holy City to his study of dongtian fudi. For Schipper, the former affirms the universality of the locality (i.e., the unofficial China, the country of people), while the latter envisages the vision of rewriting China from plural localities. Taken together, these efforts point toward a theoretical framework that moves beyond conventional sociological paradigms, one that embraces a total worldly perspective, in which the livelihoods of local societies and their daily lives are truly appreciated as a totality that encompasses both nature and culture. Schipper’s works related to dongtian fudi, though they are rather concise, still significantly broaden the scope of Daoist studies and, moreover, provide novel insights into the complexity of Chinese religion and society. Full article
(This article belongs to the Special Issue Heavens and Grottos: New Explorations in Daoist Cosmography)
19 pages, 14428 KiB  
Article
Bivalent Oral Vaccine Using Attenuated Salmonella Gallinarum Delivering HA and NA-M2e Confers Dual Protection Against H9N2 Avian Influenza and Fowl Typhoid in Chickens
by Muhammad Bakhsh, Amal Senevirathne, Jamal Riaz, Jun Kwon, Ram Prasad Aganja, Jaime C. Cabarles, Sang-Ik Oh and John Hwa Lee
Vaccines 2025, 13(8), 790; https://doi.org/10.3390/vaccines13080790 - 25 Jul 2025
Viewed by 374
Abstract
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lon [...] Read more.
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lonpagLasd) as a delivery system for H9N2 antigens to induce an immunoprotective response against both H9N2 and FT. To enhance immune protection against H9N2, a prokaryotic and eukaryotic dual expression plasmid, pJHL270, was employed. The hemagglutinin (HA) consensus sequence from South Korean avian influenza A virus (AIV) was cloned under the Ptrc promoter for prokaryotic expression, and the B cell epitope of neuraminidase (NA) linked with matrix protein 2 (M2e) was placed for eukaryotic expression. In vitro and in vivo expressions of the H9N2 antigens were validated by qRT-PCR and Western blot, respectively. Results: Oral immunization with JOL3121 induced a significant increase in SG and H9N2-specific serum IgY and cloacal swab IgA antibodies, confirming humoral and mucosal immune responses. Furthermore, FACS analysis showed increased CD4+ and CD8+ T cell populations. On day 28 post-immunization, there was a substantial rise in the hemagglutination inhibition titer in the immunized birds, demonstrating neutralization capabilities of immunization. Both IFN-γ and IL-4 demonstrated a significant increase, indicating a balance of Th1 and Th2 responses. Intranasal challenge with the H9N2 Y280 strain resulted in minimal to no clinical signs with significantly lower lung viral titer in the JOL3121 group. Upon SG wildtype challenge, the immunized birds in the JOL3121 group yielded 20% mortality, while 80% mortality was recorded in the PBS control group. Additionally, bacterial load in the spleen and liver was significantly lower in the immunized birds. Conclusions: The current vaccine model, designed with a host-specific pathogen, SG, delivers a robust immune boost that could enhance dual protection against FT and H9N2 infection, both being significant diseases in poultry, as well as ensure public health. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Graphical abstract

13 pages, 3597 KiB  
Article
Effects of Canine IL-12 on the Immune Response Against the Canine Parvovirus VP2 Protein
by Shiyan Wang, Wenjie Jiao, Dannan Zhao, Yuzhu Gong, Jingying Ni, Huawei Wu, Jige Du, Tuanjie Wang and Chunsheng Yin
Vaccines 2025, 13(7), 758; https://doi.org/10.3390/vaccines13070758 - 16 Jul 2025
Viewed by 357
Abstract
Background: Canine parvovirus (CPV) is a highly pathogenic virus that predominantly affects puppies, with mortality rates exceeding 70%. Although commercial multivalent live attenuated vaccines (MLV) are widely employed, their efficacy is often compromised by maternal antibody interference. Consequently, the development of novel vaccines [...] Read more.
Background: Canine parvovirus (CPV) is a highly pathogenic virus that predominantly affects puppies, with mortality rates exceeding 70%. Although commercial multivalent live attenuated vaccines (MLV) are widely employed, their efficacy is often compromised by maternal antibody interference. Consequently, the development of novel vaccines remains imperative for effective CPV control. Methods: Recombinant CPV VP2 protein (rVP2) and canine interlukine 12 protein (rcIL-12) were expressed using the Bac-to-Bac baculovirus expression system and the biological activity of these proteins was assessed through hemagglutination, Cell Counting Kit-8 (CCK8) and IFN-γ induction assays. The combined immunoenhancement effect of rVP2 and rcIL-12 protein was evaluated in puppies. Results: Both rVP2 and rcIL-12 were successfully expressed and purified, exhibiting confirmed antigenicity, immunogenicity, and bioactivity. Co-administration of rVP2 with rcIL-12 elicited higher neutralizing antibody titer (6–7 times higher), complete challenge protection efficiency (no clinical symptoms and tissue and organ lesions), fewer viral shedding (decreasing significantly 8-day post challenge) and superior viral blockade (lower viral load in the organism) compared to rVP2 alone. Conclusions: Our findings demonstrate that rVP2 co-administered with rcIL-12 induces robust protective immunity in puppies and significantly mitigated the inhibitory effects of maternal antibodies. This represents a promising strategy for enabling earlier vaccination in puppies and rational design of CPV subunit vaccines. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

26 pages, 3044 KiB  
Article
Optimization of YF17D-Vectored Zika Vaccine Production by Employing Small-Molecule Viral Sensitizers to Enhance Yields
by Sven Göbel, Tilia Zinnecker, Ingo Jordan, Volker Sandig, Andrea Vervoort, Jondavid de Jong, Jean-Simon Diallo, Peter Satzer, Manfred Satzer, Kai Dallmeier, Udo Reichl and Yvonne Genzel
Vaccines 2025, 13(7), 757; https://doi.org/10.3390/vaccines13070757 - 16 Jul 2025
Viewed by 836
Abstract
Background: Modern viral vector production needs to consider process intensification for higher yields from smaller production volumes. However, innate antiviral immunity triggered in the producer cell may limit virus replication. While commonly used cell lines (e.g., Vero or E1A-immortalised cells) are already compromised [...] Read more.
Background: Modern viral vector production needs to consider process intensification for higher yields from smaller production volumes. However, innate antiviral immunity triggered in the producer cell may limit virus replication. While commonly used cell lines (e.g., Vero or E1A-immortalised cells) are already compromised in antiviral pathways, the redundancy of innate signaling complicates host cell optimization by genetic engineering. Small molecules that are hypothesized to target antiviral pathways (Viral Sensitizers, VSEs) added to the culture media offer a versatile alternative to genetic modifications to increase permissiveness and, thus, viral yields across multiple cell lines. Methods: To explore how the yield for a chimeric Zika vaccine candidate (YF-ZIK) could be further be increased in an intensified bioprocess, we used spin tubes or an Ambr15 high-throughput microbioreactor system as scale-down models to optimize the dosing for eight VSEs in three host cell lines (AGE1.CR.pIX, BHK-21, and HEK293-F) based on their tolerability. Results: Addition of VSEs to an already optimized infection process significantly increased infectious titers by up to sevenfold for all three cell lines tested. The development of multi-component VSE formulations using a design of experiments approach allowed further synergistic titer increases in AGE1.CR.pIX cells. Scale-up to 1 L stirred-tank bioreactors and 3D-printed mimics of 200 or 2000 L reactors resulted in up to threefold and eightfold increases, respectively. Conclusions: Addition of single VSEs or combinations thereof allowed a further increase in YF-ZIK titers beyond the yield of an already optimized, highly intensified process. The described approach validates the use of VSEs and can be instructive for optimizing other virus production processes. Full article
Show Figures

Graphical abstract

11 pages, 662 KiB  
Article
Antibody Responses Following Primary Immunization with the Recombinant Herpes Zoster Vaccine (Shingrix®) in VZV Seronegative Immunocompromised Adults
by Andrea Wessely, Ines Zwazl, Melita Poturica, Lukas Weseslindtner, Michael Kundi, Ursula Wiedermann and Angelika Wagner
Vaccines 2025, 13(7), 737; https://doi.org/10.3390/vaccines13070737 - 8 Jul 2025
Viewed by 523
Abstract
Background: Immunocompromised patients are at risk of severe varicella zoster virus (VZV) infection and reactivation. In VZV seronegative immunocompromised persons, live-attenuated VZV vaccination is contraindicated, thus the recombinant herpes zoster vaccine (rHZV) remains a safe alternative, although an off-label application. Yet, data on [...] Read more.
Background: Immunocompromised patients are at risk of severe varicella zoster virus (VZV) infection and reactivation. In VZV seronegative immunocompromised persons, live-attenuated VZV vaccination is contraindicated, thus the recombinant herpes zoster vaccine (rHZV) remains a safe alternative, although an off-label application. Yet, data on the induction of a VZV-specific immune response in immunocompromised individuals with VZV-specific IgG below the assay’s cut-off are only available for patients after solid-organ transplantation (SOT). Methods: We retrospectively analyzed the induction of VZV-specific IgG antibody levels after vaccination with rHZV in immunocompromised patients who previously tested anti-VZV-IgG negative between March 2018 and January 2024. Results: Of 952 vaccinees screened that received 2 or 3 doses rHZV, depending on the underlying disease, 33 patients (median age 53.0; 51.5% female) with either hematopoietic stem cell transplantation (82%) or high-grade immunosuppressive treatment (18%) fulfilled the inclusion criteria. Upon rHZV vaccination, 88% (29/33) individuals mounted a significant antibody response exceeding the assay’s cut-off level for seropositivity (p < 0.0001). We detected higher geometric mean antibody concentrations after three compared to two doses. However, 12% remained below the assay’s cut-off level and were therefore considered non-responsive. Conclusions: The rHZV is immunogenic in VZV-seronegative immunocompromised individuals and therefore presents a valid option to induce seroconversion. However, antibody testing in high-risk groups should be considered to identify humoral non- and low responders. Full article
(This article belongs to the Special Issue Varicella and Zoster Vaccination)
Show Figures

Figure 1

20 pages, 6090 KiB  
Review
Rotavirus Reverse Genetics Systems and Oral Vaccine Delivery Vectors for Mucosal Vaccination
by Jun Wang, Songkang Qin, Kuanhao Li, Xin Yin, Dongbo Sun and Jitao Chang
Microorganisms 2025, 13(7), 1579; https://doi.org/10.3390/microorganisms13071579 - 4 Jul 2025
Viewed by 341
Abstract
Mucosal immunization represents a promising strategy for preventing enteric infections. Rotavirus (RV), a leading gastrointestinal pathogen distinguished by its remarkable stability and segmented double-stranded RNA genome, has been engineered into a versatile oral vaccine vector through advanced reverse genetics systems. The clinical efficacy [...] Read more.
Mucosal immunization represents a promising strategy for preventing enteric infections. Rotavirus (RV), a leading gastrointestinal pathogen distinguished by its remarkable stability and segmented double-stranded RNA genome, has been engineered into a versatile oral vaccine vector through advanced reverse genetics systems. The clinical efficacy of live-attenuated RV vaccines highlights their unique capacity to concurrently induce mucosal IgA responses and systemic neutralizing antibodies, positioning them as a multiple action vector for multiple immune protection. In this review, we summarize the RV colonization of the intestine and stimulation of intestinal immunity, as well as recent advancements in RV reverse genetics, and focus on their application in the rational design of a multivalent mucosal vaccine vector targeting enteric pathogens considering the advantages and challenges of RV as a vector. We further propose molecular strategies to overcome genetic instability in recombinant RV vectors, including the codon optimization of heterologous inserts. These insights provide a theoretical foundation for developing next-generation mucosal immunization platforms with enhanced safety, stability, and cross-protective efficacy. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

21 pages, 492 KiB  
Review
Research Progress on Varicella-Zoster Virus Vaccines
by Hongjing Liu, Lingyan Cui, Sibo Zhang, Hong Wang, Wenhui Xue, Hai Li, Yuyun Zhang, Lin Chen, Ying Gu, Tingting Li, Ningshao Xia and Shaowei Li
Vaccines 2025, 13(7), 730; https://doi.org/10.3390/vaccines13070730 - 4 Jul 2025
Viewed by 990
Abstract
Varicella-zoster virus (VZV) poses significant public health challenges as the etiological agent of varicella (chickenpox) and herpes zoster (HZ), given its high transmissibility and potential for severe complications. The introduction of VZV vaccines—particularly the vOka-based live attenuated and glycoprotein gE-based recombinant subunit vaccines—has [...] Read more.
Varicella-zoster virus (VZV) poses significant public health challenges as the etiological agent of varicella (chickenpox) and herpes zoster (HZ), given its high transmissibility and potential for severe complications. The introduction of VZV vaccines—particularly the vOka-based live attenuated and glycoprotein gE-based recombinant subunit vaccines—has substantially reduced the global incidence of these diseases. However, live attenuated vaccines raise concerns regarding safety and immunogenicity, especially in immunocompromised populations, while recombinant subunit vaccines, such as Shingrix, exhibit high efficacy but are associated with side effects and adjuvant limitations. Recent advancements in vaccine technology, including mRNA vaccines, viral vector vaccines, and virus-like particle (VLP) vaccines, offer promising alternatives with improved safety profiles and durable immunity. This review synthesizes current knowledge on VZV vaccine mechanisms, clinical applications, and immunization strategies, while also examining future directions in vaccine development. The findings underscore the pivotal role of VZV vaccines in disease prevention and highlight the need for continued research to enhance their public health impact. Full article
(This article belongs to the Special Issue Varicella and Zoster Vaccination)
Show Figures

Figure 1

15 pages, 1000 KiB  
Review
Advances and Prospects of Fowl Adenoviruses Vaccine Technologies in the Past Decade
by Chunhua Zhu, Pei Yang, Jiayu Zhou, Xiaodong Liu, Yu Huang and Chunhe Wan
Int. J. Mol. Sci. 2025, 26(13), 6434; https://doi.org/10.3390/ijms26136434 - 4 Jul 2025
Viewed by 311
Abstract
Over the past decade, diseases associated with fowl adenoviruses (FAdVs) have exhibited a new epidemic trend worldwide. The presence of numerous FAdVs serotypes, combined with the virus’s broad host range, positions it as a significant pathogen in the poultry industry. In the current [...] Read more.
Over the past decade, diseases associated with fowl adenoviruses (FAdVs) have exhibited a new epidemic trend worldwide. The presence of numerous FAdVs serotypes, combined with the virus’s broad host range, positions it as a significant pathogen in the poultry industry. In the current context of intensive poultry production and global trade, co-infections involving multiple FAdVs serotypes, as well as co-infections with FAdVs alongside infectious bursal disease or infectious anemia virus, may occur within the same region or even on the same farm. The frequency of these outbreaks complicates the prevention and control of FAdVs. Therefore, the development of effective, targeted vaccines is essential for providing technical support in the management of FAdVs epidemics. Ongoing vaccine research aims to improve vaccine efficacy and address the challenges posed by emerging FAdVs outbreaks. This review focuses on vaccines developed and studied worldwide for various serotypes of FAdVs in the past decade. It encompasses inactivated vaccines, live attenuated vaccines, e.g., host-adapted attenuated vaccines and gene deletion vaccines, viral vector vaccines, and subunit vaccines (including VLP proteins and chimeric proteins). The current limitations and future development directions of FAdVs vaccine development are also proposed to provide a reference for new-generation vaccines and innovative vaccination strategies against FAdVs, as well as for the rapid development of highly effective vaccines. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop