Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,008)

Search Parameters:
Keywords = lithium metal battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1978 KB  
Article
Challenging the Circular Economy: Hidden Hazards of Disposable E-Cigarette Waste
by Iwona Pasiecznik, Kamil Banaszkiewicz, Mateusz Koczkodaj and Aleksandra Ciesielska
Sustainability 2026, 18(2), 961; https://doi.org/10.3390/su18020961 (registering DOI) - 17 Jan 2026
Abstract
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite [...] Read more.
Waste electrical and electronic equipment (WEEE) is one of the fastest-growing waste streams globally. Disposable e-cigarettes are among the products that have gained popularity in recent years. Their complex construction and embedded lithium-ion batteries (LIBs) present environmental, safety, and resource recovery challenges. Despite growing research interest, integrated analyses linking material composition with user disposal behavior remain limited. This study is the first to incorporate device-level mass balance, material contamination assessment, battery residual charge measurements, and user behavior to evaluate the waste management challenges of disposable e-cigarettes. A mass balance of twelve types of devices on the Polish market was performed. Plastics dominated in five devices, while non-ferrous metals prevailed in the others, depending on casing design. Materials contaminated with e-liquid residues accounted for 4.4–10.7% of device mass. Battery voltage measurements revealed that 25.6% of recovered LIBs retained a residual charge (greater than 2.5 V), posing a direct fire hazard during waste handling and treatment. Moreover, it was estimated that 7 to 12 tons of lithium are introduced annually into the Polish market via disposable e-cigarettes, highlighting substantial resource potential. Survey results showed that 46% of users disposed of devices in mixed municipal waste, revealing a knowledge–practice gap largely independent of gender or education. Integrating technical and social findings demonstrates that improper handling is a systemic issue. The findings support the relevance of eco-design requirements, such as modular casings for battery removal, alongside the enforcement of Extended Producer Responsibility (EPR) schemes. Current product fees (0.01–0.03 EUR/unit) remain insufficient to establish an effective collection infrastructure, highlighting a key systemic barrier. Full article
(This article belongs to the Special Issue Resource Management and Circular Economy Sustainability)
Show Figures

Figure 1

17 pages, 1193 KB  
Article
Potentials of Magnetron Sputtering for Battery Applications—A Case Study for Thin Lithium Metal Anodes
by Nikolas Dilger, Matteo Kaminski, Julian Brokmann, Jutta Janssen, Thomas Neubert and Sabrina Zellmer
Surfaces 2026, 9(1), 10; https://doi.org/10.3390/surfaces9010010 - 15 Jan 2026
Viewed by 119
Abstract
Due to its very high theoretical specific capacity, lithium is still considered a promising anode material for innovative next-generation battery cells. The aim is to produce thin lithium metal anodes (LMAs) that are sufficient for the battery cell due to the lithium already [...] Read more.
Due to its very high theoretical specific capacity, lithium is still considered a promising anode material for innovative next-generation battery cells. The aim is to produce thin lithium metal anodes (LMAs) that are sufficient for the battery cell due to the lithium already present in the cathode and thus additionally increase the energy density of the cell. The production of thin lithium layers (<10 µm) is challenging with most processes, and very costly with decreasing thickness. In this study, the use of magnetron sputtering to deposit thin layers of lithium for the production of LMAs is tested. An innovative process—the deposition of lithium from a liquid phase via Hot Target Sputtering—will be presented that has the potential to overcome the previous limitations in the deposition rate, and enables the potential for industrial application. The process was successfully tested in terms of general process control, stability and reproducibility and used to produce lithium metal anodes. These were then successfully integrated in All-Solid-State-Battery (ASSB) cells and compared with a lithium reference foil in a C-rate test with regard to their electrochemical performance reaching ≈ 110 mAh g−1 at a 1C discharge rate. Full article
(This article belongs to the Special Issue Surface Science in Electrochemical Energy Storage)
Show Figures

Figure 1

40 pages, 5340 KB  
Review
Emerging Electrode Materials for Next-Generation Electrochemical Devices: A Comprehensive Review
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Micromachines 2026, 17(1), 106; https://doi.org/10.3390/mi17010106 - 13 Jan 2026
Viewed by 138
Abstract
The field of electrochemical devices, encompassing energy storage, fuel cells, electrolysis, and sensing, is fundamentally reliant on the electrode materials that govern their performance, efficiency, and sustainability. Traditional materials, while foundational, often face limitations such as restricted reaction kinetics, structural deterioration, and dependence [...] Read more.
The field of electrochemical devices, encompassing energy storage, fuel cells, electrolysis, and sensing, is fundamentally reliant on the electrode materials that govern their performance, efficiency, and sustainability. Traditional materials, while foundational, often face limitations such as restricted reaction kinetics, structural deterioration, and dependence on costly or scarce elements, driving the need for continuous innovation. Emerging electrode materials are designed to overcome these challenges by delivering enhanced reaction activity, superior mechanical robustness, accelerated ion diffusion kinetics, and improved economic feasibility. In energy storage, for example, the shift from conventional graphite in lithium-ion batteries has led to the exploration of silicon-based anodes, offering a theoretical capacity more than tenfold higher despite the challenge of massive volume expansion, which is being mitigated through nanostructuring and carbon composites. Simultaneously, the rise of sodium-ion batteries, appealing due to sodium’s abundance, necessitates materials like hard carbon for the anode, as sodium’s larger ionic radius prevents efficient intercalation into graphite. In electrocatalysis, the high cost of platinum in fuel cells is being addressed by developing Platinum-Group-Metal-free (PGM-free) catalysts like metal–nitrogen–carbon (M-N-C) materials for the oxygen reduction reaction (ORR). Similarly, for the oxygen evolution reaction (OER) in water electrolysis, cost-effective alternatives such as nickel–iron hydroxides are replacing iridium and ruthenium oxides in alkaline environments. Furthermore, advancements in materials architecture, such as MXenes—two-dimensional transition metal carbides with metallic conductivity and high volumetric capacitance—and Single-Atom Catalysts (SACs)—which maximize metal utilization—are paving the way for significantly improved supercapacitor and catalytic performance. While significant progress has been made, challenges related to fundamental understanding, long-term stability, and the scalability of lab-based synthesis methods remain paramount for widespread commercial deployment. The future trajectory involves rational design leveraging advanced characterization, computational modeling, and machine learning to achieve holistic, system-level optimization for sustainable, next-generation electrochemical devices. Full article
Show Figures

Figure 1

32 pages, 1806 KB  
Article
Mapping the Supply Chain of Lithium-Ion Battery Metals from Mine to Primary Processing by Country and Corporation
by Ramsha Akhter, Sisira Reddy Palli, Mithilesh Walanjuwani and Erick C. Jones
Commodities 2026, 5(1), 2; https://doi.org/10.3390/commodities5010002 - 13 Jan 2026
Viewed by 239
Abstract
Global critical mineral production patterns differ markedly across the metals needed for advanced energy technologies. This study examines the extraction and processing landscape, in the year 2024, of six key commodities—lithium, cobalt, aluminum, nickel, manganese, and copper—to identify who the major players (countries [...] Read more.
Global critical mineral production patterns differ markedly across the metals needed for advanced energy technologies. This study examines the extraction and processing landscape, in the year 2024, of six key commodities—lithium, cobalt, aluminum, nickel, manganese, and copper—to identify who the major players (countries and corporations) are in the critical mineral space and to understand what they are mining, where they are mining, and where are they sending their ore to be processed. This study aims to provide a snapshot of the critical mineral supply chain that serves as a useful resource for researchers and policymakers seeking to understand and improve the critical mineral supply chain. We analyze company financial filings, government datasets, and other public and proprietary sources for the year 2024. Then, we calculate production volumes and identify geographic and corporate concentration. The results show that copper and aluminum production and processing are relatively diverse, while lithium and cobalt extraction and processing are highly concentrated among a few countries and dominant firms. Nickel and manganese occupy an intermediate position, displaying moderate diversity with emerging signs of consolidation. Full article
Show Figures

Figure 1

20 pages, 1050 KB  
Article
Patent-Based Prospective Life Cycle Assessment and Eco-Design of Lithium–Sulfur Batteries
by Baris Ördek and Christian Spreafico
Sustainability 2026, 18(2), 711; https://doi.org/10.3390/su18020711 - 10 Jan 2026
Viewed by 215
Abstract
Lithium–sulfur batteries (LSBs) are a promising emerging technology due to their high energy density, low-cost materials, and safety. However, their environmental sustainability is not yet well understood. This study conducted a prospective life cycle assessment (LCA) on two patented LSB models, using data [...] Read more.
Lithium–sulfur batteries (LSBs) are a promising emerging technology due to their high energy density, low-cost materials, and safety. However, their environmental sustainability is not yet well understood. This study conducted a prospective life cycle assessment (LCA) on two patented LSB models, using data from patents as the inventory: one with a standard sulfur cathode and another with a graphene–sulfur composite (GSC). The assessment is conducted for a functional unit of 1 Wh of produced electricity, adopting a cradle-to-gate system boundary and a prospective time horizon set to 2035. The LSB GSC model battery showed significantly better performance in terms of climate change and fossil depletion, with a 42% lower impact, mainly due to a reduction in the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) content from 1205 mg Wh−1 to 250 mg Wh−1. However, the GSC model also had significant drawbacks, showing a 93% higher metal depletion and 49% higher water depletion than the standard sulfur battery. Building on an established patent-based prospective LCA approach, this work applies patent-derived quantitative inventories and patent-informed eco-design analysis to support environmentally informed design decisions for emerging LSB technologies prior to large-scale commercialization. Full article
(This article belongs to the Special Issue Smart Technologies Toward Sustainable Eco-Friendly Industry)
Show Figures

Figure 1

21 pages, 266 KB  
Proceeding Paper
Metal Oxide Nanomaterials for Energy Density Improvement in Lithium-Ion and Solid-State Batteries
by Partha Protim Borthakur, Pranjal Sarmah, Madhurjya Saikia, Tamanna Afruja Hussain and Nayan Medhi
Mater. Proc. 2025, 25(1), 17; https://doi.org/10.3390/materproc2025025017 - 7 Jan 2026
Viewed by 182
Abstract
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation [...] Read more.
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation energy storage technologies. In LIBs, the high surface-to-volume ratio of metal oxide nanomaterials significantly enlarges the active interfacial area and shortens the lithium-ion diffusion paths, leading to an improved high-rate performance and enhanced energy density. Transition metal oxides (TMOs) such as nickel oxide (NiO), copper oxide (CuO), and zinc oxide (ZnO) have demonstrated significant theoretical capacities, while binary systems like NiCuO offer further improvements in cycling stability and energy output. Additionally, layered lithium-based TMOs, particularly those incorporating nickel, cobalt, and manganese, have shown remarkable promise in achieving high specific capacities and long-term stability. The synergistic integration of metal oxides with carbon-based nanostructures, such as carbon nanotubes (CNTs), enhances the electrical conductivity and structural durability further, leading to a superior electrochemical performance in LIBs. In SSBs, the use of oxide-based solid electrolytes like garnet-type Li7La3Zr2O12 (LLZO) and sulfide-based electrolytes has facilitated the development of high-energy-density systems with excellent ionic conductivity and chemical stability. However, challenges such as high interfacial resistance at the electrode–electrolyte interface persist. Strategies like the application of lithium niobate (LiNbO3) coatings have been employed to enhance interfacial stability and maintain electrochemical integrity. Furthermore, two-dimensional (2D) metal oxide nanomaterials, owing to their high active surface areas and rapid ion transport, have demonstrated considerable potential to boost the performance of SSBs. Despite these advancements, several challenges remain. Morphological optimization of nanomaterials, improved interface engineering to reduce the interfacial resistance, and solutions to address dendrite formation and mechanical degradation are critical to achieving the full potential of these materials. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
37 pages, 927 KB  
Review
Circular Economy Pathways for Critical Raw Materials: European Union Policy Instruments, Secondary Supply, and Sustainable Development Outcomes
by Sergiusz Pimenow, Olena Pimenowa and Włodzimierz Rembisz
Sustainability 2026, 18(2), 562; https://doi.org/10.3390/su18020562 - 6 Jan 2026
Viewed by 329
Abstract
Achieving sustainable development in the low-carbon transition requires securing critical raw materials (CRMs) while reducing environmental burdens and strengthening industrial resilience (SDGs 7, 9, 12, 13). This review synthesizes 2016–2025 evidence on how the European Union’s policy package—the Critical Raw Materials Act (CRMA), [...] Read more.
Achieving sustainable development in the low-carbon transition requires securing critical raw materials (CRMs) while reducing environmental burdens and strengthening industrial resilience (SDGs 7, 9, 12, 13). This review synthesizes 2016–2025 evidence on how the European Union’s policy package—the Critical Raw Materials Act (CRMA), the Batteries Regulation, the Ecodesign for Sustainable Products Regulation (ESPR) with Digital Product Passports (DPPs), and the recast Waste Shipments Regulation (WSR)—shapes markets for secondary supply in battery-relevant metals such as lithium, cobalt, nickel, copper, aluminum, and rare earths. We apply a structured scoping review protocol to map the state of the art across policy instruments (EPR, ecodesign/DPP, recycled content mandates, recovery targets, shipment controls) and value chain stages (collection, preprocessing, refining, manufacturing). The analysis highlights benefits, including clearer investment signals, improved traceability, and emerging opportunities for industrial symbiosis, but also identifies drawbacks such as heterogeneous standards, compliance costs, and trade frictions. Evidence gaps remain, especially in causal ex post assessments, price pass-through, and interoperability of MRV/DPP systems. The paper contributes by (i) providing an integrative framework linking policy instruments, value chain stages, and investment signals for secondary CRM supply, and (ii) outlining a research agenda for rigorous ex post evaluation, improved MRV/DPP data architectures, and better alignment between EU trade rules, circularity, and a just energy transition. Full article
Show Figures

Figure 1

15 pages, 1916 KB  
Article
Improvement of Cyclic Stability of High-Capacity Lithium-Ion Battery Si/C Composite Anode Through Cu Current Collector Perforation
by Shakhboz Sh. Isokjanov, Ainur B. Gilmanov, Yulia S. Vlasova, Alena I. Komayko, Olesia M. Karakulina and Valeriy V. Krivetskiy
J. Compos. Sci. 2026, 10(1), 11; https://doi.org/10.3390/jcs10010011 - 1 Jan 2026
Viewed by 457
Abstract
The adoption of silicon-graphite composites as anode materials for the next generation of lithium-ion batteries with enhanced specific capacity requires complex technological efforts in order to mitigate the problem of the quick performance fading of electrodes due to the mechanical degradation of materials. [...] Read more.
The adoption of silicon-graphite composites as anode materials for the next generation of lithium-ion batteries with enhanced specific capacity requires complex technological efforts in order to mitigate the problem of the quick performance fading of electrodes due to the mechanical degradation of materials. The matter is currently being addressed in terms of electrolyte components, polymer binders, materials structure and morphology itself, as well as current collector design, which differ greatly in cost and scalability. The present work describes the efficacy of Cu foil perforation—a simple, low-cost, and easily scalable approach—as a means of Si/C composite anode performance stabilization during extensive charge-discharge cycling. The NMC||Si/C pouch-type full cells demonstrated over 90% of initial capacity retention after 100 charge-discharge cycles in the case of a 250 µm perforated Cu foil used as a current collector, compared to only 60% capacity left in the same conditions for plain Cu foil as an anode. The obtained result is related to the prevention of anode material delamination off the foil surface as a result of silicon expansion and contraction, which is achieved through the formation inter-penetrating metal-composite structure and the presence of “stitches”, connecting and holding both sides of the electrode tightly attached to the current collector. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

8 pages, 608 KB  
Proceeding Paper
Fiber Metal Laminates for Battery Boxes: A Compromise Between Strength and Rigidity
by Claudio Mingazzini, Matteo Scafè, Edoardo Mariani, Giulia De Aloysio, Mattia Morganti, Luca Laghi, Leonardo Ghetti, Stefano Bassi and Cristiano Valli
Eng. Proc. 2025, 119(1), 45; https://doi.org/10.3390/engproc2025119045 - 30 Dec 2025
Viewed by 181
Abstract
Fiber Metal Laminates (FML), produced in both monolithic and sandwich configurations with glass-, basalt- and carbon-reinforced composites, were investigated for application in fire-resistant lithium battery boxes. Different resins, including recyclable and bio-based systems, were tested to improve sustainability; cores of recycled PET (RPET, [...] Read more.
Fiber Metal Laminates (FML), produced in both monolithic and sandwich configurations with glass-, basalt- and carbon-reinforced composites, were investigated for application in fire-resistant lithium battery boxes. Different resins, including recyclable and bio-based systems, were tested to improve sustainability; cores of recycled PET (RPET, 150 g/dm3, 10 mm) were considered. The study focused on the effect of core introduction on mechanical performance, with the dual goal of reducing weight and achieving stiffness values compliant with automotive OEM standards for lithium battery housings. Results demonstrated that sandwich structures improved stiffness up to 12-fold compared to monolithic laminates, while preserving the corrosion resistance of the outer aluminium layer and the flexural strength of the laminates after 670 h of Neutral Salt Spray (NSS) exposure. Full article
Show Figures

Figure 1

18 pages, 1579 KB  
Review
Biotechnological Strategies for the Recovery of Lithium and Other Metals from a Secondary Source: The Role of Microorganisms and Metal-Binding Peptides
by Gloria Abigail Martinez-Rodriguez, Juan Antonio Rojas-Contreras, Perla Guadalupe Vázquez-Ortega, Damián Reyes-Jáquez, Hiram Medrano-Roldán, Norma Urtiz-Estrada, Marcelo Barraza-Salas, Grisel Fierros-Romero, Ernesto Rodríguez-Andrade and David Enrique Zazueta-Álvarez
Recycling 2026, 11(1), 4; https://doi.org/10.3390/recycling11010004 - 24 Dec 2025
Viewed by 453
Abstract
The growing demand for lithium, driven by its key role in rechargeable batteries and its use in electric vehicles, highlights the need for sustainable and environmentally friendly recovery strategies. Conventional methods, such as pyrometallurgy and hydrometallurgy, are effective but costly and harmful as [...] Read more.
The growing demand for lithium, driven by its key role in rechargeable batteries and its use in electric vehicles, highlights the need for sustainable and environmentally friendly recovery strategies. Conventional methods, such as pyrometallurgy and hydrometallurgy, are effective but costly and harmful as they emit toxic compounds. Biohydrometallurgy has emerged as a promising alternative, as it uses microorganisms and their metabolites to solubilize metals under milder conditions. Biohydrometallurgy has emerged as a promising alternative, as it relies on microorganisms and their metabolites to solubilize metals under mild operating conditions. Nevertheless, challenges related to process efficiency and selectivity remain, particularly for lithium recovery. In this context, recent advances in metal-binding peptides have attracted increasing attention due to their inherent selectivity and the possibility of rational design and heterologous expression in well-established microbial hosts such as Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae. This review critically analyzes current biotechnological strategies and explores the integration of microbial bioleaching with peptide-based approaches as a complementary and environmentally friendly framework for the selective recovery of lithium and other metals from spent batteries and waste electrical and electronic equipment. Overall, this review provides an integrative conceptual framework that highlights the potential of combining microbial processes with metal-binding peptides to guide the development of more selective and sustainable biotechnological strategies for lithium recovery from secondary sources. Full article
(This article belongs to the Topic The Role of Microorganisms in Waste Treatment)
Show Figures

Graphical abstract

18 pages, 3937 KB  
Article
A Novel SPH-Based Approach to Predicting Explosion-Induced Failure and Containment in 18650 Battery Systems
by Murat Demiral, Erol Gültekin and Murat Otkur
Appl. Sci. 2026, 16(1), 153; https://doi.org/10.3390/app16010153 - 23 Dec 2025
Viewed by 196
Abstract
This study presents a comprehensive smoothed particle hydrodynamics (SPH) framework developed to investigate the thermomechanical response and failure behavior of cylindrical 18650-type lithium-ion battery cans under explosion conditions. The model captures the coupled evolution of gas pressure, temperature, and particle dynamics, as well [...] Read more.
This study presents a comprehensive smoothed particle hydrodynamics (SPH) framework developed to investigate the thermomechanical response and failure behavior of cylindrical 18650-type lithium-ion battery cans under explosion conditions. The model captures the coupled evolution of gas pressure, temperature, and particle dynamics, as well as the resulting deformation and fracture of the metallic enclosure. Parametric analyses were conducted to evaluate the influence of the internal gas domain geometry, can wall thickness, and initial pressure on the structural response, along with the subsequent post-explosion interaction between the escaping gas and external protective coverage. The results demonstrate the strong dependence of failure initiation on gas confinement geometry and highlight the existence of transient thermodynamic asymmetries within the gas domain that govern the impulse transferred to the can wall. The proposed modeling approach provides a physically consistent means of reproducing the key stages of battery explosion—from internal pressurization to external gas impact—and offers valuable insights for designing safer and more resilient energy storage enclosures. Full article
(This article belongs to the Special Issue Advances in Structural Integrity and Failure Analysis)
Show Figures

Figure 1

26 pages, 2532 KB  
Review
Engineering Polyampholytes for Energy Storage Devices: Conductivity, Selectivity, and Durability
by Madina Mussalimova, Nargiz Gizatullina, Gaukhargul Yelemessova, Anel Taubatyrova, Zhanserik Shynykul and Gaukhar Toleutay
Polymers 2026, 18(1), 18; https://doi.org/10.3390/polym18010018 - 21 Dec 2025
Viewed by 387
Abstract
Polyampholytes combine cationic and anionic groups in one macromolecular platform and are emerging as versatile components for energy storage and conversion. This review synthesizes how their charge balance, hydration, and architecture can be engineered to address ionic transport, interfacial stability, and safety across [...] Read more.
Polyampholytes combine cationic and anionic groups in one macromolecular platform and are emerging as versatile components for energy storage and conversion. This review synthesizes how their charge balance, hydration, and architecture can be engineered to address ionic transport, interfacial stability, and safety across batteries, supercapacitors, solar cells, and fuel cells. We classify annealed, quenched, and zwitterionic systems, outline molecular design strategies that tune charge ratio, distribution, and crosslinking, and compare device roles as gel or solid electrolytes, eutectogels, ionogels, binders, separator coatings, and interlayers. Comparative tables summarize ionic conductivity, cation transference number, electrochemical window, mechanical robustness, and temperature tolerance. Across Li and Zn batteries, polyampholytes promote ion dissociation, homogenize interfacial fields, suppress dendrites, and stabilize interphases. In supercapacitors, antifreeze hydrogels and poly(ionic liquid) networks maintain conductivity and elasticity under strain and at subzero temperature. In solar cells, zwitterionic interlayers improve work function alignment and charge extraction, while ordered networks in fuel cell membranes enable selective ion transport with reduced crossover. Design rules emerge that couple charge neutrality with controlled hydration and dynamic crosslinking to balance conductivity and mechanics. Key gaps include brittleness, ion pairing with multivalent salts, and scale-up. Opportunities include soft segment copolymerization, ionic liquid and DES plasticization, side-chain engineering, and operando studies to guide translation. Full article
(This article belongs to the Special Issue Functional Gel and Their Multipurpose Applications)
Show Figures

Figure 1

18 pages, 6466 KB  
Article
Copper-Mediated Leaching of LiCoO2 in H3PO4: Kinetics and Residue Transformation
by Dragana Medić, Ivan Đorđević, Maja Nujkić, Vladan Nedelkovski, Aleksandra Papludis, Stefan Đorđievski and Nataša Gajić
Chemistry 2025, 7(6), 203; https://doi.org/10.3390/chemistry7060203 - 17 Dec 2025
Viewed by 328
Abstract
The recycling of spent lithium-ion batteries (LIBs) requires efficient and sustainable methods for recovering critical metals. In this study, the leaching behavior of LiCoO2 cathode material obtained from spent LIBs was investigated in phosphoric acid, using copper powder recovered from waste LIBs [...] Read more.
The recycling of spent lithium-ion batteries (LIBs) requires efficient and sustainable methods for recovering critical metals. In this study, the leaching behavior of LiCoO2 cathode material obtained from spent LIBs was investigated in phosphoric acid, using copper powder recovered from waste LIBs as a reducing agent. Leaching experiments were conducted under various conditions (temperature, solid-to-liquid ratio, agitation rate) and compared with systems without copper. In the absence of copper, lithium and cobalt, recoveries after 30 min were approximately 77% and 23%, respectively. The addition of copper significantly enhanced leaching, achieving >96% recovery for both metals at 80 °C, with most extraction occurring within the first 30 min. Kinetic analysis using the shrinking core model indicated a mixed-control mechanism involving both surface chemical reaction and product layer diffusion. The calculated activation energies were 20.2 kJ·mol−1 for lithium and 16.1 kJ·mol−1 for cobalt. Solid residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). XRD results revealed that the composition of the residues varied with leaching temperature: Co3O4 was consistently detected, whereas Cu8(PO3OH)2(PO4)4·7H2O appeared only when leaching was performed above 50 °C. Thermodynamic calculations supported the reductive role of copper and provided insight into possible reaction pathways. These findings confirm the effectiveness of copper-mediated leaching in phosphoric acid and demonstrate that temperature strongly influences residue phase evolution, thereby offering valuable guidance for the design of sustainable LIB recycling processes. Full article
(This article belongs to the Section Green and Environmental Chemistry)
Show Figures

Graphical abstract

30 pages, 3933 KB  
Review
Next-Generation Electrically Conductive Polymers: Innovations in Solar and Electrochemical Energy Devices
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(24), 3331; https://doi.org/10.3390/polym17243331 - 17 Dec 2025
Viewed by 708
Abstract
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, [...] Read more.
The emergence of electrically conductive polymeric materials has revolutionized the landscape of sustainable energy technologies, presenting unprecedented opportunities for advancing both photovoltaic conversion systems and electrochemical energy-storage platforms. These remarkable macromolecular materials exhibit distinctive characteristics including adjustable electronic band structures, exceptional mechanical adaptability, solution-phase processability, and cost-effective manufacturing potential. This extensive review provides an in-depth examination of the fundamental principles governing charge carrier mobility in conjugated polymer systems, explores diverse synthetic methodologies for tailoring molecular architectures, and analyzes their transformative applications across multiple energy technology domains. In photovoltaic technologies, electrically conductive polymers have driven major advancements in organic solar cells and photoelectrochemical systems, significantly improving energy conversion efficiency while reducing manufacturing costs. In electrochemical energy storage, their integration into supercapacitors and rechargeable lithium-based batteries has enhanced charge storage capability, accelerated charge–discharge processes, and extended operational lifespan compared with conventional electrode materials. This comprehensive analysis emphasizes emerging developments in hybrid composite architectures that combine conductive polymers with carbon-based nanomaterials, metal oxides, and other functional components to create next-generation flexible, lightweight, and wearable energy systems. By synthesizing fundamental materials chemistry with device engineering perspectives, this review illuminates the transformative potential of electrically conductive polymers in establishing sustainable, efficient, and resilient energy infrastructures for future technological landscapes. Full article
Show Figures

Figure 1

15 pages, 6547 KB  
Article
Electrowinning of Nickel from Lithium-Ion Batteries
by Katarzyna Łacinnik, Szymon Wojciechowski, Wojciech Mikołajczak, Artur Maciej and Wojciech Simka
Materials 2025, 18(24), 5653; https://doi.org/10.3390/ma18245653 - 16 Dec 2025
Viewed by 443
Abstract
The growing demand for lithium-ion batteries (LIBs) is driving a rapid increase in the volume of spent cells which—as hazardous waste—must be managed effectively in accordance with circular-economy principles. Hydrometallurgical recycling allows the recovery of critical metals at far lower environmental cost than [...] Read more.
The growing demand for lithium-ion batteries (LIBs) is driving a rapid increase in the volume of spent cells which—as hazardous waste—must be managed effectively in accordance with circular-economy principles. Hydrometallurgical recycling allows the recovery of critical metals at far lower environmental cost than primary mining. This paper presents a method for obtaining metallic nickel from sulfate leach solutions produced by leaching the so-called “black mass” derived from shredded LIBs. Nickel electrodeposition was performed on a stainless-steel cathode with Ti/Ru-Ir anodes at 60 °C and pH 3.0–4.5. Two process variants were examined. Variant A—with a decreasing Ni2+ concentration (49 → 25 g L−1)—achieved a current efficiency of 60–88%, but the deposits were non-uniform and prone to flaking. Variant B—in which the bath was stabilized by the continuous dissolution of Ni(OH)2 (maintaining Ni2+ at 35–40 g L−1) and amended with PEG-4000, H3BO3 and Na2SO4—reached higher efficiency (78–93%) and produced uniform, bright deposits up to 0.5 mm thick with a purity >90%. The results confirm that keeping the nickel concentration constant and appropriately modifying the electrolyte significantly improve both the qualitative and economic aspects of recovery, highlighting electrolysis as an efficient way to process LIB waste and close the nickel stream within the material cycle. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

Back to TopTop