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Abstract: A high-performance S-band down-conversion microstrip mixer, for operation from 77 K to
300 K, is described. The balanced mixer combines a 90 degree hybrid coupler, two Schottky diodes, a
band pass filter, and a low pass filter. The coupler phase shift drastically improves noise rejection.
The circuit was implemented according to the configuration obtained from extensive simulation
results based on electromagnetic analysis. The experimental results agreed well with the simulation
results, showing a maximum measured insertion loss of 0.4 dB at 2 GHz. The microstrip mixer can
be easily adjusted to different frequency ranges, up to about 50 GHz, through the proper choice
of microstrip configuration. This novel S-band cryogenic mixer, implemented without resorting to
special components, shows a very high performance at liquid nitrogen temperatures, making this
mixer very suitable for high-temperature superconductive applications, such as front-ends.

Keywords: cryogenic mixers; down conversion; balanced mixer; hybrid coupler; BSF; LPF; microstrip;
S-band

1. Introduction

Frequency converters are essential components in communication circuitry [1,2]. The
most common approach to implementing these converters is the use of mixers. The
characteristics of mixers vary according to their application. The performance of mixers
is evaluated by parameters such as gain, noise, linearity, and power consumption. Up-
converting filtering, minimal RF and Local Oscillator (LO) frequency leakage, bandwidth
and conversion loss are important parameters that must be taken into account in the design
of mixers [3–9].

A common configuration of frequency converters is the balanced mixer, consisting of
two single-ended non-linear devices, combined with a hybrid junction [3]. Advanced tech-
nologies were introduced, improving the quality of balanced mixers. A high-performance
mixer for broadcasting applications is the RF CMOS balanced mixer, in which the feedback
signal improves its performance. This mixer employs a load-resonant LC network to
increase gain and suppress high-order harmonic generation [10–12]. However, the short
dynamic range of CMOS mixers limits the overall dynamic range of the receiver. Moreover,
due to their nonlinearity, undesired harmonics, intermodulation terms and spurs are gen-
erated during frequency conversion. These may result in a lower signal-to-noise ratio, a
lower receiver sensitivity, and a lower gain compression point [13].

A different approach for designing balanced mixers is based on hybrid microstrip
transmission lines [14]. This design is frequently applied for high frequencies, Q-band
and beyond [4,15]. Microstrip mixers can achieve high performance when combined with
state-of-the-art planar filtering methods, such as dual-mode wideband bandpass filters
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(BPFs) [16–18], stepped impedance resonators [19], adjustable dual-band BPFs [20], dual-
line coupling through controllable modal frequencies [21], and fractal geometry [22,23].

In order to transmit high-power signals with low losses and high frequency selectivity,
the development of a specific, dedicated communication system is required. Cryogenic RF
front-ends were demonstrated as frequency selective systems, with high stop band rejection
and high effective signal-to-noise ratios [24–26]. High-performance cryogenic mixers are
essential for these front-ends.

In this paper, we present the design of a down-conversion, S-band, microstrip bal-
anced mixer. It incorporates a hybrid coupler, two high cut-off filters, and two wide
frequency range Schottky diodes, with a low forward resistance at low temperatures.
Based on extensive electromagnetic simulations, described in Section 3, we implemented
a high-performance 2 GHz RF microstrip mixer, designed for use at room temperature
as well as at cryogenic temperatures. We tested it with a LO frequency of 1.9 GHz, i.e., a
down-conversion Intermediate Frequency (IF) of 100 MHz. The design, simulation, im-
plementation, and experimental characterization of the microstrip mixer, both at room
temperature and at 77 K, are described.

2. Balanced Mixer Structure

Several mixer configurations for RF communication are known. Examining the various
options for the S-band, we chose to design a microstrip balanced mixer. In this type of
mixer, the input noise that accompanies the LO signal, and thus may introduce noise in the
intermediate frequency (IF), is highly reduced. The first component of the mixer, shown in
Figure 1, is a 90◦ hybrid coupler [3,27–31], which feeds into two diodes. We chose GaAs
Schottky diodes (MGS903) because of their high cut-off frequency, high breakdown voltage,
and low resistance at forward bias, even at low temperatures [32]. Room temperature
simulations have shown similar performances for silicon and GaAs diodes. However, at
77 K GaAs, electron mobility is much higher than that of electrons in silicon and GaAs
devices are known to perform extremely well at cryogenic temperatures. GaAs Schottky
diodes feature a very short switching time, making them a perfect choice for RF applications,
such as mixers, in the millimeter wave range.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 15 
 

state-of-the-art planar filtering methods, such as dual-mode wideband bandpass filters 
(BPFs) [16–18], stepped impedance resonators [19], adjustable dual-band BPFs [20], dual-
line coupling through controllable modal frequencies [21], and fractal geometry [22,23].  

In order to transmit high-power signals with low losses and high frequency selectiv-
ity, the development of a specific, dedicated communication system is required. Cryo-
genic RF front-ends were demonstrated as frequency selective systems, with high stop 
band rejection and high effective signal-to-noise ratios [24–26]. High-performance cryo-
genic mixers are essential for these front-ends.  

In this paper, we present the design of a down-conversion, S-band, microstrip bal-
anced mixer. It incorporates a hybrid coupler, two high cut-off filters, and two wide fre-
quency range Schottky diodes, with a low forward resistance at low temperatures. Based 
on extensive electromagnetic simulations, described in Section 3, we implemented a high-
performance 2 GHz RF microstrip mixer, designed for use at room temperature as well as 
at cryogenic temperatures. We tested it with a LO frequency of 1.9 GHz, i.e., a down-
conversion Intermediate Frequency (IF) of 100 MHz. The design, simulation, implemen-
tation, and experimental characterization of the microstrip mixer, both at room tempera-
ture and at 77 K, are described. 

2. Balanced Mixer Structure 
Several mixer configurations for RF communication are known. Examining the vari-

ous options for the S-band, we chose to design a microstrip balanced mixer. In this type 
of mixer, the input noise that accompanies the LO signal, and thus may introduce noise 
in the intermediate frequency (IF), is highly reduced. The first component of the mixer, 
shown in Figure 1, is a 90° hybrid coupler [3,27–31], which feeds into two diodes. We 
chose GaAs Schottky diodes (MGS903) because of their high cut-off frequency, high break-
down voltage, and low resistance at forward bias, even at low temperatures [32]. Room 
temperature simulations have shown similar performances for silicon and GaAs diodes. 
However, at 77 K GaAs, electron mobility is much higher than that of electrons in silicon 
and GaAs devices are known to perform extremely well at cryogenic temperatures. GaAs 
Schottky diodes feature a very short switching time, making them a perfect choice for RF 
applications, such as mixers, in the millimeter wave range.  

 
Figure 1. Block diagram of the balanced mixer. 

3. Simulations 
3.1. Theory 

We start the optimization process of the mixer by determining the initial width of the 
microstrip that is required to obtain a characteristic impedance of 50 Ω. For the microstrip 
structure presented in Figure 2, one can derive the ratio between the width W of the strip 
and the thickness h of the dielectric material by the following equation [3]: 

ℎ = 8 − 22 − 1 − ln 2 − 1 + − 12 ln − 1 + 0.39 − 0.61   
, ℎ⁄ < 2
, ℎ⁄ > 2 (1)

where 

Figure 1. Block diagram of the balanced mixer.

3. Simulations
3.1. Theory

We start the optimization process of the mixer by determining the initial width of the
microstrip that is required to obtain a characteristic impedance of 50 Ω. For the microstrip
structure presented in Figure 2, one can derive the ratio between the width W of the strip
and the thickness h of the dielectric material by the following equation [3]:

W
h

=


8eA

e2A−2
2
π

[
B− 1− ln(2B− 1) + εr−1

2εr

{
ln(B− 1) + 0.39− 0.61

εr

}] , W/h < 2

, W/h > 2
(1)

where

A =
Z0

60

√
εr + 1

2
+

εr − 1
εr + 1

(
0.23 +

0.11
εr

)
(2)

B =
377π

2Z0
√

εr
(3)
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Figure 2. MS line geometry. The strip width is W, and the dielectric substrate thickness is h.

Our dielectric substrate is a 0.508 mm thick Rogers RT6002, with a relative dielectric
constant εr = 2.94 and tan δ = 0.002. For a Z0 = 50 Ω characteristic impedance; the derived
values are B = 6.9 and W

d = 2.636, i.e., W = 2.636·0.508 = 1.33 mm.
Based on extensive simulations, we obtained different optimal widths of the strips

leading to the various components, for impedance matching, which were slightly lower
than the initial value. The results are presented in Table 1:

Table 1. Optimal MS widths.

Parameter Value [mm]

Wcoupler 1.27
WBSF 1.28
WLPF 1.32

To derive the length of the quarter- and half-wavelength strips, we must determine
the radiation wavelength in the strip. Since the radiation is not enclosed, some of the field
lines are in the dielectric region and some are in air. This effect can be translated into
an effective dielectric constant, which depends on the substrate dielectric constant, the
substrate thickness, and the conductor width. The effective dielectric constant is given
by [3]

εe =
εr + 1

2
+

εr − 1
2

1√
1 + 12h/W

(4)

Clearly, the effective dielectric constant is lower than the constant of the bulk material.
For our parameters, we obtain:

εe =
2.94 + 1

2
+

2.94− 1
2

1√
1 + 12· 0.508

1.33

= 2.38

from which we can derive the wavelength in the strip:

λ =
c

f0
√

εe f f
=

3× 108

2× 109
√

2.38
= 97.22 mm

3.2. Simulation Results

Figure 3 shows the layout of the designed microstrip mixer. In order to reduce
the system crosstalk, the RF and LO inputs are connected to the coupler with S-shaped
half-wavelength transmission lines. The curved shaped inputs reduce possible mutual
inductance between the ports. Using quarter-wavelength transmission lines, the two
outputs of the coupler (red square) are connected to the two diodes (marked X in the
red circle). The diode outputs are connected to the BSF (green rectangle) followed by the
LPF (black rectangle). The bandwidth of the mixer is dependent on the bandwidth of the
coupler and the filters. The filters feature a narrower bandwidth and are therefore more
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influential. The BSF was designed using the distributed elements filter method [3]. The
stopband can be improved by increasing the order of the filter, but not without increasing
the losses of the system. The LPF was designed using a radial stub pie configuration, where
the stubs are the capacitive elements, and the distance between the stubs is the inductance
element. Hence, by changing the radius and distance of stubs, the bandwidth of the mixer
can be determined. Accordingly, the filters were designed taking into account the current
distribution at the critical frequencies [33]. The via connected to the coupling port of the
coupler serves as an RF choke (RFC). The other vias serve to attach the system to the
package to increase its mechanical strength.
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The performance of the designed microstrip mixer can be analyzed based on lumped
components equivalent circuit extracted by methods described in references [16,34], and
transmission lines model described in [35]. We chose to analyze the microstrip mixer
using the AWR microwave circuit design software. The AWR uses Maxwell equations to
numerically compute the frequency response of the circuit from its physical parameters. The
AWR makes it possible to perform accurate analysis using linear and nonlinear harmonic
balance, nonlinear Volterra-series, electromagnetic, and spectra simulation, and features
real-time tuning and optimizing capabilities. There are several requirements for an ideal
mixer: the RF and LO inputs must be interchangeable, a 50 Ω input impedance for both
ports, and a high attenuation between the input ports and the output (S31, S32) is essential.
The final configuration of the mixer was derived through the optimization of the dimensions
of the microstrips and the distance between them. The simulation results are detailed in
Appendix A, showing the effects of MS width on the performance of the filters and the
mixer. The optimal results are presented in Figure 4, showing that the designed coupler
conforms with these requirements. The simulations showed that the power conversion
losses were 12 dB and the RF-LO isolation was around 0.5 dB. This is a well-known trade-off
in balanced mixers based on 90 degrees hybrid couplers, with high input matching (S11)
and low isolation [3]. Full electronic circuit AWR emp software files are provided in the
Supplementary Materials.
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4. Room Temperature Experimental Results

The microstrip mixer, presented in Figure 5, was produced based on the simulations
and optimization. The dimensions of the entire system are 209 × 108 mm2. The circuit is
implemented on a 508 µm thick RT6002 dielectric substrate. Since the substrate dielectric
material is thin, two measures were taken to protect the circuit. A layer of tin that was
deposited on top of the copper wiring, and the mixer was packed in 5 mm thick aluminum,
which facilitated connection to the SMA connectors.
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We measured the S parameters as a function of frequency, using a vector network
analyzer (VNA). The results are presented in Figure 6. The experimental results, measured
at room temperature, were very similar to the theoretical results obtained by simulations
(Figure 4). S33 was slightly different, indicating that the impedance matching in port 3
was not high enough. The experimental results agreed well with the simulation results,
showing a maximum measured insertion loss of 0.4 dB at 2 GHz.
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In addition to the S parameters, we measured three parameters using a spectrum
analyzer (SA) to evaluate the performance of the mixer. The IF output signal as function of
frequency is presented in Figure 7. The filtering of the RF signal to the IF output is shown
in Figure 8. The LO leakage to the IF output is presented in Figure 9.
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Figure 9. LO leakage to the output measured at room temperature.

The leakage of the RF frequency to the output is shown in Figure 8. The IF leakage
is −78.33 dBc, a clear indication of the high RF-IF isolation. The RF input power is
−20 dBm at 2 GHz, the LO input power is 7 dBm at 1.9 GHz, and the output power
for the IF is PIF = −27.56 dBm at 100 MHz. The mixer Conversion Loss is therefore
CL = (PRF + LRF)− PIF = (−20− 1)− 27.56 = 6.56 dB, where LRF is the RF cable loss.
Figure 9 shows the LO leakage to the output. The high LO-IF isolation is expressed by the
very low LO leakage, of around −70.09 dBc.
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5. Experimental Results at 77 K

We tested the performance of the circuit at liquid nitrogen temperature (77 K). The
various S parameters, measured as a function of frequency with VNA, are shown in
Figure 10. These measured parameters are similar to those derived from simulations and
those measured at room temperature. Even though the mixer was designed based on
room temperature parameters, it performed very well at cryogenic temperatures. The
resistance at forward bias of the GaAs Schottky diodes was low, as required. The cryogenic
measurement setup is described in Appendix B.
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Figure 10. S parameters measured at liquid nitrogen temperature.

The output power of the IF, measured with SA at 77 K, is shown in Figure 11. The
measured power at 100 MHz is PIF = −30.94 dBm. This output is obtained for an RF input
power of −20 dBm at 2 GHz, and a LO input power of 7 dBm at 1.9 GHz. Therefore, the
mixer Conversion Loss is CL = (PRF + LRF)− PIF = (−20− 1)− 30.97 = 9.97 dB , where
LRF is the RF cable loss.
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The measured up-converting rejection is shown in Figure 12. At the sum of the LO
and RF frequencies, 3.9 GHz, P = −86.71 dBm and at the second harmony of the LO signal,
3.8 GHz, P = −57.02 dBm, i.e., the high frequency filtering is very effective.
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The high performance of the mixer at liquid nitrogen temperature makes this con-
figuration attractive for cryogenic use, such as for circuits implemented in superconduc-
tors [36–40].
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6. Discussion

There is a limited number of reported mixers for the S-band at cryogenic temperatures.
In the following table we compare the performance of different mixers for cryogenic use,
along with typical data for mixers intended for room temperature operation. There are
several parameters that influence the performance of mixers, such as up-converting filtering,
minimal RF and LO frequency leakage, bandwidth, and conversion loss [3–9]. Due to the
trade-offs between these design metrics, it is difficult to determine unequivocally the quality
of mixers.

Table 2 demonstrates clearly the results of the proper selection of the mixer configura-
tion, and the optimization process for every one of its components. Even though we chose
the IF and LO frequencies to differ by 100 MHz only, one can discern the high performance
of our mixer relative to other mixers reported in scientific and industrial research in almost
every parameter, both in the cryogenic and room temperature ranges.

Table 2. RF mixers data table at cryogenic and room temperatures.

Ref Material or App
-Form

Mixer Type and
Structure

Frequency
Range

Measure.
Temp. IF GHz RF GHz CL Isolation

RF-IF
Isolation

LO-IF

[41] Al2O3–Si diode
planar circuit

Single balanced
topology,

M/A-COM
MA40132

X-band 77 K 1.15–1.3 7.1–7.25 3.2 dB at
1 dBm ~37 dB ~45 dB

[41,42] Schottky ring
quad Si diodes

Watkins-Johnson
WJ-M80LC X-band 77 K ~1 ~7 7 dB at

5 dBm - ~35 dB

[43]
Rogers substrate
PCB Cu planar

circuit

Single Balanced
mixer (180◦)

(SMS7621-005LF)
S-band 300 K 0.03 2.9 7 dB at

2 dBm >25 dB >30 dB

[44] SiC MMIC
Schottky diodes

Double balanced
mixer S-band 300 K 0.1, 0.3,

0.5 3.3 12 dB at
23 dBm >7 dB >30 dB

[45] YBCO on MgO
substrate

Josephson
Junction X-band 77 K 2.8 10 ~5 dB at

30 dBm >30 dB -

This work Cu on RT6002
substrate

Schottky diode
GaAs (MGS903) S-band 300 K 0.1 2 6.56 dB

at 7 dBm >35 dB >35 dB

This work Cu on RT6002
substrate

Schottky diode
GaAs (MGS903) S-band 77 K 0.1 2 9.97 dB

at 7 dBm >50 dB >40 dB

7. Conclusions

We designed and manufactured a full down-conversion mixer, based on a 90◦ hybrid
coupler. The final configuration of the mixer was derived following several optimization
steps based on extensive simulations. The inputs to the coupler were selected as S-shape
microstrip, to reduce mutual inductance. The optimal dimensions of the strips were
determined by the simulation results. The frequency conversion was based on a pair of
GaA Schottky diodes, connected to the coupler by microstrips implemented according to
the simulation optimizations. The output of the convertor is connected to a BSF, for which
the distributed elements filter method was selected. The final element is a LPF, designed
using a radial stub pie configuration. Since the stubs are the capacitive elements, and the
distance between the stubs is the inductance element, one can select the bandwidth by
properly selecting the radius and distance of the stubs.

The scattering coefficients of the system, along with the other parameters of the
mixer, were measured and compared with the results of the simulations based on the
electromagnetic analysis. The mixer was tested both at room temperature and at a liquid
nitrogen temperature of 77 K. The experimental results agreed well with the simulations at
both temperatures.

This proposed mixer is an excellent solution for improving communication in crowded
areas where reception is weak. Moreover, the high performance at liquid nitrogen tem-
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perature makes this configuration very attractive for cryogenic use, such as for circuits
implemented in high critical temperature superconductors.

The mixer can be easily adjusted to other frequencies, up to about 50 GHz, by proper
choice of the length of the transmission lines.
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Appendix A

The results of the simulations are presented below, showing the effects of the width of
the MS lines on the performance of the filters and the overall performance of the mixer. The
main task of the filters is to reject the large LO signal. As can be seen from Figure A1a,b,
both a very sharp notch in the simulations of insertion loss and a flat high return loss were
obtained for the LO frequency, with the best response (symmetric and without ripples) for
the optimal dimension of the BSF line (W = 1.28 mm).
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Figure A2a,b shows the simulation results for the LPF. Clearly, at the low frequency
range, the transmission is maximal and the reflection minimal, as expected, with the lowest
reflection at the optimal dimensions, along with a sharp roll-off.
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The simulations of the coupler performance, presented in Figure A3a,b, show clearly
that minimal changes in line width resulted in increased impedance mismatch, and, as a
result, lower reflection losses than those obtained at the optimal dimensions (1.27 nm).
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Appendix B

The cryogenic measurement system is illustrated in Figure A4. The system is composed
of three main elements: a VNA, a computing system, and a polystyrene liquid nitrogen
container [46–48]. The S-parameters were measured using the VNA, while the Device Under
Test (DUT) was immersed in liquid nitrogen. The VNA was calibrated using a standard
calibration procedure through a connection and three loads: open (high impedance), short,
and 50 Ohms (matched), eliminating the effects of all the components apart from the DUT
from the measured data. The calibration was performed separately for 300 K measurements
and 77 K measurements. Since the VNA features two inputs and the device features three
ports, several measurements are required to obtain all the S-parameters. While testing the
scattering coefficients of two out of three ports, the other was connected to a matching
impedance, a 50 Ohm load.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 15 
 

The simulations of the coupler performance, presented in Figure A3a,b, show clearly 
that minimal changes in line width resulted in increased impedance mismatch, and, as a 
result, lower reflection losses than those obtained at the optimal dimensions (1.27 nm). 

 
(a) (b) 

Figure A3. Hybrid coupler scattering coefficients, S31 (a) and S11 (b) vs. frequency for various MS 
widths. 

Appendix B 
The cryogenic measurement system is illustrated in Figure A4. The system is com-

posed of three main elements: a VNA, a computing system, and a polystyrene liquid ni-
trogen container [46–48]. The S-parameters were measured using the VNA, while the De-
vice Under Test (DUT) was immersed in liquid nitrogen. The VNA was calibrated using 
a standard calibration procedure through a connection and three loads: open (high im-
pedance), short, and 50 Ohms (matched), eliminating the effects of all the components 
apart from the DUT from the measured data. The calibration was performed separately 
for 300 K measurements and 77 K measurements. Since the VNA features two inputs and 
the device features three ports, several measurements are required to obtain all the S-pa-
rameters. While testing the scattering coefficients of two out of three ports, the other was 
connected to a matching impedance, a 50 Ohm load.  

 
Figure A4. Illustration of the s-parameters measurement setup. 

For the conversion loss, leakage, and isolation measurements, the RF and LO ports 
were fed using a signal generator, while the IF port was measured using a spectrum ana-
lyzer (Figure A5). For the cryogenic measurements, the DUT was immersed in the same 
polystyrene container depicted in Figure A4. The RF cables used in the two setups were 
rigid coaxial cables with male SMA connectors at both ends. They were immersed in the 
liquid nitrogen with the DUT. 

Figure A4. Illustration of the s-parameters measurement setup.



Electronics 2022, 11, 102 13 of 15

For the conversion loss, leakage, and isolation measurements, the RF and LO ports
were fed using a signal generator, while the IF port was measured using a spectrum
analyzer (Figure A5). For the cryogenic measurements, the DUT was immersed in the same
polystyrene container depicted in Figure A4. The RF cables used in the two setups were
rigid coaxial cables with male SMA connectors at both ends. They were immersed in the
liquid nitrogen with the DUT.
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