Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = liquid hot water pretreatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3114 KiB  
Article
An Efficient Extraction, Characterization and Antioxidant Study of Polysaccharides from Peucedani Decursivi Radix
by Qian Li, Zeyu Li, Chaogui Hu, Chenyue Wang, Feng Yang and Xiaoqin Ding
Plants 2025, 14(14), 2188; https://doi.org/10.3390/plants14142188 - 15 Jul 2025
Viewed by 312
Abstract
Hot water extraction (HE), enzyme-assisted hot water extraction (EAHE), ultrasonic-assisted extraction with NADES (UAE-NADES) and ultrasonic-assisted extraction with NADES and enzyme pretreatment (UAE-NADES-E) were employed to extract polysaccharides from Peucedani Decursivi Radix (PDR) and their structures were characterized for the first time. UAE-NADES-E [...] Read more.
Hot water extraction (HE), enzyme-assisted hot water extraction (EAHE), ultrasonic-assisted extraction with NADES (UAE-NADES) and ultrasonic-assisted extraction with NADES and enzyme pretreatment (UAE-NADES-E) were employed to extract polysaccharides from Peucedani Decursivi Radix (PDR) and their structures were characterized for the first time. UAE-NADES-E was found to be the most effective extraction method, and the extraction process was optimized by Box–Behnken design (BBD)-response surface methodology (RSM) experiments. The optimal extraction process was determined by using a NADES system with a molar ratio of betaine to 1,3-butanediol of 1:3, a water content of 30%, a liquid/solid ratio of 40:1 mL/g, an ultrasound time of 30 min, an ultrasound temperature of 45 °C and an alcohol precipitation time of 6 h; the polysaccharide extraction yield reached 19.93%. Further, the structures of polysaccharides from PDR extracted by the above four methods were characterized by FT-IR, SEM, gel and anion-exchange chromatography. Eight monosaccharides were detected in the PDR polysaccharides extracted by the four methods. The PDR polysaccharides extracted by the UAE-NADES-E method had lower molecular weights compared with those extracted by the other methods. Moreover, the PDR polysaccharides exhibited obvious antioxidant activity, as revealed by DPPH, ABTS+ and hydroxyl radical scavenging experiments, meaning they have the potential to be developed as natural antioxidants. Full article
Show Figures

Graphical abstract

17 pages, 494 KiB  
Review
Liquid Hot Water and Steam Explosion Pretreatment Methods for Cellulosic Raw Materials: A Review
by Evgenia K. Gladysheva
Polymers 2025, 17(13), 1783; https://doi.org/10.3390/polym17131783 - 27 Jun 2025
Viewed by 521
Abstract
Cellulosic raw materials are the most common source of carbon on Earth and are in great demand for the production of high-value-added products. Cellulosic feedstocks represent a strong matrix consisting of cellulose, lignin, and hemicelluloses. The efficient transformation of cellulosic raw materials into [...] Read more.
Cellulosic raw materials are the most common source of carbon on Earth and are in great demand for the production of high-value-added products. Cellulosic feedstocks represent a strong matrix consisting of cellulose, lignin, and hemicelluloses. The efficient transformation of cellulosic raw materials into fermentable sugars requires the use of effective pretreatment strategies. The methods employed for pretreatment should be efficient, have low operating costs, and exhibit lower environmental impact. The present review describes pretreatment methods like liquid hot water (LHW) and steam explosion (SE) and highlights peculiar features, benefits and disadvantages of these processes. The effectiveness of these pretreatment methods and their effect on cellulosic raw materials strongly depends on the type of feedstock (component composition), pretreatment method, and pretreatment conditions (pressure, temperature, time, etc.). The LHW pretreatment requires neither addition of chemicals and catalysts nor grinding stage, but requires high energy inputs. The SE pretreatment is regarded as environmentally friendly and requires lower energy inputs, but contributes to the formation of toxic compounds. The life cycle assessment approach demonstrated that the SE pretreatment outperforms dilute acid pretreatment methods and allows the reduction of energy inputs, thereby improving the environmental performance of the process, while the LHW method improves long-term energy security and creates a greener future. Full article
Show Figures

Graphical abstract

17 pages, 2664 KiB  
Article
Optimization of Acid-Catalyzed Hydrolysis and Simultaneous Saccharification and Fermentation for Enhanced Ethanol Production from Sweet Stalk Sorghum
by Torpong Kreetachat, Nopparat Suriyachai, Punjarat Khongchamnan, Kowit Suwannahong, Surachai Wongcharee, Chainarong Sakulthaew, Chanat Chokejaroenrat and Saksit Imman
Catalysts 2025, 15(4), 379; https://doi.org/10.3390/catal15040379 - 13 Apr 2025
Viewed by 796
Abstract
This study aims to identify the best conditions for liquid hot water pretreatment (LHW) of sweet stalk sorghum and the optimization method using the response surface method (RSM) with varying parameters, including temperature, reaction time, and acid catalysts, to enhance the enzymatic hydrolysis [...] Read more.
This study aims to identify the best conditions for liquid hot water pretreatment (LHW) of sweet stalk sorghum and the optimization method using the response surface method (RSM) with varying parameters, including temperature, reaction time, and acid catalysts, to enhance the enzymatic hydrolysis of pretreated sweet stalk sorghum. This study presents a novel approach by optimizing LHW pretreatment using RSM to maximize the glucose yield and minimize sugar degradation, in contrast to the widely used method of sulfuric acid hydrolysis combined with SSF. The goal is to achieve the highest glucose yield for ethanol production under optimal conditions. The results show that after the LHW pretreatment under optimal conditions, the optimal actual values have the highest glucose yield of 91.09% in a solid fraction at a sulfuric acid catalyst concentration of 0.90% with a pretreatment temperature of 110 °C for 90 min. The results of the statistical analysis of the glucose yield show an R-squared value of 0.9964 or 99.64%, which is statistically significant. In addition, the optimized pretreatment conditions significantly improved the accessibility of the enzyme. Pretreatment for ethanol production in sweet stalk sorghum samples was carried out with an H2SO4 catalyst concentration of 0.90% using the SSF method with the yeast strain S. cerevisiae. The results show that during the fermentation period of 0–96 h, the maximum ethanol concentration of 23.1 g/L occurred at 72 h under 25 FPU/g substrate at pH 4.8 and decreased 72 h after fermentation. In conclusion, sweet stalk sorghum is a promising candidate for ethanol production due to its high glucose yield and efficient enzymatic hydrolysis, making it a viable alternative for biomass-based energy production. Full article
Show Figures

Figure 1

18 pages, 4470 KiB  
Article
Efficient Bioethanol Production from Spent Coffee Grounds Using Liquid Hot Water Pretreatment without Detoxification
by Jiale Huang, Biying Li, Xiaoling Xian, Yinan Hu and Xiaoqing Lin
Fermentation 2024, 10(8), 436; https://doi.org/10.3390/fermentation10080436 - 21 Aug 2024
Cited by 6 | Viewed by 2711
Abstract
Coffee beans, a popular commodity in the world, are processed into coffee, which generates a considerable quantity of spent coffee grounds (SCGs). However, SCGs, a byproduct rich in hemicellulose, poses a challenge due to fermentable sugar loss during conventional pretreatment. This study investigates [...] Read more.
Coffee beans, a popular commodity in the world, are processed into coffee, which generates a considerable quantity of spent coffee grounds (SCGs). However, SCGs, a byproduct rich in hemicellulose, poses a challenge due to fermentable sugar loss during conventional pretreatment. This study investigates the efficient production of bioethanol from SCG using an optimized liquid hot water (LHW) pretreatment combined with separate hydrolysis and fermentation (SHF) process. LHW pretreatment at 180 °C for 20 min with a high solid-to-liquid ratio (SLR) of 1:6 (w/v) was optimized to disrupt the lignocellulosic structure and retain high levels of fermentable sugars, which included mannose and glucose. This approach achieved a bioethanol concentration of 15.02 ± 0.05 g/L and a productivity rate of 1.252 g/(L·h), demonstrating the efficiency of this integrated process. Interestingly, the high SLR LHW pretreatment significantly reduces water usage and enhances product concentration, offering a promising, environmentally friendly, and economically viable method for industrial bioethanol production from SCGs without the necessity of detoxification. Full article
(This article belongs to the Special Issue Fermentation: 10th Anniversary)
Show Figures

Figure 1

14 pages, 2074 KiB  
Article
Efficacy and Functional Mechanisms of a Two-Stage Pretreatment Approach Based on Alkali and Ionic Liquid for Bioconversion of Waste Medium-Density Fiberboard
by Shujie Wang, Xianfeng Hou, Jin Sun, Dan Sun and Zhenzhong Gao
Molecules 2024, 29(9), 2153; https://doi.org/10.3390/molecules29092153 - 6 May 2024
Cited by 1 | Viewed by 1382
Abstract
A novel pretreatment strategy utilizing a combination of NaOH and 1-Butyl-3-methylimidazolium chloride ([Bmim]Cl) was proposed to enhance the enzymatic hydrolysis of abandoned Medium-density fiberboard (MDF). The synergistic effect of NaOH and [Bmim]Cl pretreatment significantly improved the glucose yield, reaching 445.8 mg/g within 72 [...] Read more.
A novel pretreatment strategy utilizing a combination of NaOH and 1-Butyl-3-methylimidazolium chloride ([Bmim]Cl) was proposed to enhance the enzymatic hydrolysis of abandoned Medium-density fiberboard (MDF). The synergistic effect of NaOH and [Bmim]Cl pretreatment significantly improved the glucose yield, reaching 445.8 mg/g within 72 h, which was 5.04 times higher than that of the untreated samples. The working mechanism was elucidated according to chemical composition, as well as FTIR, 13C NMR, XRD, and SEM analyses. The combined effects of NaOH and [Bmim]Cl led to lignin degradation, hemicellulose removal, the destruction and erosion of crystalline regions, pores, and an irregular microscopic morphology. In addition, by comparing the enzymatic hydrolysis sugar yield and elemental nitrogen content of untreated MDF samples, eucalyptus, and hot mill fibers (HMF), it was demonstrated that the presence of adhesives and additives in waste MDF significantly influences its hydrolysis process. The sugar yield of untreated MDF samples (88.5 mg/g) was compared with those subjected to hydrothermal pretreatment (183.2 mg/g), Ionic liquid (IL) pretreatment (406.1 mg/g), and microwave-assisted ionic liquid pretreatment (MWI) (281.3 mg/g). A long water bath pretreatment can reduce the effect of adhesives and additives on the enzymatic hydrolysis of waste MDF. The sugar yield produced by the combined pretreatment proposed in this study and the removal ability of adhesives and additives highlight the great potential of our pretreatment technology in the recycling of waste fiberboard. Full article
Show Figures

Graphical abstract

12 pages, 1188 KiB  
Article
Enhancement of Liquid Hot Water Pretreatment on Corn Stover with Ball Milling to Improve Total Sugar Yields
by Guanya Ji, Bo Zhang, Qijian Niu, Yuxin Liu and Qizhi Yang
Sustainability 2023, 15(23), 16426; https://doi.org/10.3390/su152316426 - 29 Nov 2023
Cited by 5 | Viewed by 1531
Abstract
Conversion of the lignocellulosic biomass to bioethanol contributes to the reduction of greenhouse gas emissions, enhancement of energy security, utilization of waste materials, and the promotion of sustainable agricultural practices. In this study, we report the effect of combining ball milling followed by [...] Read more.
Conversion of the lignocellulosic biomass to bioethanol contributes to the reduction of greenhouse gas emissions, enhancement of energy security, utilization of waste materials, and the promotion of sustainable agricultural practices. In this study, we report the effect of combining ball milling followed by liquid hot water (LHW) pretreatment of corn stover to lower the amount of enzyme required while also greatly increasing the recovery of xylose in fermentable form compared to either pretreatment alone. Short-duration ball milling for 60 min reduces the particle size of corn stover to 37.3 μm; however, the glucose only increased to 47% compared to 32% for unpretreated corn stover. In contrast, liquid hot water pretreatment alone can achieve increasing enzyme hydrolysis yields of cellulose from 49% to 93% as the pretreatment severity factor is increased from 3.24 to 4.41. However, the xylose yield decreased to 36% due to the fact that a considerable part of the xylose was degraded into furfural and humins. Surprisingly, the combination of mild ball milling (30 min) followed by mild liquid hot water pretreatment (190 °C, 15 min) could achieve both high glucose (83%) and xylose (72%) yields for a total sugar yield of 79%, theoretically. Thus, combining ball milling with liquid hot water pretreatment allows for milder conditions for both processes that lead to enhanced cellulose conversion without sacrificing xylose to degradation, which hinders enzymatic hydrolysis. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

15 pages, 1868 KiB  
Article
Full-Chain FeCl3 Catalyzation Is Sufficient to Boost Cellulase Secretion and Cellulosic Ethanol along with Valorized Supercapacitor and Biosorbent Using Desirable Corn Stalk
by Jingyuan Liu, Xin Zhang, Hao Peng, Tianqi Li, Peng Liu, Hairong Gao, Yanting Wang, Jingfeng Tang, Qiang Li, Zhi Qi, Liangcai Peng and Tao Xia
Molecules 2023, 28(5), 2060; https://doi.org/10.3390/molecules28052060 - 22 Feb 2023
Cited by 8 | Viewed by 2525
Abstract
Cellulosic ethanol is regarded as a perfect additive for petrol fuels for global carbon neutralization. As bioethanol conversion requires strong biomass pretreatment and overpriced enzymatic hydrolysis, it is increasingly considered in the exploration of biomass processes with fewer chemicals for cost-effective biofuels and [...] Read more.
Cellulosic ethanol is regarded as a perfect additive for petrol fuels for global carbon neutralization. As bioethanol conversion requires strong biomass pretreatment and overpriced enzymatic hydrolysis, it is increasingly considered in the exploration of biomass processes with fewer chemicals for cost-effective biofuels and value-added bioproducts. In this study, we performed optimal liquid-hot-water pretreatment (190 °C for 10 min) co-supplied with 4% FeCl3 to achieve the near-complete biomass enzymatic saccharification of desirable corn stalk for high bioethanol production, and all the enzyme-undigestible lignocellulose residues were then examined as active biosorbents for high Cd adsorption. Furthermore, by incubating Trichoderma reesei with the desired corn stalk co-supplied with 0.05% FeCl3 for the secretion of lignocellulose-degradation enzymes in vivo, we examined five secreted enzyme activities elevated by 1.3–3.0-fold in vitro, compared to the control without FeCl3 supplementation. After further supplying 1:2 (w/w) FeCl3 into the T. reesei-undigested lignocellulose residue for the thermal-carbonization process, we generated highly porous carbon with specific electroconductivity raised by 3–12-fold for the supercapacitor. Therefore, this work demonstrates that FeCl3 can act as a universal catalyst for the full-chain enhancement of biological, biochemical, and chemical conversions of lignocellulose substrates, providing a green-like strategy for low-cost biofuels and high-value bioproducts. Full article
(This article belongs to the Topic Nanomaterials for Sustainable Energy Applications)
Show Figures

Graphical abstract

9 pages, 941 KiB  
Article
Performance Evaluation of Combined Hydrothermal-Mechanical Pretreatment of Lignocellulosic Biomass for Enzymatic Enhancement
by Jiraporn Phojaroen, Thitirat Jiradechakorn, Suchata Kirdponpattara, Malinee Sriariyanun, Jatupol Junthip and Santi Chuetor
Polymers 2022, 14(12), 2313; https://doi.org/10.3390/polym14122313 - 8 Jun 2022
Cited by 27 | Viewed by 3368
Abstract
Pretreatment is a crucial process in a lignocellulosic biorefinery. Corncob is typically considered as a natural renewable carbon source to produce various bio-based products. This study aimed to evaluate the performance of the hydrothermal-mechanical pretreatment of corncob for biofuels and biochemical production. Corncob [...] Read more.
Pretreatment is a crucial process in a lignocellulosic biorefinery. Corncob is typically considered as a natural renewable carbon source to produce various bio-based products. This study aimed to evaluate the performance of the hydrothermal-mechanical pretreatment of corncob for biofuels and biochemical production. Corncob was first pretreated by liquid hot water (LHW) at different temperatures (140–180 °C) and duration (30, 60 min) and then subjected to centrifugal milling to produce bio-powders. To evaluate the performance of this combined pretreatment, the energy efficiency and waste generation were investigated. The results indicated that the maximum fermentable sugars (FS) were 0.488 g/g biomass obtained by LHW at 180 °C, 30 min. In order to evaluate the performance of this combined pretreatment, the energy efficiency and waste generation were 28.3 g of FS/kWh and 7.21 kg of waste/kg FS, respectively. These obtained results indicate that the combined hydrothermal-mechanical pretreatment was an effective pretreatment process to provide high energy efficiency and low waste generation to produce biofuels. In addition, the energy efficiency and waste generation will be useful indicators for process scaling-up into the industrial scale. This combined pretreatment could be a promising pretreatment technology for the production of biofuels and biochemicals from lignocellulosic valorization. Full article
(This article belongs to the Special Issue Mechanical Performance of Sustainable Bio-Based Compounds)
Show Figures

Graphical abstract

13 pages, 1908 KiB  
Article
A Combination Method of Liquid Hot Water and Phosphotungstic Acid Pretreatment for Improving the Enzymatic Saccharification Efficiency of Rice Straw
by Shengming Zhang, Tiehan Mei, Chonghao Zhu, Huimin Shang, Shushan Gao, Liyuan Qin and Haitao Chen
Energies 2022, 15(10), 3636; https://doi.org/10.3390/en15103636 - 16 May 2022
Cited by 7 | Viewed by 2059
Abstract
Chemical pretreatment can significantly improve the enzymatic hydrolysis efficiency of lignocellulosic biomass, thereby improving the yield of sugar materials for the production of cellulosic ethanol, but commonly used acid–base catalysts are difficult to recover and reuse. In this work, a combination method of [...] Read more.
Chemical pretreatment can significantly improve the enzymatic hydrolysis efficiency of lignocellulosic biomass, thereby improving the yield of sugar materials for the production of cellulosic ethanol, but commonly used acid–base catalysts are difficult to recover and reuse. In this work, a combination method of liquid hot water (LHW) and phosphotungstic acid (PTA) pretreatment was performed to improve the saccharification efficiency of rice straw, and we attempted to evaluate the reuse effect of PTA catalysts. The rice straw was first treated with LHW at 180 °C for 90 min, and then treated with 20 mM PTA at 130 °C for 60 min. After pretreatment, the cellulose hydrolysis efficiency and glucose recovery of the rice straw increased by 201.85% and 164.25%, respectively. Glucose accounted for 96.8% of the total reducing sugar in the final enzymatic hydrolysate. After each PTA pretreatment, approximately 70.8–73.2% of the PTA catalyst could be recycled. Moreover, the catalytic activity of the PTA catalyst that had been used five times did not decrease. The improved enzymatic saccharification efficiency was attributed to the removal of 89.24% hemicellulose and 21.33% lignin from the lignocellulosic substrate. The two-step LHW-PTA pretreatment could pretreat biomass in the field of cellulosic ethanol production. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

11 pages, 629 KiB  
Article
Evaluation of the Hydrolysis Efficiency of Bacterial Cellulose Gel Film after the Liquid Hot Water and Steam Explosion Pretreatments
by Izabela Betlej, Andrzej Antczak, Jan Szadkowski, Michał Drożdżek, Krzysztof Krajewski, Andrzej Radomski, Janusz Zawadzki and Sławomir Borysiak
Polymers 2022, 14(10), 2032; https://doi.org/10.3390/polym14102032 - 16 May 2022
Cited by 9 | Viewed by 2262
Abstract
The influence of bacterial cellulose gel film pretreatment methods on the efficiency of enzymatic hydrolysis was investigated. An increase in the efficiency of enzymatic hydrolysis due to liquid hot water pretreatment or steam explosion was shown. The glucose yield of 88% was obtained [...] Read more.
The influence of bacterial cellulose gel film pretreatment methods on the efficiency of enzymatic hydrolysis was investigated. An increase in the efficiency of enzymatic hydrolysis due to liquid hot water pretreatment or steam explosion was shown. The glucose yield of 88% was obtained from raw, non-purified, bacterial cellulose treated at 130 °C. The results confirm the potential of bacterial cellulose gel film as a source for liquid biofuel production. Full article
(This article belongs to the Special Issue Advanced Polymeric Films)
Show Figures

Figure 1

24 pages, 2084 KiB  
Article
Antioxidant, Antimicrobial, and Metabolomic Characterization of Blanched Pomegranate Peel Extracts: Effect of Cultivar
by Tandokazi Pamela Magangana, Nokwanda P. Makunga, Olaniyi Amos Fawole, Maria A. Stander and Umezuruike Linus Opara
Molecules 2022, 27(9), 2979; https://doi.org/10.3390/molecules27092979 - 6 May 2022
Cited by 26 | Viewed by 3535
Abstract
Hot water blanching at 80 °C for 3 min can be used as a novel pre-treatment step in pomegranate peel to preserve the integrity of the phytochemical content within the peel extracts by lowering or inactivating enzymes such as polyphenol (PPO) oxidase and [...] Read more.
Hot water blanching at 80 °C for 3 min can be used as a novel pre-treatment step in pomegranate peel to preserve the integrity of the phytochemical content within the peel extracts by lowering or inactivating enzymes such as polyphenol (PPO) oxidase and peroxidase (POD) that are responsible for the break-down of phytochemicals within the peel. The aim of this study was to investigate the effect of hot water blanching pre-treatment on yield, bioactive compounds, antioxidants, enzyme inactivation, and antibacterial activity of ‘Wonderful’, ‘Acco’, and ‘Herskawitz’ pomegranate peel extracts. We used a variety of spectrophotometric-based assays and liquid chromatography mass spectrometry (LC-MS)-based approach to characterize and quantify metabolites within the peel extracts. Blanching significantly (p < 0.05) reduced PPO activity in all peel extracts, with the highest PPO reduction in ‘Herskawitz’ peel extracts at 0.25 U/mL. Furthermore, higher antioxidant activity in ‘Herskawitz’ blanched peel extracts using 2,2-diphenyl-1-picryl hydrazyl (DPPH) antioxidant activity, ferric ion reducing antioxidant power (FRAP), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activity at 567.78 ± 9.47 µmol Trolox/g DM, 800.05 ± 1.60 µmol Trolox/g DM, and 915.27 ± 0.61 µmol Trolox/g DM, respectively, was noted. ‘Herskawitz’ blanched peel extracts were recorded with the lowest minimum inhibitory concentration (MIC) value of 80 µg/mL for Gram-positive Bacillus subtilis and Gram-negative Klebsiella pneumoniae bacteria strains. A total of 30 metabolites were present in ‘Acco’ and ‘Herskawitz’ peel extracts and were tentatively identified after LC-MS profiling. This study demonstrates that blanched peel extracts from ‘Herskawitz’ cultivar have great potential for commercial use in value-added products in the nutraceutical, cosmeceutical, and pharmacological industries. Full article
Show Figures

Figure 1

11 pages, 1710 KiB  
Article
Optimization of Liquid Hot Water Pretreatment and Fermentation for Ethanol Production from Sugarcane Bagasse Using Saccharomyces cerevisiae
by Punjarat Khongchamnan, Nopparat Suriyachai, Torpong Kreetachat, Navadol Laosiripojana, Khatiya Weerasai, Verawat Champreda, Kowit Suwannahong, Chainarong Sakulthaew, Chanat Chokejaroenrat and Saksit Imman
Catalysts 2022, 12(5), 463; https://doi.org/10.3390/catal12050463 - 21 Apr 2022
Cited by 8 | Viewed by 3149
Abstract
Sugarcane bagasse can be considered a potential raw material in terms of quantity and quality for the production of alternative biofuels. In this research, liquid hot water (LHW) was studied as a pretreatment process to enhance the digestibility of pretreated material for further [...] Read more.
Sugarcane bagasse can be considered a potential raw material in terms of quantity and quality for the production of alternative biofuels. In this research, liquid hot water (LHW) was studied as a pretreatment process to enhance the digestibility of pretreated material for further conversion into bioethanol. Different variables (temperature, residual time, and acid concentration) were determined to predict the optimized condition. LHW pretreatment showed an impact on the hemicellulose structure. The optimized condition at 160 °C for 60 min with 0.050 M acid concentration reached the highest glucose yield of 96.86%. Scanning electron microscopy (SEM) showed conspicuous modification of the sugarcane bagasse structure. The effect of LHW pretreatment was also demonstrated by the changes in crystallinity and surface area analysis. FTIR techniques revealed the chemical structure changes of pretreated sugarcane bagasse. The prepared material was further converted into ethanol production with the maximized ethanol concentration of 19.9 g/L. Full article
Show Figures

Graphical abstract

16 pages, 4189 KiB  
Article
Coprocessing Corn Germ Meal for Oil Recovery and Ethanol Production: A Process Model for Lipid-Producing Energy Crops
by Yuyao Jia, Deepak Kumar, Jill K. Winkler-Moser, Bruce Dien, Kent Rausch, Mike E. Tumbleson and Vijay Singh
Processes 2022, 10(4), 661; https://doi.org/10.3390/pr10040661 - 29 Mar 2022
Cited by 4 | Viewed by 3520
Abstract
Efforts to engineer high-productivity crops to accumulate oils in their vegetative tissue present the possibility of expanding biodiesel production. However, processing the new crops for lipid recovery and ethanol production from cell wall saccharides is challenging and expensive. In a previous study using [...] Read more.
Efforts to engineer high-productivity crops to accumulate oils in their vegetative tissue present the possibility of expanding biodiesel production. However, processing the new crops for lipid recovery and ethanol production from cell wall saccharides is challenging and expensive. In a previous study using corn germ meal as a model substrate, we reported that liquid hot water (LHW) pretreatment enriched the lipid concentration by 2.2 to 4.2 fold. This study investigated combining oil recovery with ethanol production by extracting oil following LHW and simultaneous saccharification and co-fermentation (SSCF) of the biomass. Corn germ meal was again used to model the oil-bearing energy crops. Pretreated germ meal hydrolysate or solids (160 and 180 °C for 10 min) were fermented, and lipids were extracted from both the spent fermentation whole broth and fermentation solids, which were recovered by centrifugation and convective drying. Lipid contents in spent fermentation solids increased 3.7 to 5.7 fold compared to the beginning germ meal. The highest lipid yield achieved after fermentation was 36.0 mg lipid g−1 raw biomass; the maximum relative amount of triacylglycerol (TAG) was 50.9% of extracted oil. Although the fermentation step increased the lipid concentration of the recovered solids, it did not improve the lipid yields of pretreated biomass and detrimentally affected oil compositions by increasing the relative concentrations of free fatty acids. Full article
(This article belongs to the Topic Chemical and Biochemical Processes for Energy Sources)
Show Figures

Figure 1

13 pages, 2503 KiB  
Article
Integral Analysis of Liquid-Hot-Water Pretreatment of Wheat Straw: Evaluation of the Production of Sugars, Degradation Products, and Lignin
by Sebastian Serna-Loaiza, Manuel Dias, Laura Daza-Serna, Carla C. C. R. de Carvalho and Anton Friedl
Sustainability 2022, 14(1), 362; https://doi.org/10.3390/su14010362 - 30 Dec 2021
Cited by 19 | Viewed by 3377
Abstract
Developing sustainable biorefineries is an urgent matter to support the transition to a sustainable society. Lignocellulosic biomass (LCB) is a crucial renewable feedstock for this purpose, and its complete valorization is essential for the sustainability of biorefineries. However, it is improbable that a [...] Read more.
Developing sustainable biorefineries is an urgent matter to support the transition to a sustainable society. Lignocellulosic biomass (LCB) is a crucial renewable feedstock for this purpose, and its complete valorization is essential for the sustainability of biorefineries. However, it is improbable that a single pretreatment will extract both sugars and lignin from LCB. Therefore, a combination of pretreatments must be applied. Liquid-hot-water (LHW) is highlighted as a pretreatment for hemicellulose hydrolysis, conventionally analyzed only in terms of sugars and degradation products. However, lignin is also hydrolyzed in the process. The objective of this work was to evaluate LHW at different conditions for sugars, degradation products, and lignin. We performed LHW at 160, 180, and 200 °C for 30, 60, and 90 min using wheat straw and characterized the extract for sugars, degradation products (furfural, hydroxymethylfurfural, and acetic acid), and lignin. Three conditions allowed reaching similar total sugar concentrations (~12 g/L): 160 °C for 90 min, 180 °C for 30 min, and 180 °C for 60 min. Among these, LHW performed at 160 °C for 90 min allowed the lowest concentration of degradation products (0.2, 0.01, and 1.4 g/L for furfural, hydroxymethylfurfural, and acetic acid, respectively) and lignin hydrolysis (2.2 g/L). These values indicate the potential use of the obtained sugars as a fermentation substrate while leaving the lignin in the solid phase for a following stage focused on its extraction and valorization. Full article
Show Figures

Figure 1

12 pages, 1681 KiB  
Article
Liquid Hot Water Pretreatment of Lignocellulosic Biomass at Lab and Pilot Scale
by Jose M. (Chema) Jimenez-Gutierrez, Rob A. J. Verlinden, Peter C. van der Meer, Luuk A. M. van der Wielen and Adrie J. J. Straathof
Processes 2021, 9(9), 1518; https://doi.org/10.3390/pr9091518 - 27 Aug 2021
Cited by 30 | Viewed by 4846
Abstract
Liquid hot water pretreatment is considered to be a promising method for increasing biomass digestibility due to the moderate operational conditions without chemical additions. A necessary step towards the scalability of this pretreatment process is performing pilot plant trials. Upscaling was evaluated with [...] Read more.
Liquid hot water pretreatment is considered to be a promising method for increasing biomass digestibility due to the moderate operational conditions without chemical additions. A necessary step towards the scalability of this pretreatment process is performing pilot plant trials. Upscaling was evaluated with a scaling factor of 500, by using 50 mL in the laboratory and 25 L in a pilot plant batch reactor. Pretreatment times were varied from 30 to 240 min, and temperatures used were 180–188 °C, while applying similar heating profiles at both scales. The initial mass fraction of poplar wood chips ranged from 10% to 16%. Liquid hot water pretreatment at laboratory and pilot scale led to analogous results. The acetic acid analysis of the liquid and solid fractions obtained after pretreatment indicated that complete deacetylation of poplar biomass can be achieved. Full article
(This article belongs to the Special Issue Redesign Processes in the Age of the Fourth Industrial Revolution)
Show Figures

Figure 1

Back to TopTop