Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = liquid hydrogen operation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3184 KB  
Article
Numerical Simulation for Lightweight Design of a Liquid Hydrogen Weighing Tank for Flow Standard
by Xiang Li, Menghui Wu, Xianlei Chen, Yu Meng, Xiaobin Zhang, Weijie Chen, Shanyi Xu, Naifeng Nie, Yongcheng Zhu, Jianan Zhou, Yanbo Peng, Yalei Zhao, Chengxu Tu and Fubing Bao
Appl. Sci. 2026, 16(2), 1111; https://doi.org/10.3390/app16021111 - 21 Jan 2026
Viewed by 70
Abstract
To improve the accuracy of gravimetric liquid hydrogen flow standard devices, the self-weight of the weighing tank must be minimized, because the total mass of the liquid hydrogen contained in the tank is far smaller than the structural mass of the tank itself, [...] Read more.
To improve the accuracy of gravimetric liquid hydrogen flow standard devices, the self-weight of the weighing tank must be minimized, because the total mass of the liquid hydrogen contained in the tank is far smaller than the structural mass of the tank itself, which severely compromises the sensitivity of gravimetric measurement. In this study, a three-dimensional finite element model of a vacuum-insulated liquid-hydrogen weighing tank was developed in ABAQUS. The inner and outer shells were modeled with 06Cr19Ni10 (304) and 06Cr17Ni12Mo2 (316) austenitic stainless steels, and Polyamide 6 (PA6) was used for the internal support. Three operating stages were considered: evacuation of the annulus (interlayer pressure reduced from 0.1 MPa to 0 MPa), pre-cooling to −253 °C, and pressurization of the inner tank (internal pressure increased from 0.1 MPa to 1 MPa). The equivalent stress and deformation were compared for different materials and wall thicknesses to evaluate structural safety and weight-reduction potential. The proposed configuration (inner shell 1.6 mm and outer shell 1.0 mm) achieves a mass reduction of more than 50% relative to the 3 mm minimum wall thickness commonly adopted for cryogenic vessels, while keeping stresses below the allowable limits. This reduction enables the use of higher-resolution load cells and thereby lowering the measurement uncertainty of the liquid hydrogen flow standard device and providing technical support for lightweight and cost-effective design, with potential applicability to other cryogenic tank systems. Full article
Show Figures

Figure 1

27 pages, 10006 KB  
Article
Analysis About the Leaks and Explosions of Alternative Fuels
by José Miguel Mahía-Prados, Ignacio Arias-Fernández, Manuel Romero Gómez and Sandrina Pereira
Energies 2026, 19(2), 514; https://doi.org/10.3390/en19020514 - 20 Jan 2026
Viewed by 127
Abstract
The maritime sector is under growing pressure to decarbonize, driving the adoption of alternative fuels such as methane, methanol, ammonia, and hydrogen. This study evaluates their thermal behavior and associated risks using Engineering Equation Solve software for heat transfer modeling and Areal Locations [...] Read more.
The maritime sector is under growing pressure to decarbonize, driving the adoption of alternative fuels such as methane, methanol, ammonia, and hydrogen. This study evaluates their thermal behavior and associated risks using Engineering Equation Solve software for heat transfer modeling and Areal Locations of Hazardous Atmospheres software for dispersion and explosion analysis in pipelines and storage scenarios. Results indicate that methane presents moderate and predictable risks, mainly from thermal effects in fires or Boiling Liquid Expanding Vapor Explosion events, with low toxicity. Methanol offers the safest operational profile, stable at ambient temperature and easily manageable, though it remains slightly flammable even when diluted. Ammonia shows the greatest toxic hazard, with impact distances reaching several kilometers even when emergency shutoff systems are active. Hydrogen, meanwhile, poses the most severe flammability and explosion risks, capable of autoignition and generating destructive overpressures. Thermal analysis highlights that cryogenic fuels require complex insulation systems, increasing storage costs, while methanol and gaseous hydrogen remain thermally stable but have lower energy density. The study concludes that methanol is the most practical transition fuel, when comparing thermal behavior and associated risks, while hydrogen and ammonia demand further technological and regulatory development. Proper insulation, ventilation, and automatic shutoff systems are essential to ensure safe decarbonization in maritime transport. Full article
(This article belongs to the Special Issue Advances in Green Hydrogen Energy Production)
Show Figures

Figure 1

15 pages, 4358 KB  
Article
Catalytic Activity of Electroexplosive Cobalt Nanopowder in Hydrocarbon Synthesis by the Fischer–Tropsch Method
by Evgeniy Popok, Egor Grushetsky, Yana Morozova, Ilya Bogdanov, Maria Kirgina and Andrei Mostovshchikov
Catalysts 2026, 16(1), 91; https://doi.org/10.3390/catal16010091 - 13 Jan 2026
Viewed by 368
Abstract
The study aims to develop a method for obtaining a high-performance catalyst for the synthesis of liquid hydrocarbons using the Fischer–Tropsch method based on ultradisperse cobalt powders obtained by the electric explosion method. To determine the catalytic activity of the obtained catalyst samples, [...] Read more.
The study aims to develop a method for obtaining a high-performance catalyst for the synthesis of liquid hydrocarbons using the Fischer–Tropsch method based on ultradisperse cobalt powders obtained by the electric explosion method. To determine the catalytic activity of the obtained catalyst samples, the main process parameters, like temperature in the catalyst bed, the process pressure, the feedstock space velocity, and the ratio of reagents in the synthesis gas, were varied. It has been established that highly dispersed cobalt powder obtained by the electrical explosion method is a fairly active catalyst for the synthesis of liquid hydrocarbons via the Fischer–Tropsch process. It has been established that the overall CO conversion rate in the temperature range from 230 to 330 °C ranges from 25 to 90%. However, the formation of the main byproduct of the synthesis, carbon dioxide, is not observed below 270 °C. It was determined that for the developed catalyst sample, the optimal temperature range is from 230 to 260 °C, in which the yield of by-products of synthesis and gaseous hydrocarbons is quite low—the selectivity for methane does not exceed 20%, with the proportion of C5+ hydrocarbons in the liquid phase at the level of 80%. The CO conversion rate increases proportionally with growing pressure. It has been established that cobalt nanopowder exhibits high catalytic activity in reactions of liquid hydrocarbon formation with low hydrogen content in the initial synthesis gas. This fact allows us to conclude that it has potential for use in processing gases obtained during the pyrolysis of biomass or other non-traditional sources of synthesis gas, characterized by an H2:CO ratio of 1:1 to 1.25:1. Catalysts obtained from ultradisperse cobalt powders were shown to be resistant to rapid deactivation under synthesis conditions at operating temperatures for 30 h. During long-term testing, CO conversion remained at 23.5% at 230 °C for the entire duration of the experiment. Full article
Show Figures

Graphical abstract

31 pages, 5166 KB  
Review
Recent Advances in Simultaneous Desulfurization and Denitrogenation of Fuel Oil
by Jianrui Wang and Rui Wang
Molecules 2026, 31(2), 279; https://doi.org/10.3390/molecules31020279 - 13 Jan 2026
Viewed by 160
Abstract
The elimination of nitrogen and sulfur compounds from liquid fuel is a critical aspect of reducing environmental pollution. However, the widely utilized hydrodesulfurization and hydrodenitrogenation technologies require harsh operating conditions. Moreover, when operated simultaneously, these processes induce mutual competition and inhibition between the [...] Read more.
The elimination of nitrogen and sulfur compounds from liquid fuel is a critical aspect of reducing environmental pollution. However, the widely utilized hydrodesulfurization and hydrodenitrogenation technologies require harsh operating conditions. Moreover, when operated simultaneously, these processes induce mutual competition and inhibition between the two reactions, thereby limiting the actual removal efficiency. Conversely, non-hydrogenation technologies offer substantial advantages in terms of operating conditions and provide high levels of desulfurization and denitrogenation. Nevertheless, the presence of nitrogen-containing compounds has also been demonstrated to engender competition and inhibition. It is imperative to develop environmentally friendly technologies that can simultaneously desulfurize and denitrogenate. This paper reviews research progress in this field over the past decade, providing a detailed assessment and comparison of hydrogenation and non-hydrogenation technologies, including adsorption, extraction, oxidation and biological methods. Furthermore, it considers future research directions. The article’s aim is to furnish a novel perspective on the development of clean fuel sources and to investigate more economical, sustainable, and commercially viable desulfurization and denitrogenation methods. Full article
(This article belongs to the Topic Environmental Pollutant Management and Control)
Show Figures

Graphical abstract

49 pages, 13564 KB  
Review
Cryogenic Performance and Modelling of Fibre- and Nano-Reinforced Composites: Failure Mechanisms, Toughening Strategies, and Constituent-Level Behaviour
by Feng Huang, Zhi Han, Mengfan Wei, Zhenpeng Gan, Yusi Wang, Xiaocheng Lu, Ge Yin, Ke Zhuang, Zhenming Zhang, Yuanzhi Gao, Yu Su, Xueli Sun and Ping Cheng
J. Compos. Sci. 2026, 10(1), 36; https://doi.org/10.3390/jcs10010036 - 8 Jan 2026
Viewed by 265
Abstract
Composite materials are increasingly required to operate in cryogenic environments, including liquid hydrogen and oxygen storage, deep-space structures, and polar infrastructures, where long-term strength, toughness, and reliability are essential. This review provides a unique contribution by systematically integrating recent advances in understanding cryogenic [...] Read more.
Composite materials are increasingly required to operate in cryogenic environments, including liquid hydrogen and oxygen storage, deep-space structures, and polar infrastructures, where long-term strength, toughness, and reliability are essential. This review provides a unique contribution by systematically integrating recent advances in understanding cryogenic behaviour into a unified multi-scale framework. This framework synthesises four critical and interconnected aspects: constituent response, composite performance, enhancement mechanisms, and modelling strategies. At the constituent level, fibres retain stiffness, polymer matrices stiffen but embrittle, and nanoparticles offer tunable thermal and mechanical functions, which collectively define the system-level performance where thermal expansion mismatch, matrix embrittlement, and interfacial degradation dominate failure. The review further details toughening strategies achieved through nano-addition, hybrid fibre architectures, and thin-ply laminates. Modelling strategies, from molecular dynamics to multiscale finite element analysis, are discussed as predictive tools that link these scales, supported by the critical need for in situ experimental validation. The primary objective of this synthesis is to establish a coherent perspective that bridges fundamental material behaviour to structural reliability. Despite these advances, remaining challenges include consistent property characterisation at low temperature, physics-informed interface and damage models, and standardised testing protocols. Future progress will depend on integrated frameworks linking high-fidelity data, cross-scale modelling, and validation to enable safe deployment of next-generation cryogenic composites. Full article
Show Figures

Graphical abstract

17 pages, 1626 KB  
Article
Syngas Production from Liquid and Solid Fractions of Swine Manure in a 0.5 kWth Chemical Looping Gasification Unit
by Yldeney Domingos, Margarita de Las Obras Loscertales, María T. Izquierdo and Alberto Abad
Energies 2026, 19(2), 317; https://doi.org/10.3390/en19020317 - 8 Jan 2026
Viewed by 240
Abstract
Swine manure, a heterogeneous livestock waste composed of solid and liquid excreta, can be sustainably converted through Chemical Looping Gasification (CLG) to produce syngas and bioenergy. Integrated with CO2 capture, the process enables high-purity hydrogen generation and offers a potential route toward [...] Read more.
Swine manure, a heterogeneous livestock waste composed of solid and liquid excreta, can be sustainably converted through Chemical Looping Gasification (CLG) to produce syngas and bioenergy. Integrated with CO2 capture, the process enables high-purity hydrogen generation and offers a potential route toward net-negative carbon emissions. The experimental campaign was conducted at 900 °C in a continuously operated 0.5 kWth CLG unit consisting of two interconnected fluidized bed reactors (fuel and air). Ilmenite was employed as the oxygen carrier to provide the oxygen required for gasification. This study focuses on the gasification of raw swine manure, comprising both solid and liquid fractions. The solid fraction was introduced via a screw feeder, while the liquid fraction was simulated by injecting an ammonia–water solution as gasifying agents (water or ammonia + water). The effect of the liquid fraction on syngas composition, carbon conversion, and nitrogen species (N2, NH3, N2O, NO2, and NO) was evaluated at ammonia concentrations typical of swine manure (800–5600 mg/L). Results showed an average syngas composition for solid and liquid fraction feeding of ~31% CO2, 20% CO, 41% H2, 7% CH4, and 0.5% C2 hydrocarbons, with 91–96% carbon conversion. Benzene and naphthalene dominated the tar compounds. CO2 capture potential reached 60%, with nitrogen mainly converted to N2. Full article
Show Figures

Graphical abstract

51 pages, 4344 KB  
Review
Mechanistic Pathways and Product Selectivity in Pyrolysis of PE, PP and PVC: A Foundation for Applied Chemistry in Europe
by Tim Tetičkovič, Dušan Klinar, Klavdija Rižnar and Darja Pečar
Molecules 2026, 31(2), 202; https://doi.org/10.3390/molecules31020202 - 6 Jan 2026
Viewed by 605
Abstract
Plastic streams dominated by polyethylene (PE) including PE HD/MD (High Density/Medium Density) and PE LD/LLD (Low Density/Linear Low Density), polypropylene (PP), and polyvinyl chloride (PVC) across Europe demand a design framework that links synthesis with end of life reactivity, supporting circular economic goals [...] Read more.
Plastic streams dominated by polyethylene (PE) including PE HD/MD (High Density/Medium Density) and PE LD/LLD (Low Density/Linear Low Density), polypropylene (PP), and polyvinyl chloride (PVC) across Europe demand a design framework that links synthesis with end of life reactivity, supporting circular economic goals and European Union waste management targets. This work integrates polymerization derived chain architecture and depolymerization mechanisms to guide selective valorization of commercial plastic wastes in the European context. Catalytic topologies such as Bronsted or Lewis acidity, framework aluminum siting, micro and mesoporosity, initiators, and strategies for process termination are evaluated under relevant variables including temperature, heating rate, vapor residence time, and pressure as encountered in industrial practice throughout Europe. The analysis demonstrates that polymer chain architecture constrains reaction pathways and attainable product profiles, while additives, catalyst residues, and contaminants in real waste streams can shift radical populations and observed selectivity under otherwise similar operating windows. For example, strong Bronsted acidity and shape selective micropores favor the formation of C2 to C4 olefins and Benzene, Toluene, and Xylene (BTX) aromatics, while weaker acidity and hierarchical porosity help preserve chain length, resulting in paraffinic oils and waxes. Increasing mesopore content shortens contact times and limits undesired secondary cracking. The use of suitable initiators lowers the energy threshold and broadens processing options, whereas diffusion management and surface passivation help reduce catalyst deactivation. In the case of PVC, continuous hydrogen chloride removal and the use of basic or redox co catalysts or ionic liquids reduce the dehydrochlorination temperature and improve fraction purity. Staged dechlorination followed by subsequent residue cracking is essential to obtain high quality output and prevent the release of harmful by products within European Union approved processes. Framing process design as a sequence that connects chain architecture, degradation chemistry, and operating windows supports mechanistically informed selection of catalysts, severity, and residence time, while recognizing that reported selectivity varies strongly with reactor configuration and feed heterogeneity and that focused comparative studies are required to validate quantitative structure to selectivity links. In European post consumer sorting chains, PS and PC are frequently handled as separate fractions or appear in residues with distinct processing routes, therefore they are not included in the polymer set analyzed here. Polystyrene and polycarbonate are outside the scope of this review because they are commonly handled as separate fractions and are typically optimized toward different product slates than the gas, oil, and wax focused pathways emphasized here. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 1924 KB  
Article
Monitoring Microcracking and Leakage of a Hydrogen Tank Using Fiber Optics and the Thermal Expansion
by Miguel González del Val, Jose Manuel Martinez Olmo, Ángela Salazar Castaman, Fernando Cabrerizo and Malte Frovel
J. Compos. Sci. 2026, 10(1), 21; https://doi.org/10.3390/jcs10010021 - 5 Jan 2026
Viewed by 270
Abstract
The structural health monitoring (SHM) of microcracking in cryogenic hydrogen storage tanks is a critical aspect for ensuring long-term safety and operational reliability. Early detection of such damage can prevent leaks and structural failure, making the development of sensitive, non-intrusive diagnostic techniques essential. [...] Read more.
The structural health monitoring (SHM) of microcracking in cryogenic hydrogen storage tanks is a critical aspect for ensuring long-term safety and operational reliability. Early detection of such damage can prevent leaks and structural failure, making the development of sensitive, non-intrusive diagnostic techniques essential. In this study, a series of experimental tests were conducted to evaluate the feasibility of using thermal expansion behavior as a potential SHM indicator. The material under investigation was a carbon–epoxy composite laminate (M21/IMA) with a [0/90]2s layup, representative of those used in cryogenic aerospace applications. Artificial microcracks were introduced at cryogenic temperatures (approximately 20 K), followed by thermal expansion and gas permeability measurements. The objective was to explore the correlation between induced damage and measurable physical changes, with the aim of assessing the viability of this approach for future SHM strategies in liquid hydrogen tank systems. Full article
Show Figures

Figure 1

38 pages, 9828 KB  
Review
Conventional and Intensified Steam Reforming of Bio-Oil for Renewable Hydrogen Production: Challenges and Future Perspectives
by Eslam Elsaka, Etienne Mercier and Maria C. Iliuta
Catalysts 2026, 16(1), 59; https://doi.org/10.3390/catal16010059 - 4 Jan 2026
Viewed by 417
Abstract
The increasing demand for clean and sustainable energy has driven significant research into hydrogen production from biomass-derived feedstocks. Unlike the gasification route, the pyrolysis of biomass followed by steam reforming of bio-oil (SRBO) offers several advantages, including the liquid nature of bio-oil and [...] Read more.
The increasing demand for clean and sustainable energy has driven significant research into hydrogen production from biomass-derived feedstocks. Unlike the gasification route, the pyrolysis of biomass followed by steam reforming of bio-oil (SRBO) offers several advantages, including the liquid nature of bio-oil and the operation at lower temperatures, which facilitate easier transportation and storage compared to raw biomass. The conventional SRBO process faces several limitations, mainly catalyst deactivation due to significant coke formation and metallic sintering, as well as low hydrogen yield and purity. Hence, the intensified sorption-enhanced steam reforming of bio-oil (SESRBO) is a promising strategy to overcome these drawbacks, to simultaneously produce high-purity hydrogen and capture carbon dioxide in situ from the reaction media. This critical review presents an in-depth comparative analysis of conventional and intensified steam reforming of bio-oil, with a focus on associated challenges. Special attention is given to recent developments in the design of bifunctional materials (BFMs), which integrate both catalyst and sorbent into a single particle, along with process optimization focusing on key parameters, i.e., reforming temperature and steam presence. Finally, the review highlights key research gaps and future directions to overcome existing challenges in achieving cost-effective and scalable hydrogen production. Full article
(This article belongs to the Special Issue Recent Advances in Catalytic Reforming for Hydrogen/Syngas Production)
Show Figures

Graphical abstract

18 pages, 3245 KB  
Article
Swirl Flame Stability for Hydrogen-Enhanced LPG Combustion in a Low-Swirl Burner: Experimental Investigation
by Abdulrahman E. J. Alhamd, Abdulrazzak Akroot and Hasanain A. Abdul Wahhab
Appl. Sci. 2026, 16(1), 347; https://doi.org/10.3390/app16010347 - 29 Dec 2025
Viewed by 235
Abstract
Recent progress in hydrogen combustion indicates that hydrogen could partially or fully replace traditional fuels in power plants, but maintaining stable flames remains a major challenge for many combustion systems. This study presents the effect of hydrogen enrichment of Liquid Petroleum Gas (LPG) [...] Read more.
Recent progress in hydrogen combustion indicates that hydrogen could partially or fully replace traditional fuels in power plants, but maintaining stable flames remains a major challenge for many combustion systems. This study presents the effect of hydrogen enrichment of Liquid Petroleum Gas (LPG) on the low-swirl flame structure and flame temperature at different hydrogen mass fractions and equivalence ratios (φ = 0.501 and 1.04). The experimental observations for low-swirl flames under various conditions, including the effect of increasing hydrogen enrichment from 0% to ~20%, were discussed. Experiments were performed using a swirl burner, flame photography, and temperature measurements to evaluate the dynamic swirl flame, stability, and flame temperature distribution. The results show that moderate hydrogen enrichment (5–15%) improves flame stability and delays blow-off. In contrast, very high hydrogen concentrations may destabilize the flame due to higher reactivity and enhanced sensitivity to flow perturbations. Also, hydrogen enrichment up to ~20% enhances flame compactness, intensifies heat release, and reduces oscillatory instability without triggering blow-off or flashback, making hydrogen blending a promising strategy for stabilizing swirl flames at rich operating conditions. Finally, hydrogen enrichment consistently increases swirl flame temperature at both equivalence ratios. Full article
(This article belongs to the Special Issue Clean Combustion Technologies and Renewable Fuels)
Show Figures

Figure 1

17 pages, 1556 KB  
Article
From Waste to Resource: Extraction and Characterization of Polyphenols from Dalmatian Olive Mill Wastewater
by Nina Knezovic, Ajka Pribisalic, Katarina Jurcic, Ivica Ljubenkov, Barbara Soldo, Danijela Skroza, Mladenka Sarolic, Sanja Luetic, Davorka Sutlovic and Zlatka Knezovic
Antioxidants 2026, 15(1), 12; https://doi.org/10.3390/antiox15010012 - 21 Dec 2025
Viewed by 438
Abstract
Background: Olive cultivation and olive oil production are key agricultural sectors in the Dalmatia region, where numerous oil mills operate. Analyses have shown that extra virgin olive oils (EVOO) produced in this area contain respectable amounts of polyphenols, which contribute to superior oil [...] Read more.
Background: Olive cultivation and olive oil production are key agricultural sectors in the Dalmatia region, where numerous oil mills operate. Analyses have shown that extra virgin olive oils (EVOO) produced in this area contain respectable amounts of polyphenols, which contribute to superior oil quality due to their antioxidant properties. During processing, hydrophilic phenolic compounds predominantly transfer into olive mill wastewater (OMW), making it a concentrated source of valuable bioactive molecules. The antioxidant, anti-inflammatory, and photoprotective effects of these polyphenols are highly relevant for cosmetic and pharmaceutical use. Methods: A total of 186 OMW samples were collected from oil mills in the Split-Dalmatia County across three production seasons (2023–2025). Total polyphenol content (TPC) was measured spectrophotometrically, while polyphenol composition was determined by High Performance Liquid Chromatography (HPLC). Antioxidant activity was evaluated using hydrogen atom transfer (HAT; 2,2-diphenyl-1-picrylhydrazyl) (DPPH), electron transfer (ET; ferric reducing antioxidant power) (FRAP), and oxygen radical absorbance capacity assay (ORAC). Results: The obtained results indicated high total polyphenols concentrations, with values ranging from 111.8 to 6717.2 mg of gallic acid equivalents per L of OMW (mg GAe L−1). In the vast majority of analyzed samples, hydroxytyrosol was the predominant phenol compound. The antioxidant activity of the samples was high. Full article
(This article belongs to the Special Issue Bioactive Antioxidants from Agri-Food Wastes, 2nd Edition)
Show Figures

Graphical abstract

30 pages, 1975 KB  
Review
Thermo-Fluid Dynamics Modelling of Liquid Hydrogen Storage and Transfer Processes
by Lucas M. Claussner, Giordano Emrys Scarponi and Federico Ustolin
Hydrogen 2025, 6(4), 122; https://doi.org/10.3390/hydrogen6040122 - 17 Dec 2025
Viewed by 703
Abstract
The use of liquid hydrogen (LH2) as an energy carrier is gaining traction across sectors such as aerospace, maritime, and large-scale energy storage due to its high gravimetric energy density and low environmental impact. However, the cryogenic nature of LH2 [...] Read more.
The use of liquid hydrogen (LH2) as an energy carrier is gaining traction across sectors such as aerospace, maritime, and large-scale energy storage due to its high gravimetric energy density and low environmental impact. However, the cryogenic nature of LH2, with storage temperatures near 20 K, poses significant thermodynamic and safety challenges. This review consolidates the current state of modelling approaches used to simulate LH2 behaviour during storage and transfer operations, with a focus on improving operational efficiency and safety. The review categorizes the literature into two primary domains: (1) thermodynamic behaviour within storage tanks and (2) multi-phase flow dynamics in storage and transfer systems. Within these domains, it covers a variety of phenomena. Particular attention is given to the role of heat ingress in driving self-pressurization and boil-off gas (BoG) formation, which significantly influence storage performance and safety mechanisms. Eighty-one studies published over six decades were analyzed, encompassing a diverse range of modelling approaches. The reviewed literature revealed significant methodological variety, including general analytical models, lumped-parameter models (0D/1D), empirical and semi-empirical models, computational fluid dynamics (CFD) models (2D/3D), machine learning (ML) and artificial neural network (ANN) models, and numerical multidisciplinary simulation models. The review evaluates the validation status of each model and identifies persistent research gaps. By mapping current modelling efforts and their limitations, this review highlights opportunities for enhancing the accuracy and applicability of LH2 simulations. Improved modelling tools are essential to support the design of inherently safe, reliable, and efficient hydrogen infrastructure in a decarbonized energy landscape. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

12 pages, 3484 KB  
Article
The Effect of a Teflon Insulation Layer Installed Inside the Pump on the Insulation of a Centrifugal Pump for Transporting Liquid Hydrogen
by Jeong-Eui Yun, Joon-Young Shin, Cartur Harsito, Won-Sik Kim, Hong-Sik Moon and Sang-Seon Lee
Energies 2025, 18(23), 6356; https://doi.org/10.3390/en18236356 - 4 Dec 2025
Viewed by 274
Abstract
One of the most important goals in developing centrifugal pumps for liquid hydrogen transport is to minimize the temperature rise of the working fluid caused by internal and external heat sources during operation. In this paper, as part of our evaluation of the [...] Read more.
One of the most important goals in developing centrifugal pumps for liquid hydrogen transport is to minimize the temperature rise of the working fluid caused by internal and external heat sources during operation. In this paper, as part of our evaluation of the internal insulation characteristics of a centrifugal pump for liquid hydrogen transport, we removed the external vacuum insulation layer and installed a Teflon insulation layer inside the pump. We investigated the process of heat transfer from the outside to the working fluid due to internal heat flow loss during the pumping process and the resulting temperature rise of the working fluid through CHT (Conjugate Heat Transfer) analysis. The results show that, compared to a pump without a Teflon insulation layer, increasing the insulation layer thickness to 10 mm reduces external heat input from about 1300 W to 300 W. Furthermore, the Teflon insulation layer reduces the heat generated by internal heat flow losses during pump operation from approximately 37 W to 11 W. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

21 pages, 497 KB  
Review
Digital Twins for Cryogenic Hydrogen Safety: Integrating Computational Fluid Dynamics and Machine Learning
by Konstantina Vogiatzaki, Giovanni Tretola and Laurie Cesmat
Hydrogen 2025, 6(4), 110; https://doi.org/10.3390/hydrogen6040110 - 1 Dec 2025
Viewed by 766
Abstract
The global transition toward low-carbon energy and transportation systems positions hydrogen as a key clean and versatile energy carrier. However, ensuring the safe handling and storage of hydrogen—particularly in its liquid form LH2)—remains a critical challenge to large-scale deployment. Accidental releases [...] Read more.
The global transition toward low-carbon energy and transportation systems positions hydrogen as a key clean and versatile energy carrier. However, ensuring the safe handling and storage of hydrogen—particularly in its liquid form LH2)—remains a critical challenge to large-scale deployment. Accidental releases of LH2 can lead to rapid dispersion, cryogenic hazards, and increased risks of ignition or detonation due to hydrogen’s low ignition energy and wide flammability limits. This review synthesizes recent advances in the understanding and modelling of LH2 safety scenarios, emphasizing the complementary roles of Computational Fluid Dynamics (CFD) and Machine Learning (ML). The paper first outlines the fundamental physical processes governing cryogenic hydrogen leaks, spills, and jet releases, followed by an overview of current storage and sensing technologies. Special consideration is given to safety implications arising from the differences between open and enclosed environments and the fact that existent sensing technologies present deficiencies at low temperatures. CFD-based studies are reviewed to illustrate how these methods capture complex flow and dispersion dynamics under diverse operational and environmental conditions, supported by a summary of existing experimental investigations used for model validation. The emerging role of ML is then examined, focusing on its integration with CFD simulations and sensor networks for predictive risk assessment, real-time leak detection, and the development of digital twins. Finally, integrated CFD–ML-sensor systems are discussed as a pathway toward a physics-informed, data-driven framework for advancing hydrogen safety and reliability. Full article
Show Figures

Figure 1

15 pages, 2700 KB  
Article
Research and Testing on the Performance of Soft-Seal Structures in Liquid Hydrogen Globe Valves
by Zhiwen Meng, Suke Jin, Meng Yu and Fanding Li
Processes 2025, 13(12), 3858; https://doi.org/10.3390/pr13123858 - 29 Nov 2025
Viewed by 562
Abstract
As one of the most important future energy solutions, liquid hydrogen has advantages in terms of high energy density, ease of storage and transportation, low cost, and high safety. Valves are critical components for liquid hydrogen systems; compared to other energy systems, liquid [...] Read more.
As one of the most important future energy solutions, liquid hydrogen has advantages in terms of high energy density, ease of storage and transportation, low cost, and high safety. Valves are critical components for liquid hydrogen systems; compared to other energy systems, liquid hydrogen systems require higher sealing performance for valves at working temperatures to ensure operational safety and efficiency. However, recent research either focuses on cryogenic valves for liquid nitrogen and higher temperature ranges or liquid hydrogen temperatures (−253 °C) with safety valves and small diameters (typically below DN50). In this work, the sealing performance of liquid hydrogen globe valves at design temperatures was investigated through the finite element method and experimental tests. The behavior of different sealing structures under liquid hydrogen conditions was observed by means of comparative numerical analysis. Furthermore, a test system for liquid hydrogen valves with diameters ranging from DN10 to DN100 was established, covering a size range that encompasses 80% of commercially available liquid hydrogen valve products. By employing an internal cooling method utilizing liquid helium to reach target temperatures, the valve leakage rates (both internal and external) were assessed using helium mass spectrometry. The test results indicated that valve leakage was recorded at only 25% of the maximum allowable leakage, thereby adhering to the standards set for liquid hydrogen valves. These test results provide actionable insights for optimizing valve design and advancing hydrogen energy infrastructure development. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop