Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (409)

Search Parameters:
Keywords = lithium-ion battery state of health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

30 pages, 2537 KiB  
Review
The State of Health Estimation of Lithium-Ion Batteries: A Review of Health Indicators, Estimation Methods, Development Trends and Challenges
by Kang Tang, Bingbing Luo, Dian Chen, Chengshuo Wang, Long Chen, Feiliang Li, Yuan Cao and Chunsheng Wang
World Electr. Veh. J. 2025, 16(8), 429; https://doi.org/10.3390/wevj16080429 - 1 Aug 2025
Viewed by 298
Abstract
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus [...] Read more.
The estimation of the state of health (SOH) of lithium-ion batteries is a critical technology for enhancing battery lifespan and safety. When estimating SOH, it is essential to select representative features, commonly referred to as health indicators (HIs). Most existing studies primarily focus on HIs related to capacity degradation and internal resistance increase. However, due to the complexity of lithium-ion battery degradation mechanisms, the relationships between these mechanisms and health indicators remain insufficiently explored. This paper provides a comprehensive review of core methodologies for SOH estimation, with a particular emphasis on the classification and extraction of health indicators, direct measurement techniques, model-based and data-driven SOH estimation approaches, and emerging trends in battery management system applications. The findings indicate that capacity, internal resistance, and temperature-related indicators significantly impact SOH estimation accuracy, while machine learning models demonstrate advantages in multi-source data fusion. Future research should further explore composite health indicators and aging mechanisms of novel battery materials, and improve the interpretability of predictive models. This study offers theoretical support for the intelligent management and lifespan optimization of lithium-ion batteries. Full article
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 (registering DOI) - 31 Jul 2025
Viewed by 141
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

25 pages, 2863 KiB  
Article
Battery SOH Estimation Based on Dual-View Voltage Signal Features and Enhanced LSTM
by Shunchang Wang, Yaolong He and Hongjiu Hu
Energies 2025, 18(15), 4016; https://doi.org/10.3390/en18154016 - 28 Jul 2025
Viewed by 267
Abstract
Accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is fundamental to ensuring safe operation. However, due to the complex electrochemical processes during battery operation and the limited availability of training data, accurate estimation of the state of health remains [...] Read more.
Accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is fundamental to ensuring safe operation. However, due to the complex electrochemical processes during battery operation and the limited availability of training data, accurate estimation of the state of health remains challenging. To address this, this paper proposes a prediction framework based on dual-view voltage signal features and an improved Long Short-Term Memory (LSTM) neural network. By relying solely on readily obtainable voltage signals, the data requirement is greatly reduced; dual-view features, comprising kinetic and aggregated aspects, are extracted based on the underlying reaction mechanisms. To fully leverage the extracted feature information, Scaled Dot-Product Attention (SDPA) is employed to dynamically score all hidden states of the long short-term memory network, adaptively capturing key temporal information. The experimental results based on the NASA PCoE battery dataset indicate that, under various operating conditions, the proposed method achieves an average absolute error below 0.51% and a root mean square error not exceeding 0.58% in state-of-health estimation, demonstrating high predictive accuracy. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

16 pages, 3383 KiB  
Article
Thermal and Electrical Design Considerations for a Flexible Energy Storage System Utilizing Second-Life Electric Vehicle Batteries
by Rouven Christen, Simon Nigsch, Clemens Mathis and Martin Stöck
Batteries 2025, 11(8), 287; https://doi.org/10.3390/batteries11080287 - 26 Jul 2025
Viewed by 313
Abstract
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These [...] Read more.
The transition to electric mobility has significantly increased the demand for lithium-ion batteries, raising concerns about their end-of-life management. Therefore, this study presents the design, development and first implementation steps of a stationary energy storage system utilizing second-life electric vehicle (EV) batteries. These batteries, no longer suitable for traction applications due to a reduced state of health (SoH) below 80%, retain sufficient capacity for less demanding stationary applications. The proposed system is designed to be flexible and scalable, serving both research and commercial purposes. Key challenges include heterogeneous battery characteristics, safety considerations due to increased internal resistance and battery aging, and the need for flexible power electronics. An optimized dual active bridge (DAB) converter topology is introduced to connect several batteries in parallel and to ensure efficient bidirectional power flow over a wide voltage range. A first prototype, rated at 50 kW, has been built and tested in the laboratory. This study contributes to sustainable energy storage solutions by extending battery life cycles, reducing waste, and promoting economic viability for industrial partners. Full article
Show Figures

Figure 1

21 pages, 3722 KiB  
Article
State of Health Estimation for Lithium-Ion Batteries Based on TCN-RVM
by Yu Zhao, Yonghong Xu, Yidi Wei, Liang Tong, Yiyang Li, Minghui Gong, Hongguang Zhang, Baoying Peng and Yinlian Yan
Appl. Sci. 2025, 15(15), 8213; https://doi.org/10.3390/app15158213 - 23 Jul 2025
Viewed by 269
Abstract
A State of Health (SOH) estimation of lithium-ion batteries is a core function of battery management systems, directly affecting the safe operation, lifetime prediction, and economic efficiency of batteries. However, existing methods still face challenges in balancing feature robustness and model generalization ability; [...] Read more.
A State of Health (SOH) estimation of lithium-ion batteries is a core function of battery management systems, directly affecting the safe operation, lifetime prediction, and economic efficiency of batteries. However, existing methods still face challenges in balancing feature robustness and model generalization ability; for instance, some studies rely on features whose physical correlation with SOH lacks strict verification, or the models struggle to simultaneously capture the temporal dynamics of health factors and nonlinear mapping relationships. To address this, this paper proposes an SOH estimation method based on incremental capacity (IC) curves and a Temporal Convolutional Network—Relevance Vector Machine (TCN-RVM) model, with core innovations reflected in two aspects. Firstly, five health factors are extracted from IC curves, and the strong correlation between these features and SOH is verified using both Pearson and Spearman coefficients, ensuring the physical rationality and statistical significance of feature selection. Secondly, the TCN-RVM model is constructed to achieve complementary advantages. The dilated causal convolution of TCN is used to extract temporal local features of health factors, addressing the insufficient capture of long-range dependencies in traditional models; meanwhile, the Bayesian inference framework of RVM is integrated to enhance the nonlinear mapping capability and small-sample generalization, avoiding the overfitting tendency of complex models. Experimental validation is conducted using the lithium-ion battery dataset from the University of Maryland. The results show that the mean absolute error of the SOH estimation using the proposed method does not exceed 0.72%, which is significantly superior to comparative models such as CNN-GRU, KELM, and SVM, demonstrating higher accuracy and reliability compared with other models. Full article
Show Figures

Figure 1

18 pages, 840 KiB  
Article
Centralized vs. Decentralized Black-Mass Production: A Comparative Analysis of Lithium Reverse Logistics Supply Chain Networks
by Oluwatosin S. Atitebi and Erick C. Jones
Logistics 2025, 9(3), 97; https://doi.org/10.3390/logistics9030097 - 23 Jul 2025
Viewed by 319
Abstract
Background: The transition to renewable energy is intensifying demand for lithium-ion batteries (LIBs), thereby increasing the need for sustainable lithium sourcing. Traditional mining practices pose environmental and health risks, which can be mitigated through efficient end-of-life recycling systems. Methods: This study [...] Read more.
Background: The transition to renewable energy is intensifying demand for lithium-ion batteries (LIBs), thereby increasing the need for sustainable lithium sourcing. Traditional mining practices pose environmental and health risks, which can be mitigated through efficient end-of-life recycling systems. Methods: This study proposes a modified lithium reverse logistics network that decentralizes black-mass production at distributed facilities before centralized extraction, contrasting with conventional models that transport raw LIBs directly to central processing sites. Using the United States as a case study, two mathematical optimization (mixed-integer linear programming) models were developed to compare the traditional and modified networks in terms of cost efficiency and carbon emissions. Results: The model indicates that the proposed network significantly reduces both operational costs and emissions. Conclusions: This study highlights its potential to support a greener economy and inform policy development. Full article
Show Figures

Figure 1

17 pages, 2719 KiB  
Article
State of Health Prediction for Lithium-Ion Batteries Based on Gated Temporal Network Assisted by Improved Grasshopper Optimization
by Xiankun Wei, Silun Peng and Mingli Mo
Energies 2025, 18(14), 3856; https://doi.org/10.3390/en18143856 - 20 Jul 2025
Viewed by 320
Abstract
Accurate SOH prediction provides a reliable reference for lithium-ion battery maintenance. However, novel algorithms are still needed because few studies have considered the correlations between monitored parameters in Euclidean space and non-Euclidean space at different time points. To address this challenge, a novel [...] Read more.
Accurate SOH prediction provides a reliable reference for lithium-ion battery maintenance. However, novel algorithms are still needed because few studies have considered the correlations between monitored parameters in Euclidean space and non-Euclidean space at different time points. To address this challenge, a novel gated-temporal network assisted by improved grasshopper optimization (IGOA-GGNN-TCN) is developed. In this model, features obtained from lithium-ion batteries are used to construct graph data based on cosine similarity. On this basis, the GGNN-TCN is employed to obtain the potential correlations between monitored parameters in Euclidean and non-Euclidean spaces. Furthermore, IGOA is introduced to overcome the issue of hyperparameter optimization for GGNN-TCN, improving the convergence speed and the local optimal problem. Competitive results on the Oxford dataset indicate that the SOH prediction performance of proposed IGOA-GGNN-TCN surpasses conventional methods, such as convolutional neural networks (CNNs) and gate recurrent unit (GRUs), achieving an R2 value greater than 0.99. The experimental results demonstrate that the proposed IGOA-GGNN-TCN framework offers a novel and effective approach for state-of-health (SOH) estimation in lithium-ion batteries. By integrating improved grasshopper optimization (IGOA) with hybrid graph-temporal modeling, the method achieves superior prediction accuracy compared to conventional techniques, providing a promising tool for battery management systems in real-world applications. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

23 pages, 2233 KiB  
Article
A Novel Back Propagation Neural Network Based on the Harris Hawks Optimization Algorithm for the Remaining Useful Life Prediction of Lithium-Ion Batteries
by Yuyang Zhou, Zijian Shao, Huanhuan Li, Jing Chen, Haohan Sun, Yaping Wang, Nan Wang, Lei Pei, Zhen Wang, Houzhong Zhang and Chaochun Yuan
Energies 2025, 18(14), 3842; https://doi.org/10.3390/en18143842 - 19 Jul 2025
Viewed by 282
Abstract
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL [...] Read more.
Remaining useful life (RUL) serves as a pivotal metric for quantifying lithium-ion batteries’ state of health (SOH) in electric vehicles and plays a crucial role in ensuring their safety and reliability. In order to achieve accurate and reliable RUL prediction, a novel RUL prediction method which employs a back propagation (BP) neural network based on the Harris Hawks optimization (HHO) algorithm is proposed. This method optimizes the BP parameters using the improved HHO algorithm. At first, the circle chaotic mapping method is utilized to solve the problem of the initial value. Considering the problem of local convergence, Gaussian mutation is introduced to improve the search ability of the algorithm. Subsequently, two key health factors are selected as input features for the model, including the constant-current charging isovoltage rise time and constant-current discharging isovoltage drop time. The model is validated using aging data from commercial lithium iron phosphate (LiFePO4) batteries. Finally, the model is thoroughly verified under an aging test. Experimental validation using training sets comprising 50%, 60%, and 70% of the cycle data demonstrates superior predictive performance, with mean absolute error (MAE) values below 0.012, root mean square error (RMSE) values below 0.017 and mean absolute percentage error (MAPE) within 0.95%. The results indicate that the model significantly improves prediction accuracy, robustness and searchability. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Graphical abstract

15 pages, 2481 KiB  
Article
Capacity Forecasting of Lithium-Ion Batteries Using Empirical Models: Toward Efficient SOH Estimation with Limited Cycle Data
by Kanchana Sivalertporn, Piyawong Poopanya and Teeraphon Phophongviwat
Energies 2025, 18(14), 3828; https://doi.org/10.3390/en18143828 - 18 Jul 2025
Viewed by 281
Abstract
Accurate prediction of lithium-ion battery capacity degradation is crucial for reliable state-of-health estimation and long-term performance assessment in battery management systems. This study presents an empirical modeling approach based on experimental data collected from four lithium iron phosphate (LFP) battery packs cycled over [...] Read more.
Accurate prediction of lithium-ion battery capacity degradation is crucial for reliable state-of-health estimation and long-term performance assessment in battery management systems. This study presents an empirical modeling approach based on experimental data collected from four lithium iron phosphate (LFP) battery packs cycled over 75 to 100 charge–discharge cycles. Several mathematical models—including linear, quadratic, single-exponential, and double-exponential functions—were evaluated for their predictive accuracy. Among these, the linear and single-exponential models demonstrated strong performance in early-cycle predictions. It was found that using 30 to 40 cycles of data is sufficient for reliable forecasting within a 100-cycle range, reducing the mean absolute error by over 80% compared to using early-cycle data alone. Although these models provide reasonable short-term predictions, they fail to capture the nonlinear degradation behavior observed beyond 80 cycles. To address this, a modified linear model was proposed by introducing an exponentially decaying slope. The modified linear model offers improved long-term prediction accuracy and robustness, particularly when data availability is limited. Capacity forecasts based on only 40 cycles yielded results comparable to those using 100 cycles, demonstrating the model’s efficiency. End-of-life estimates based on the modified linear model align more closely with typical LFP specifications, whereas conventional models tend to underestimate the cycle life. The proposed model offers a practical balance between computational simplicity and predictive accuracy, making it well suited for battery health diagnostics. Full article
Show Figures

Figure 1

27 pages, 4005 KiB  
Article
Quantum-Enhanced Predictive Degradation Pathway Optimization for PV Storage Systems: A Hybrid Quantum–Classical Approach for Maximizing Longevity and Efficiency
by Dawei Wang, Shuang Zeng, Liyong Wang, Baoqun Zhang, Cheng Gong, Zhengguo Piao and Fuming Zheng
Energies 2025, 18(14), 3708; https://doi.org/10.3390/en18143708 - 14 Jul 2025
Viewed by 264
Abstract
The increasing deployment of photovoltaic and energy storage systems (ESSs) in modern power grids has highlighted the critical challenge of component degradation, which significantly impacts system efficiency, operational costs, and long-term reliability. Conventional energy dispatch and optimization approaches fail to adequately mitigate the [...] Read more.
The increasing deployment of photovoltaic and energy storage systems (ESSs) in modern power grids has highlighted the critical challenge of component degradation, which significantly impacts system efficiency, operational costs, and long-term reliability. Conventional energy dispatch and optimization approaches fail to adequately mitigate the progressive efficiency loss in PV modules and battery storage, leading to suboptimal performance and reduced system longevity. To address these challenges, this paper proposes a quantum-enhanced degradation pathway optimization framework that dynamically adjusts operational strategies to extend the lifespan of PV storage systems while maintaining high efficiency. By leveraging quantum-assisted Monte Carlo simulations and hybrid quantum–classical optimization, the proposed model evaluates degradation pathways in real time and proactively optimizes energy dispatch to minimize efficiency losses due to aging effects. The framework integrates a quantum-inspired predictive maintenance algorithm, which utilizes probabilistic modeling to forecast degradation states and dynamically adjust charge–discharge cycles in storage systems. Unlike conventional optimization methods, which struggle with the complexity and stochastic nature of degradation mechanisms, the proposed approach capitalizes on quantum parallelism to assess multiple degradation scenarios simultaneously, significantly enhancing computational efficiency. A three-layer hierarchical optimization structure is introduced, ensuring real-time degradation risk assessment, periodic dispatch optimization, and long-term predictive adjustments based on PV and battery aging trends. The framework is tested on a 5 MW PV array coupled with a 2.5 MWh lithium-ion battery system, with real-world degradation models applied to reflect light-induced PV degradation (0.7% annual efficiency loss) and battery state-of-health deterioration (1.2% per 100 cycles). A hybrid quantum–classical computing environment, utilizing D-Wave’s Advantage quantum annealer alongside a classical reinforcement learning-based optimization engine, enables large-scale scenario evaluation and real-time operational adjustments. The simulation results demonstrate that the quantum-enhanced degradation optimization framework significantly reduces efficiency losses, extending the PV module’s lifespan by approximately 2.5 years and reducing battery-degradation-induced wear by 25% compared to conventional methods. The quantum-assisted predictive maintenance model ensures optimal dispatch strategies that balance energy demand with system longevity, preventing excessive degradation while maintaining grid reliability. The findings establish a novel paradigm in degradation-aware energy optimization, showcasing the potential of quantum computing in enhancing the sustainability and resilience of PV storage systems. This research paves the way for the broader integration of quantum-based decision-making in renewable energy infrastructure, enabling scalable, high-performance optimization for future energy systems. Full article
Show Figures

Figure 1

30 pages, 4926 KiB  
Article
Impact Testing of Aging Li-Ion Batteries from Light Electric Vehicles (LEVs)
by Miguel Antonio Cardoso-Palomares, Juan Carlos Paredes-Rojas, Juan Alejandro Flores-Campos, Armando Oropeza-Osornio and Christopher René Torres-SanMiguel
Batteries 2025, 11(7), 263; https://doi.org/10.3390/batteries11070263 - 13 Jul 2025
Viewed by 397
Abstract
The increasing adoption of Light Electric Vehicles (LEVs) in urban areas, driven by the micromobility wave, raises significant safety concerns, particularly regarding battery fire incidents. This research investigates the electromechanical performance of aged 18650 lithium-ion batteries (LIBs) from LEVs under mechanical impact conditions. [...] Read more.
The increasing adoption of Light Electric Vehicles (LEVs) in urban areas, driven by the micromobility wave, raises significant safety concerns, particularly regarding battery fire incidents. This research investigates the electromechanical performance of aged 18650 lithium-ion batteries (LIBs) from LEVs under mechanical impact conditions. For this study, a battery module from a used e-scooter was disassembled, and its constituent cells were reconfigured into compact modules for testing. To characterize their initial condition, the cells underwent cycling tests to evaluate their state of health (SOH). Although a slight majority of the cells retained an SOH greater than 80%, a notable increase in their internal resistance (IR) was also observed, indicating degradation due to aging. The mechanical impact tests were conducted in adherence to the UL 2271:2018 standard, employing a semi-sinusoidal acceleration pulse. During these tests, linear kinematics were analyzed using videogrammetry, while key electrical and thermal parameters were monitored. Additionally, strain gauges were installed on the central cells to measure stress and deformation. The results from the mechanical shock tests revealed characteristic acceleration and velocity patterns. These findings clarify the electromechanical behavior of aged LIBs under impact, providing critical data to enhance the safety and reliability of these vehicles. Full article
Show Figures

Figure 1

20 pages, 30273 KiB  
Article
Integrated Framework of LSTM and Physical-Informed Neural Network for Lithium-Ion Battery Degradation Modeling and Prediction
by Yan Ding, Jinqi Zhu, Yang Liu, Dan Ning and Mingyue Qin
AI 2025, 6(7), 149; https://doi.org/10.3390/ai6070149 - 7 Jul 2025
Viewed by 734
Abstract
Accurate prediction of the State of Health (SOH) of lithium-ion batteries is essential for ensuring their safe and reliable operation. However, traditional deep learning approaches often suffer from challenges such as overfitting, limited generalization capability, and suboptimal prediction accuracy. To address these issues, [...] Read more.
Accurate prediction of the State of Health (SOH) of lithium-ion batteries is essential for ensuring their safe and reliable operation. However, traditional deep learning approaches often suffer from challenges such as overfitting, limited generalization capability, and suboptimal prediction accuracy. To address these issues, this paper proposes a novel framework that combines a Long Short-Term Memory (LSTM) network with a Physics-Informed Neural Network (PINN), referred to as LSTM-PINN, for high-precision SOH estimation. The proposed framework models battery degradation using state-space equations and extracts latent temporal features. These features are further integrated into a Deep Hidden Temporal Physical Module (DeepHTPM), which incorporates physical prior knowledge into the learning process. This integration significantly enhances the model’s ability to accurately capture the complex dynamics of battery degradation. The effectiveness of LSTM-PINN is validated using two publicly available datasets based on graphite cathode materials (NASA and CACLE). Extensive experimental results demonstrate the superior predictive performance of the proposed model, achieving Mean Absolute Errors (MAEs) of just 0.594% and 0.746% and Root Mean Square Errors (RMSEs) of 0.791% and 0.897% on the respective datasets. Our proposed LSTM-PINN framework enables accurate battery aging modeling, advancing lithium-ion battery SOH prediction for industrial applications. Full article
Show Figures

Figure 1

25 pages, 4568 KiB  
Article
Lithium-Ion Battery State of Health Estimation Based on CNN-LSTM-Attention-FVIM Algorithm and Fusion of Multiple Health Features
by Guoju Liu, Zhihui Deng, Yonghong Xu, Lianfeng Lai, Guoqing Gong, Liang Tong, Hongguang Zhang, Yiyang Li, Minghui Gong, Mengxiang Yan and Zheng Ye
Appl. Sci. 2025, 15(13), 7555; https://doi.org/10.3390/app15137555 - 5 Jul 2025
Viewed by 532
Abstract
Lithium-ion batteries play a vital role in human society. Therefore, it is of critical significance to reliably predict the evolution of State of Health (SOH) degradation patterns in order to improve the high accuracy and stability of lithium-ion battery SOH prediction. This paper [...] Read more.
Lithium-ion batteries play a vital role in human society. Therefore, it is of critical significance to reliably predict the evolution of State of Health (SOH) degradation patterns in order to improve the high accuracy and stability of lithium-ion battery SOH prediction. This paper proposes a novel SOH predication method by combing the four-vector intelligent metaheuristic (FVIM) with the CNN-LSTM-Attention basic model. The model adopts the collaborative architecture of a convolutional neural network and time series module, strengthens the cross-level feature interaction by introducing a multi-level attention mechanism, then uses the FVIM optimization algorithm to optimize the key parameters to realize the overall model architecture. By analyzing the charging voltage curve of lithium-ion batteries, the health factors with high correlation are extracted, and the correlation between the health factors and battery capacity is verified using two correlation coefficients. After the model is verified on a single NASA battery aging dataset, the model is compared with other models under the same relevant parameters and environmental settings to verify the high-precision prediction of the model. During the analysis and comparison process, CNN-LSTM-Attention-FVIM achieved a high fitting ability for battery SOH prediction estimation, with the mean absolute error (MAE) and root mean square error (RMSE) within 0.99% and 1.33%, respectively, reflecting the model’s high generalization ability and high prediction performance. Full article
Show Figures

Figure 1

18 pages, 4203 KiB  
Article
Enhancing Lithium-Ion Battery State-of-Health Estimation via an IPSO-SVR Model: Advancing Accuracy, Robustness, and Sustainable Battery Management
by Siyuan Shang, Yonghong Xu, Hongguang Zhang, Hao Zheng, Fubin Yang, Yujie Zhang, Shuo Wang, Yinlian Yan and Jiabao Cheng
Sustainability 2025, 17(13), 6171; https://doi.org/10.3390/su17136171 - 4 Jul 2025
Viewed by 396
Abstract
Precise forecasting of lithium-ion battery health status is crucial for safe, efficient, and sustainable operation throughout the battery life cycle, especially in applications like electric vehicles (EVs) and renewable energy storage systems. In this study, an improved particle swarm optimization–support vector regression (IPSO-SVR) [...] Read more.
Precise forecasting of lithium-ion battery health status is crucial for safe, efficient, and sustainable operation throughout the battery life cycle, especially in applications like electric vehicles (EVs) and renewable energy storage systems. In this study, an improved particle swarm optimization–support vector regression (IPSO-SVR) model is proposed for dynamic hyper-parameter tuning, integrating multiple intelligent optimization algorithms (including PSO, genetic algorithm, whale optimization, and simulated annealing) to enhance the accuracy and generalization of battery state-of-health (SOH) estimation. The model dynamically adjusts SVR hyperparameters to better capture the nonlinear aging characteristics of batteries. We validate the approach using a publicly available NASA lithium-ion battery degradation dataset (cells B0005, B0006, B0007). Key health features are extracted from voltage–capacity curves (via incremental capacity analysis), and correlation analysis confirms their strong relationship with battery capacity. Experimental results show that the proposed IPSO-SVR model outperforms a conventional PSO-SVR benchmark across all three datasets, achieving higher prediction accuracy: a mean MAE of 0.611%, a mean RMSE of 0.794%, a mean MSE of 0.007%, and robustness a mean R2 of 0.933. These improvements in SOH prediction not only ensure more reliable battery management but also support sustainable energy practices by enabling longer battery life spans and more efficient resource utilization. Full article
Show Figures

Figure 1

Back to TopTop