Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = liquid nitrogen temperature (77 K)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1810 KiB  
Article
The Application of Transformers with High-Temperature Superconducting Windings Considering the Skin Effect in Mobile Power Supply Systems
by Vadim Manusov, Inga Zicmane, Ratmir Galeev, Svetlana Beryozkina and Murodbek Safaraliev
Mathematics 2025, 13(5), 821; https://doi.org/10.3390/math13050821 - 28 Feb 2025
Viewed by 804
Abstract
The active and passive components of transformer electrical equipment have reached their limits regarding modernization and optimization, leading to the implementation of innovative approaches. This is particularly relevant for mobile and autonomous energy complexes due to the introduction of increased frequency, which can [...] Read more.
The active and passive components of transformer electrical equipment have reached their limits regarding modernization and optimization, leading to the implementation of innovative approaches. This is particularly relevant for mobile and autonomous energy complexes due to the introduction of increased frequency, which can be advantageous, especially in geoengineering, where the energy efficiency of electrical equipment is crucial. The new design of transformer equipment utilizing cryogenic technologies incorporates high-temperature superconducting (HTS) windings, a dielectric filler made of liquid nitrogen, and a three-dimensional magnetic system based on amorphous alloys. The finite element method showed that the skin effect does not impact HTS windings compared to conventional designs when the frequency increases. The analysis and synthesis of the parameters of the magnetic system made from amorphous iron and HTS windings in an HTS transformer with a dielectric medium of liquid nitrogen at a temperature of 77 K were performed, significantly reducing the mass and size characteristics of the HTS transformer compared to traditional counterparts while eliminating environmental and fire hazards. Based on these studies, an experimental prototype of an industrial HTS transformer with a capacity of 25 kVA was designed and manufactured. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

8 pages, 5120 KiB  
Brief Report
Tailoring the Ductility of Ti-6Al-4V Titanium Alloy Fabricated by Laser Power Bed Fusion at Liquid Nitrogen Temperature
by Bichen Xie, Wei Zeng, Tian Xia, Lianbo Wang and Kun Chen
Coatings 2024, 14(12), 1528; https://doi.org/10.3390/coatings14121528 - 3 Dec 2024
Cited by 1 | Viewed by 1098
Abstract
By tailoring different microstructural features, this study verifies that the laser powder bed fusion (LPBF)-fabricated Ti-6Al-4V titanium alloy with a fully α/β lamellar structure exhibits excellent ductility at liquid nitrogen temperature. HT-800 was obtained by holding at 800 °C for two hours and [...] Read more.
By tailoring different microstructural features, this study verifies that the laser powder bed fusion (LPBF)-fabricated Ti-6Al-4V titanium alloy with a fully α/β lamellar structure exhibits excellent ductility at liquid nitrogen temperature. HT-800 was obtained by holding at 800 °C for two hours and then furnace-cooled, resulting in a microstructure consisting of residual martensitic α’ phase, lamellar α phase, and particulate β phase. The HT-900 was obtained by holding at 900 °C for two hours and then furnace-cooled, completely eliminating the multi-level martensitic α’ phase generated during the LPBF process and resulting in an α/β lamellar structure. HT-900 achieved an elongation of 11% at liquid nitrogen temperature, a 47% improvement over the HT-800. After low-temperature strain fracture, the proportions of 61.38°<11–20> twin boundaries in the HT-800 and HT-900 were 21.4% and 26.4%, respectively, indicating that a substantial amount of deformation twinning is activated at liquid nitrogen temperature. Twinning induces the activation of slip systems by altering the orientation of surrounding grains. The coordinated plastic deformation of twinning and slip enhances the ductility of the HT-900 at 77 K. The results show that the LPBF-TC4 titanium alloy with a fully α/β lamellar structure exhibits superior, coordinated plastic deformation capabilities at 77 K, maintaining high strength while achieving greater ductility and fracture toughness. Full article
(This article belongs to the Special Issue Laser Surface Engineering: Technologies and Applications)
Show Figures

Figure 1

18 pages, 3796 KiB  
Article
Photocatalytic Degradation of Losartan with BiOCl/Sepiolite Nanocomposites
by Konstantinos Kouvelis, Evangelia E. Karavaka, Dionisios Panagiotaras, Dimitrios Papoulis, Zacharias Frontistis and Athanasia Petala
Catalysts 2024, 14(7), 433; https://doi.org/10.3390/catal14070433 - 7 Jul 2024
Cited by 1 | Viewed by 2002
Abstract
Developing highly active and available, environmentally friendly, and low-cost photocatalytic materials is one of the most popular topics in photocatalytic degradation systems. In the present study, a series of BiOCl/Sepiolite composite photocatalysts were prepared (in the range of 5%BiOCl/Sepiolite–30%BiOCl/Sepiolite). Their characterization was conducted [...] Read more.
Developing highly active and available, environmentally friendly, and low-cost photocatalytic materials is one of the most popular topics in photocatalytic degradation systems. In the present study, a series of BiOCl/Sepiolite composite photocatalysts were prepared (in the range of 5%BiOCl/Sepiolite–30%BiOCl/Sepiolite). Their characterization was conducted using X-ray diffraction, diffuse reflectance spectroscopy, scanning electron microscopy, nitrogen physical physisorption at the temperature of liquid nitrogen (77 K), and attenuated total reflectance-Fourier transform infrared spectroscopy. Results showed that composite photocatalysts possess superior efficiency than the parent materials for losartan, an antihypertensive agent, degradation in water, with the sample with only 10%wt. BiOCl shows the highest performance. The beneficial effect of the addition of sepiolite to BiOCl is derived from the increase in surface area, the prevention of particle aggregation, and the efficient separation of photogenerated species. Increasing catalyst concentration from 125 mg/L up to 500 mg/L was accompanied by an increase in the apparent kinetic constant from 0.077 min−1 to 0.197 min−1 while varying losartan concentration from 0.25 to 5.00 mg/L slowed down the removal efficiency. In addition, losartan degradation was only partially hampered in the case of bottled water, whereas it was practically stopped in a secondary wastewater effluent. Overall, this study serves as a useful guide for using geopolymers in photocatalytic applications. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

13 pages, 2619 KiB  
Article
High-Strain-Rate Deformation Behavior of Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 Eutectic High-Entropy Alloy at Room and Cryogenic Temperatures
by Kun Jiang, Zhiping Xiong and Xi Chen
Materials 2024, 17(12), 2995; https://doi.org/10.3390/ma17122995 - 18 Jun 2024
Cited by 3 | Viewed by 1463
Abstract
The deformation behaviors of Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 eutectic high-entropy alloy (EHEA) under high strain rates have been investigated at both room temperature (RT, 298 K) and liquid nitrogen temperature (LNT, 77 K). The current Co0.96 [...] Read more.
The deformation behaviors of Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 eutectic high-entropy alloy (EHEA) under high strain rates have been investigated at both room temperature (RT, 298 K) and liquid nitrogen temperature (LNT, 77 K). The current Co0.96Cr0.76Fe0.85Ni1.01Hf0.40 EHEA exhibits a high yield strength of 740 MPa along with a high fracture strain of 35% under quasi-static loading. A remarkable positive strain rate effect can be observed, and its yield strength increased to 1060 MPa when the strain rate increased to 3000/s. Decreasing temperature will further enhance the yield strength significantly. The yield strength of this alloy at a strain rate of 3000/s increases to 1240 MPa under the LNT condition. Moreover, the current EHEA exhibits a notable increased strain-hardening ability with either an increasing strain rate or a decreasing temperature. Transmission electron microscopy (TEM) characterization uncovered that the dynamic plastic deformation of this EHEA at RT is dominated by dislocation slip. However, under severe conditions of high strain rate in conjunction with LNT, dislocation dissociation is promoted, resulting in a higher density of nanoscale deformation twins, stacking faults (SFs) as well as immobile Lomer–Cottrell (L-C) dislocation locks. These deformation twins, SFs and immobile dislocation locks function effectively as dislocation barriers, contributing notably to the elevated strain-hardening rate observed during dynamic deformation at LNT. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

17 pages, 10315 KiB  
Article
Unveiling the Stacking Fault-Driven Phase Transition Delaying Cryogenic Fracture in Fe-Co-Cr-Ni-Mo-C-Based Medium-Entropy Alloy
by Hui Ding, Zhenhang Du, Haifeng Zhang, Yu Liu, Shiteng Zhao, Yonggang Yang, Changjun Wang, Simin Lei, Ruming Geng and Chunxu Wang
Materials 2024, 17(11), 2502; https://doi.org/10.3390/ma17112502 - 22 May 2024
Viewed by 1133
Abstract
In this work, the tensile deformation mechanisms of the Fe55Co17.5Cr12.5Ni10Mo5−xCx-based medium-entropy alloy at room temperature (R.T.), 77 K, and 4.2 K are studied. The formation of micro-defects and martensitic transformation to [...] Read more.
In this work, the tensile deformation mechanisms of the Fe55Co17.5Cr12.5Ni10Mo5−xCx-based medium-entropy alloy at room temperature (R.T.), 77 K, and 4.2 K are studied. The formation of micro-defects and martensitic transformation to delay the cryogenic fracture are observed. The results show that FeCoCrNiMo5−xCx-based alloys exhibit outstanding mechanical properties under cryogenic conditions. Under an R.T. condition, the primary contributing mechanism of strain hardening is twinning-induced plasticity (TWIP), whereas at 77 K and 4.2 K, the activation of martensitic transformation-induced plasticity (TRIP) becomes the main strengthening mechanism during cryogenic tensile deformation. Additionally, the carbide precipitation along with increased dislocation density can significantly improve yield and tensile strength. Furthermore, the marked reduction in stacking fault energy (SFE) at cryogenic temperatures can promote mechanisms such as twinning and martensitic transformations, which are pivotal for enhancing ductility under extreme conditions. The Mo4C1 alloy obtains the optimal strength–ductility combination at cryogenic-to-room temperatures. The tensile strength and elongation of the Mo4C1 alloy are 776 MPa and 50.5% at R.T., 1418 MPa and 71.2% in liquid nitrogen 77 K, 1670 MPa and 80.0% in liquid helium 4.2 K, respectively. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

13 pages, 13711 KiB  
Article
High-Strength Copper/Silver Alloys Processed by Cold Spraying for DC and Pulsed High Magnetic Fields
by Simon Tardieu, Hanane Idrir, Christophe Verdy, Olivier Jay, Nelson Ferreira, François Debray, Anne Joulain, Christophe Tromas, Ludovic Thilly and Florence Lecouturier-Dupouy
Magnetochemistry 2024, 10(3), 15; https://doi.org/10.3390/magnetochemistry10030015 - 21 Feb 2024
Cited by 1 | Viewed by 2659
Abstract
High-strength, high-conductivity copper/silver-alloyed materials were prepared by cold-spray (CS) manufacturing. For DC high-field application at room temperature, bulk Cu/Ag (5% vol. Ag) alloys with high mechanical properties and high electrical conductivity can be obtained by CS and post-heat treatments. For pulsed-field application at [...] Read more.
High-strength, high-conductivity copper/silver-alloyed materials were prepared by cold-spray (CS) manufacturing. For DC high-field application at room temperature, bulk Cu/Ag (5% vol. Ag) alloys with high mechanical properties and high electrical conductivity can be obtained by CS and post-heat treatments. For pulsed-field application at liquid nitrogen temperature, bulk Cu/Ag (5% vol. Ag) alloys serve as precursors for room-temperature wire drawing. The Cu/Ag-alloyed bulk CS deposit presents a high yield strength of about 510 MPa with a corresponding electrical resistivity of 1.92 µΩ·cm (at 293 K). The Cu/Ag-alloyed wires show a very high ultimate tensile strength (1660 MPa at 77 K or 1370 MPa at 293 K) and low electrical resistivity (1.05 µΩ·cm at 77 K or 2.56 µΩ·cm at 293 K). Microstructural studies via STEM allow us to understand this very high level of mechanical strength. The results evidence that materials developed by CS exhibit very high mechanical properties compared to materials prepared by other routes, due to the high velocity of the deposited particles, which leads to high initial deformation rates and specific microstructural features. Full article
(This article belongs to the Special Issue Feature Papers in Materials for High Field Resistive Magnets)
Show Figures

Figure 1

11 pages, 2109 KiB  
Article
67.5% Efficient InP-Based Laser Power Converters at 1470 nm at 77 K
by Simon Fafard and Denis Masson
Photonics 2024, 11(2), 130; https://doi.org/10.3390/photonics11020130 - 30 Jan 2024
Cited by 9 | Viewed by 2985
Abstract
Recent developments in long wavelength and cryogenic laser power converters have unlocked record performances in both areas. Here, devices for an optical input at ~1470 nm are studied for cryogenic applications, combining these cryogenic and long-wavelength attributes. Multijunction laser power converters are demonstrated [...] Read more.
Recent developments in long wavelength and cryogenic laser power converters have unlocked record performances in both areas. Here, devices for an optical input at ~1470 nm are studied for cryogenic applications, combining these cryogenic and long-wavelength attributes. Multijunction laser power converters are demonstrated to have a high-efficiency operation at 77 K. The photovoltaic-power-converting III-V semiconductor devices are designed with InGaAs-absorbing layers, here with 10 thin subcells (PT10), connected by transparent tunnel junctions. Unprecedented conversion efficiencies of up to 67.5% are measured at liquid nitrogen temperatures with an output power of Pmpp = 1.35 W at an average optical input intensity of ~62 W/cm2. A remarkably low bandgap voltage offset value of Woc~50 mV is obtained at an average optical input intensity of ~31 W/cm2. Full article
Show Figures

Figure 1

10 pages, 2835 KiB  
Article
Luminescence of In(III)Cl-etioporphyrin-I
by Andrey I. Koptyaev, Yuriy A. Zhabanov, Georgy L. Pakhomov, Piotr P. Pershukevich, Serguei M. Arabei and Pavel A. Stuzhin
Int. J. Mol. Sci. 2023, 24(20), 15168; https://doi.org/10.3390/ijms242015168 - 14 Oct 2023
Cited by 1 | Viewed by 1185
Abstract
The luminescent and photophysical properties of the etioporphyrin-I complex with indium(III) chloride, InCl-EtioP-I were experimentally studied at room and liquid nitrogen temperatures in pure and mixed toluene solutions. At 77 K, in a 1:2 mixture of toluene with diethyl ether, the quantum yield [...] Read more.
The luminescent and photophysical properties of the etioporphyrin-I complex with indium(III) chloride, InCl-EtioP-I were experimentally studied at room and liquid nitrogen temperatures in pure and mixed toluene solutions. At 77 K, in a 1:2 mixture of toluene with diethyl ether, the quantum yield of phosphorescence reaches 10.2%, while the duration of phosphorescence is 17 ms. At these conditions, the ratio of phosphorescence-to-fluorescence integral intensities is equal to 26.1, which is the highest for complexes of this type. At 298 K, the quantum yield of the singlet oxygen generation is maximal in pure toluene (81%). Quantum-chemical calculations of absorption and fluorescence spectra at temperatures of 77 K and 298 K qualitatively coincide with the experimental data. The InCl-EtioP-I compound will further be used as a photoresponsive material in thin-film optoelectronic devices. Full article
Show Figures

Figure 1

13 pages, 3383 KiB  
Article
Low-Temperature Vacuum Evaporation of Ammonia from Pig Slurry at Laboratory and Pilot-Plant Scale
by Míriam Cerrillo, Miguel Moreno, Laura Burgos, Roberto Estéfano, David Coll, Javier Soraluce, Naeria Navarro, Pedro Antonio Arnau and August Bonmatí
Processes 2023, 11(10), 2910; https://doi.org/10.3390/pr11102910 - 3 Oct 2023
Cited by 4 | Viewed by 2744
Abstract
Livestock manure has a high ammonium content that can limit its direct application on soil as a fertiliser in nitrate-vulnerable zones. Treatment technologies that are able to extract ammonium from livestock manure allow it to be concentrated in small volumes, making it cheaper [...] Read more.
Livestock manure has a high ammonium content that can limit its direct application on soil as a fertiliser in nitrate-vulnerable zones. Treatment technologies that are able to extract ammonium from livestock manure allow it to be concentrated in small volumes, making it cheaper and easier to transport and use as fertiliser in crop areas where there is a deficit of nitrogen. This study proposed using low-temperature vacuum evaporation to treat pig slurry in order to obtain marketable products that can be used as fertilisers and help close the nitrogen cycle. Two different configurations and scales were used. The first was a seven-litre laboratory-scale evaporator complemented with a condenser, a condensate trapper, an acid trap and a vacuum pump operated at −90 kPa vacuum pressure and at three different temperatures: 50.1 ± 0.2 °C, 46.0 ± 0.1 °C and 45.3 ± 1.3 °C. The second, Ammoneva, is an on-farm pilot-scale evaporator (6.4 m3), capable of working in four-hour batches of 1 t of liquid fraction of pig slurry with an operating temperature of 40–45 °C and −80 kPa vacuum pressure. The laboratory-scale evaporator, which features several novel improvements focused on increasing ammonia recovery, showed a higher nitrogen removal efficiency from the liquid fraction of pig slurry than the on-farm pilot plant, achieving 84% at 50.1 °C operation, and recovering most of it in ammonia solution (up to 77% of the initial nitrogen), with 7% of the ammonia not recovered. The Ammoneva pilot plant achieved a treated liquid fraction with 41% of initial nitrogen on average, recovering 15% in the ammonia solution in the acid trap; so, the NH3 gas absorption step needs to be further optimised. However, due to the simplicity of the Ammoneva pilot plant, which is easily placed inside a 20-foot container, and the complete automation of the process, it is suitable as an on-farm treatment for decentralised pig slurry management. The implementation of the novel design developed at laboratory-scale could help further increase recovery efficiencies at the pilot-plant scale. Full article
(This article belongs to the Special Issue Recent Advances in Organic Waste and Wastewater Treatment Processes)
Show Figures

Figure 1

18 pages, 9334 KiB  
Article
Development of Mechanical Properties of Stainless Steel 316LN-IG after Cryo-Plastic Deformation
by Alica Fedoriková, Patrik Petroušek, Tibor Kvačkaj, Róbert Kočiško and Michal Zemko
Materials 2023, 16(19), 6473; https://doi.org/10.3390/ma16196473 - 29 Sep 2023
Cited by 6 | Viewed by 2664
Abstract
The article deals with increasing the mechanical properties of stainless steel 316 Ln-IG, which is intended for work in cryogenic temperatures (liquid nitrogen and liquid helium), such as conductor conduits for the ITER magnet system. The strength and plastic properties were increased by [...] Read more.
The article deals with increasing the mechanical properties of stainless steel 316 Ln-IG, which is intended for work in cryogenic temperatures (liquid nitrogen and liquid helium), such as conductor conduits for the ITER magnet system. The strength and plastic properties were increased by a combination of cold and cryo-rolling and heat treatment. The mechanical properties of rolled material were investigated at 293 K, 77 K, and 4.2 K. The work-hardening rate of the steel increased continuously with a lowering of the temperature. The maximum yield strength and ultimate tensile strength were achieved by the cryo-rolling process with a total thickness deformation of 50%. The material properties tested at ambient temperature were 0.2YS = 1050 MPa, UTS = 1200 MPa, and at 4.2 K, the values were 0.2YS = 1804 MPa and UTS = 2081 MPa. Two types of long-term heat treatment were applied after experimental rolling (823 K and 1093 K for 10 h). The highest precipitation hardening of steel was achieved at a temperature of 823 K after 50% deformation. The resulting grain size decreased from the initial 216 μm (before the rolling process) to 70 μm after ambient rolling and 72 μm after cryo-rolling. Full article
Show Figures

Figure 1

11 pages, 3457 KiB  
Article
Microstructure and Mechanical Properties of TC4 Titanium Alloy at the Temperature of 77K
by Yuetao Zhao, Xuewen Li and Wenbin Fang
Metals 2023, 13(6), 1086; https://doi.org/10.3390/met13061086 - 8 Jun 2023
Cited by 12 | Viewed by 4970
Abstract
Titanium alloy has the advantages of low thermal conductivity, a small expansion coefficient and being non-magnetic, making it an ideal low-temperature structural material. In this paper, the typical TC4 titanium alloy in industrial titanium alloy is selected as the research object. The microstructure [...] Read more.
Titanium alloy has the advantages of low thermal conductivity, a small expansion coefficient and being non-magnetic, making it an ideal low-temperature structural material. In this paper, the typical TC4 titanium alloy in industrial titanium alloy is selected as the research object. The microstructure deformation law and mechanical behavior of TC4 titanium alloy at liquid nitrogen temperature are mainly investigated, and compared with the microstructure and properties at room temperature. The macroscopic and microscopic deformation mechanism of the simultaneous increase in elongation and hardening index of titanium alloy at low temperature is revealed, which provides a basic basis for the low-temperature deformation mechanism and strengthening and toughening design of titanium alloy. Based on the uniaxial tensile tests at room temperature (298 K) and low temperature (77 K), the effects of low temperature on the yield strength, elongation, tensile strength and work hardening curve of titanium alloy were compared and analyzed. The strength/plasticity synergistic improvement of TC4 titanium alloy under low-temperature deformation was found. At low temperature, the yield strength, tensile strength and elongation of TC4 titanium alloy are improved compared with room temperature. The tensile strength increases from 847.93 MPa at 298 K to 1318.70 MPa at 77 K, and the elongation increases from 21.8% at 298 K to 24.9% at 77 K. The grain morphology, grain orientation, dislocation density and fracture morphology of titanium alloy under room temperature and low-temperature tensile conditions were studied by SEM and EBSD. The results of fracture morphology characterization at room temperature and low temperature show that TC4 titanium alloy exhibits ductile fracture characteristics and a large number of dimples are formed on the fracture surface. The dimple depth at low temperature is shallower than that at room temperature and the overall surface is more flat. Compared with room temperature deformation, the deformation process of TC4 titanium alloy in a low-temperature environment produces stronger dislocation pile-up and forms a large number of twins, but the grain rotation is more significant, which effectively alleviates the stress concentration and delays the initiation and propagation of cracks at grain boundaries. Full article
Show Figures

Figure 1

15 pages, 3656 KiB  
Article
Power Saving in Magnetorquers by Operating in Cryogenic Environments
by Gabriel Villalba-Alumbreros, Diego Lopez-Pascual, Ignacio Valiente-Blanco and Efren Diez-Jimenez
Actuators 2023, 12(5), 181; https://doi.org/10.3390/act12050181 - 22 Apr 2023
Cited by 1 | Viewed by 3098
Abstract
Satellites with cryogenic instrumentation have great potential for military, commercial, and scientific space missions due to the increased sensitivity of their sensors, even for Low Earth Orbit (LEO) missions. For these missions, magnetorquers are a common electromagnetic actuation solution for controlling the attitude [...] Read more.
Satellites with cryogenic instrumentation have great potential for military, commercial, and scientific space missions due to the increased sensitivity of their sensors, even for Low Earth Orbit (LEO) missions. For these missions, magnetorquers are a common electromagnetic actuation solution for controlling the attitude and orientation of the satellite. As for any other component of a satellite, the optimization of power consumption and weight is always beneficial for the design. In this work, we propose a novel idea to reduce power consumption during magnetorquer operation: installing the magnetorquer in the cryogenic area of the satellite, instead of installing an actuator in the hot area. As the electric resistivity of the wire is greatly reduced, power consumption is also reduced. However, the heat generated in the magnetorquer, even if lower, must still be dissipated by the cryocooling system, which has an additional energetic cost. The cryogenic temperature range where this effect is beneficial, and the amount of power saved, was determined as a function of different cryocooler technologies’ efficiency and the purity of the copper wire material. It is analytically demonstrated that the operation of the magnetorquer in a temperature range from 10 to 40 K could save energy with respect to operation at 300 K if the copper wires have a residual resistance ratio larger than 200 RRR. A prototype magnetorquer suitable for cryogenic temperatures was manufactured and tested at liquid nitrogen temperature, 77 K, to experimentally demonstrate the variation in the energy consumption. The magnetorquer comprised an iron core with copper wire winding that achieved 1.42 Am2 by applying 0.565 W at 0.5 A. When operating submerged in liquid nitrogen at a temperature of 77 K, the power used by the magnetorquer was reduced by eight times due to the change in electrical resistivity. Full article
(This article belongs to the Special Issue Electromagnetic Actuators)
Show Figures

Figure 1

16 pages, 5033 KiB  
Article
Liquid Oxygen Compatibility and Ultra-Low-Temperature Mechanical Properties of Modified epoxy Resin Containing Phosphorus and Nitrogen
by Ni Liu, Hui Wang, Shun Wang, Baosheng Xu and Lijie Qu
Polymers 2022, 14(20), 4343; https://doi.org/10.3390/polym14204343 - 15 Oct 2022
Cited by 4 | Viewed by 2394
Abstract
Endowing epoxy resin (EP) with prospective liquid oxygen compatibility (LOC) as well as enhanced ultra-low-temperature mechanical properties is urgently required in order to broaden its applications in aerospace engineering. In this study, a reactive phosphorus/nitrogen-containing aromatic ethylenediamine (BSEA) was introduced as a reactive [...] Read more.
Endowing epoxy resin (EP) with prospective liquid oxygen compatibility (LOC) as well as enhanced ultra-low-temperature mechanical properties is urgently required in order to broaden its applications in aerospace engineering. In this study, a reactive phosphorus/nitrogen-containing aromatic ethylenediamine (BSEA) was introduced as a reactive component to enhance the LOC and ultra-low-temperature mechanical properties of an EP/biscitraconimide resin (BCI) system. The resultant EP thermosets showed no sensitivity reactions in the 98J liquid oxygen impact test (LOT) when the BSEA content reached 4 wt% or 5 wt%, indicating that they were compatible with liquid oxygen. Moreover, the bending properties, fracture toughness and impact strength of BSEA-modified EP were greatly enhanced at RT and cryogenic temperatures (77 K) at an appropriate level of BSEA content. The bending strength (251.64 MPa) increased by 113.67%, the fracture toughness (2.97 MPa·m1/2) increased by 81.10%, and the impact strength (31.85 kJ·m−2) increased by 128.81% compared with that of pure EP at 77 K. All the above results demonstrate that the BSEA exhibits broad application potential in liquid oxygen tanks and in the cryogenic field. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

15 pages, 8787 KiB  
Article
High-Performance RF Balanced Microstrip Mixer Configuration for Cryogenic and Room Temperatures
by Noy Citron, Eldad Holdengreber, Oz Sorkin, Shmuel E. Schacham and Eliyahu Farber
Electronics 2022, 11(1), 102; https://doi.org/10.3390/electronics11010102 - 29 Dec 2021
Cited by 2 | Viewed by 2879
Abstract
A high-performance S-band down-conversion microstrip mixer, for operation from 77 K to 300 K, is described. The balanced mixer combines a 90 degree hybrid coupler, two Schottky diodes, a band pass filter, and a low pass filter. The coupler phase shift drastically improves [...] Read more.
A high-performance S-band down-conversion microstrip mixer, for operation from 77 K to 300 K, is described. The balanced mixer combines a 90 degree hybrid coupler, two Schottky diodes, a band pass filter, and a low pass filter. The coupler phase shift drastically improves noise rejection. The circuit was implemented according to the configuration obtained from extensive simulation results based on electromagnetic analysis. The experimental results agreed well with the simulation results, showing a maximum measured insertion loss of 0.4 dB at 2 GHz. The microstrip mixer can be easily adjusted to different frequency ranges, up to about 50 GHz, through the proper choice of microstrip configuration. This novel S-band cryogenic mixer, implemented without resorting to special components, shows a very high performance at liquid nitrogen temperatures, making this mixer very suitable for high-temperature superconductive applications, such as front-ends. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 11994 KiB  
Article
Microstructure and Texture Evolution during Severe Plastic Deformation at Cryogenic Temperatures in an Al-0.1Mg Alloy
by Yan Huang and Jun Jiang
Metals 2021, 11(11), 1822; https://doi.org/10.3390/met11111822 - 13 Nov 2021
Cited by 2 | Viewed by 2640
Abstract
The deformation structures formed in an Al-0.1Mg single-phase aluminium alloy have been studied during plane strain compression (PSC) down to liquid nitrogen temperature, following prior equal channel angular extrusion (ECAE) to a strain of ten. Under constant deformation conditions a steady state was [...] Read more.
The deformation structures formed in an Al-0.1Mg single-phase aluminium alloy have been studied during plane strain compression (PSC) down to liquid nitrogen temperature, following prior equal channel angular extrusion (ECAE) to a strain of ten. Under constant deformation conditions a steady state was approached irrespective of the temperature, where the rate of grain refinement stagnated and a minimum grain size was reached which could not be further reduced. A 98% reduction at 77 K (−196 °C) only transformed the ECAE processed submicron grain structure into a microstructure with thin ribbon grains, where a nanoscale high angle boundary (HAB) spacing was only approached in the sheet normal direction. It is shown that the minimum grain size achievable in severe deformation processing is controlled by a balance between the rate of compression of the HAB structure and dynamic recovery. The required boundary migration rate to maintain a constant boundary spacing is found far higher than can be justified from conventional diffusion-controlled grain growth and at low temperatures, a constant boundary spacing can only be maintained by invoking an athermal mechanism and is considered to be dominated by the operation of grain boundary dislocations. Full article
Show Figures

Figure 1

Back to TopTop