Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = liquefied biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5991 KiB  
Article
Sustainability Assessment of Rural Biogas Production and Use Through a Multi-Criteria Approach: A Case Study in Colombia
by Franco Hernan Gomez, Nelson Javier Vasquez, Kelly Cristina Torres, Carlos Mauricio Meza and Mentore Vaccari
Sustainability 2025, 17(15), 6806; https://doi.org/10.3390/su17156806 - 26 Jul 2025
Viewed by 810
Abstract
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels [...] Read more.
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels for cooking and heating in domestic and productive activities poses significant health and environmental risks. This study validated, in three different phases, the sustainability of a model for the production and use of biogas from the treatment of swine-rearing wastewater (WWs) on a community farm: (i) A Multi-Criteria Analysis (MCA), incorporating environmental, social/health, technical, and economic criteria, identified the main weighted criterion to C8 (use of small-scale technologies and low-cost access), with a score of 0.44 points, as well as the Tubular biodigester (Tb) as the most suitable option for the study area, scoring 8.1 points. (ii) Monitoring of the Tb over 90 days showed an average biogas production of 2.6 m3 d−1, with average correlation 0.21 m3 Biogas kg Biomass−1. Using the experimental biogas production rate (k = 0.0512 d−1), the process was simulated with the BgMod model, achieving an average deviation of only 10.4% during the final production phase. (iii) The quantification of benefits demonstrated significant reductions in firewood use: in Scenario S1 (kitchen energy needs), biogas replaced 83.1% of firewood, while in Scenario S2 (citronella essential oil production), the substitution rate was 24.1%. In both cases, the avoided emissions amounted to 0.52 tons of CO2eq per month. Finally, this study proposes a synthesised, community-based rural biogas framework designed for replication in regions with similar socio-environmental, technical, and economic conditions. Full article
Show Figures

Figure 1

22 pages, 7406 KiB  
Article
Decarbonation Effects of Mainstream Dual-Fuel Power Schemes Focus on IMO Mandatory Regulation and LCA Method
by Zhanwei Wang, Shidong Fan and Zhiqiang Han
J. Mar. Sci. Eng. 2025, 13(5), 847; https://doi.org/10.3390/jmse13050847 - 24 Apr 2025
Viewed by 756
Abstract
Recently, the IMO has completed the guidelines on the life cycle greenhouse gas intensity of marine fuels to accelerate the application of alternative fuels. Low-carbon fuels may persist for decades and have become a key transitional phase in replacing marine fuels. A more [...] Read more.
Recently, the IMO has completed the guidelines on the life cycle greenhouse gas intensity of marine fuels to accelerate the application of alternative fuels. Low-carbon fuels may persist for decades and have become a key transitional phase in replacing marine fuels. A more comprehensive methodology for evaluating the carbon emission levels of marine fuels was explored, and the carbon emissions and environmental impacts of a 150,000-ton shuttle tanker under 19 dual-fuel power scenarios were evaluated using the Energy Efficiency Design Index (EEDI) and life cycle assessment (LCA) method. The results show that liquefied natural gas (LNG) has a higher carbon control potential level compared to liquefied petroleum gas (LPG) and methanol (MeOH), while LPG is superior to MeOH based on EEDI evaluation. LCA analysis results show that MeOH (biomass) has the best carbon control potential considering the carbon emissions of the well-to-tank phase of the fuel, followed by LNG, LPG, MeOH (natural gas, NG), and MeOH (coal). However, MeOH (NG) and MeOH (coal) had greater negative environmental impacts. This study provides method support and a direction toward improvement for revising related technical specifications and regulations for dual-fuel vessel performance evaluation, considering the limitations of various maritime regulations. Full article
(This article belongs to the Special Issue Sustainable and Efficient Maritime Operations)
Show Figures

Figure 1

16 pages, 2020 KiB  
Article
Experimental Research on Plasma Electrolytic Liquefaction of Microcrystalline Cellulose
by Weidong Zhao, Wenjie Liu, Yi Sun and Junfeng Wang
Energies 2025, 18(8), 1956; https://doi.org/10.3390/en18081956 - 11 Apr 2025
Viewed by 351
Abstract
The efficient liquefaction of cellulose is a critical technological pathway for the energy utilization of biomass. This study constructed a plasma electrolytic liquefaction experimental system based on the principle of liquid phase surface arc discharge, systematically investigating the effects of operational parameters, including [...] Read more.
The efficient liquefaction of cellulose is a critical technological pathway for the energy utilization of biomass. This study constructed a plasma electrolytic liquefaction experimental system based on the principle of liquid phase surface arc discharge, systematically investigating the effects of operational parameters, including working voltage, catalyst dosage, solid–liquid ratio, and micro-arc polarity, on the liquefaction characteristics of microcrystalline cellulose. Experimental results demonstrated that under optimized conditions—anode micro-arc configuration, working voltage of 750 V, catalyst dosage of 1.44 g, and solid–liquid ratio of 6:38—the cellulose conversion rate reached 79.2%, with a liquefied product mass of 4.75 g. Mechanistic analysis revealed that high-energy electrons and hydrogen ions generated by plasma discharge synergistically act on the cleavage of cellulose molecular chains. Under the combined effects of the catalyst and plasma, cellulose molecules are depolymerized into small molecular compounds. Compared with traditional liquefaction processes, this technology exhibits significant advantages in reaction rate and energy efficiency, providing a novel technical route for the efficient conversion of biomass resources. Full article
Show Figures

Figure 1

18 pages, 7255 KiB  
Article
Effect of Annealing Temperature on the Microstructural and Mechanical Properties of Wire Rod Steel Annealed Using a Biomass Gasifier
by Pathompong Chootapa, Songkran Wiriyasart and Sommas Kaewluan
Energies 2025, 18(8), 1912; https://doi.org/10.3390/en18081912 - 9 Apr 2025
Viewed by 647
Abstract
Natural and liquefied petroleum gases are widely used in industrial heat treatment. However, the rising cost of gas, combined with increased demand, has significantly impacted production costs and the environment. The annealing process typically relies on natural or liquefied petroleum gases as the [...] Read more.
Natural and liquefied petroleum gases are widely used in industrial heat treatment. However, the rising cost of gas, combined with increased demand, has significantly impacted production costs and the environment. The annealing process typically relies on natural or liquefied petroleum gases as the primary heat source. In this study, we aimed to investigate the use of biomass fuel as a replacement for fossil fuels and to evaluate the mechanical properties and microstructure of wire rod steel after annealing using indirect heat from a gasifier. We experimented to examine the effects of annealing temperatures of 650 °C, 700 °C (below the critical temperature Ac1), and 750 °C (above Ac1 but below the upper temperature Ac3). The batch furnace, made of stainless steel, was modified from a traditional wire annealing furnace that originally used CNG and LPG gas burners. It was adapted into a wire annealing furnace connected to a cross-draft gasifier. The furnace’s interior was designed with spiral cooling fins to minimize energy consumption and shorten annealing time. Additionally, it was modified to use biomass as a substitute fuel, reducing environmental pollution. The furnace was coated with thermal insulation, and the biomass gasifier stove was a cross-draft device with primary air feeding at 20 m3/h and secondary air supplied at a constant flow rate of 32 m3/h, 36 m3/h, or 40 m3/h. As a fuel source, we used eucalyptus. The mechanical properties of wire rod steel were measured in terms of tensile strength and torsion, following the TIS 138-2562 standard. This standard specifies that the tensile strength must be at least 260 MPa. Regarding torsion, the TIS 138-2562 requirements state that the wire must withstand at least 75 rounds of twisting without breaking. Our results showed that after annealing at 650 °C, 700 °C, or 750 °C, with a soaking time of 30 min and subsequent cooling in the furnace at natural temperature for 24 h, the tensile strength values were 494.82, 430.87, and 381.33 MPa, respectively. The torsion values were 126.92, 125.8, and 125.76 rounds, respectively. Additionally, ferrite grain size increased with annealing temperature, reaching a maximum of 750 °C. The total annealing duration for each batch was 2 h and 40 min at 650 °C, 2 h and 10 min at 700 °C, and 2 h at 750 °C. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

10 pages, 2504 KiB  
Communication
Utilisation of Liquefied Biomass in Water Co-Electrolysis for the Production of Synthesis Gas
by Diogo Martins, Tiago Cabrita, João Rodrigues, Jaime Puna and João Gomes
Energy Storage Appl. 2025, 2(1), 2; https://doi.org/10.3390/esa2010002 - 12 Feb 2025
Cited by 1 | Viewed by 870
Abstract
This paper presents a study on the addition of liquefied biomass of different lignocellulosic forest residues as a means to enhance the co-electrolysis process leading to the production of synthesis gas, composed of H2, CO, CO2, and O2, [...] Read more.
This paper presents a study on the addition of liquefied biomass of different lignocellulosic forest residues as a means to enhance the co-electrolysis process leading to the production of synthesis gas, composed of H2, CO, CO2, and O2, also known as syngas, with the aim of a subsequent conversion into methane and methanol. Tests were made on a 1 kW prototype unit and showed that the use of liquefied biomass clearly enhances the reaction leading to syngas production. The optimisation study performed showed that the best results are obtained with an addition of 2.5% mass of liquefied biomass obtained from Acacia melanoxylon and operating conditions of a pressure of 4 bar gauge and a temperature of 110 °C. Full article
Show Figures

Graphical abstract

19 pages, 4042 KiB  
Article
Electrolysis of Liquefied Biomass for Sustainable Hydrogen and Organic Compound Production: A Biorefinery Approach
by Ana P. R. A. Ferreira, M. Margarida Mateus and Diogo M. F. Santos
Reactions 2025, 6(1), 10; https://doi.org/10.3390/reactions6010010 - 2 Feb 2025
Viewed by 1108
Abstract
Liquefaction is an effective thermochemical process for converting lignocellulosic biomass into bio-oil, a hydrocarbon-rich resource. This study explores liquefied biomass electrolysis as a novel method to promote the electrocracking of organic molecules into value-added compounds while simultaneously producing hydrogen (H2). Key [...] Read more.
Liquefaction is an effective thermochemical process for converting lignocellulosic biomass into bio-oil, a hydrocarbon-rich resource. This study explores liquefied biomass electrolysis as a novel method to promote the electrocracking of organic molecules into value-added compounds while simultaneously producing hydrogen (H2). Key innovations include utilizing water from the liquefaction process as an electrolyte component to minimize industrial waste and incorporating carbon dioxide (CO2) into the process to enhance decarbonization efforts and generate valuable byproducts. The electrolysis process was optimized by adding 2 M KOH, and voltammetric methods were employed to analyze the resulting emulsion. The experimental conditions, such as the temperature, anode material, current type, applied cell voltage, and CO2 bubbling, were systematically evaluated. Direct current electrolysis at 70 °C using nickel electrodes produced 55 mL of H2 gas with the highest Faradaic (43%) and energetic (39%) efficiency. On the other hand, pulsed electrolysis at room temperature generated a higher H2 gas volume (102 mL) but was less efficient, showing 30% Faradaic and 11% energetic efficiency. FTIR analysis revealed no significant functional group changes in the electrolyte post-electrolysis. Additionally, the solid deposits formed at the anode had an ash content of 36%. This work demonstrates that electrocracking bio-oil is a clean, sustainable approach to H2 production and the synthesis of valuable organic compounds, offering significant potential for biorefinery applications. Full article
Show Figures

Figure 1

30 pages, 7974 KiB  
Article
The Complex Valorization of Black Alder Bark Biomass in Compositions of Rigid Polyurethane Foam
by Alexandr Arshanitsa, Matiss Pals, Laima Vevere, Lilija Jashina and Oskars Bikovens
Materials 2025, 18(1), 50; https://doi.org/10.3390/ma18010050 - 26 Dec 2024
Cited by 1 | Viewed by 876
Abstract
The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether [...] Read more.
The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy. The solid remaining after the isolation of extractive compounds was also utilized as a natural filler in PUR foams. The effects of replacing commercial polyols with bio-polyols on the foam rising rate and their mechanical properties, morphology, thermal conductivity, and thermal degradation characteristics were examined. The oxypropylated extractive-based PUR compositions demonstrated the most favorable balance between the biomass content and material properties. At an apparent density of 40 kg/m3, the compressive strength of the produced foams was enhanced by 1.4–1.5 times, while the maximum thermal degradation rate in air decreased by 3.8–6.5 times compared to reference materials without adversely affecting the foam morphology. The composition based on liquefied extractives showed lower performance but still improved properties relative to the reference foams. Introducing 3.7–14% of extracted bark into the foam compositions increased the biomass content to 22–24%, although this led to a decrease in the compressive strength and thermal stability. It was shown that partially substituting fossil-derived components with renewable bark biomass in the composition of PUR foams allows for materials with characteristics similar or better to petrochemical-based materials to be obtained. Therefore, the results presented can be considered a contribution to addressing environmental problems and promoting the development of a sustainable economy. Full article
Show Figures

Graphical abstract

13 pages, 4637 KiB  
Article
Valorization of Arbutus unedo L. Bark Through Chemical Composition Analysis, Liquefaction, and Bio-Based Foam Production
by Luísa Cruz-Lopes, Yuliya Dulyanska, Rogério Lopes, Idalina Domingos, José Ferreira and Bruno Esteves
Agronomy 2024, 14(12), 2893; https://doi.org/10.3390/agronomy14122893 - 4 Dec 2024
Cited by 1 | Viewed by 929
Abstract
Arbutus unedo (strawberry tree) is a small Mediterranean tree capable of vigorous regrowth after disturbances like fire. Traditionally used for biomass fuel, its bark and branches hold potential for higher-value products through ecovalorization into liquid mixtures that could replace petroleum-based materials. This study [...] Read more.
Arbutus unedo (strawberry tree) is a small Mediterranean tree capable of vigorous regrowth after disturbances like fire. Traditionally used for biomass fuel, its bark and branches hold potential for higher-value products through ecovalorization into liquid mixtures that could replace petroleum-based materials. This study aimed to explore the chemical composition of various components of Arbutus unedo and to produce a liquefied material from its internal (IB) and external bark (EB). Chemical compositions of internal and external bark were determined using TAPPI standards including ash, extractive content, lignin, and cellulose. Metal cations were analyzed by ICP. Liquefaction of bark was optimized in a PARR reactor, evaluating factors such as particle size, temperature, and time, and the best polyols were monitored by FTIR-ATR. Polyurethane foams were made with internal and external bark materials liquefied by polymerization with isocyanate, a catalyst, and water as a blowing agent. Results showed that EB has a higher extractive and lignin content, while IB contains more cellulose. Liquefaction yields were higher for IB (74%) than EB (68%), with IB yielding polyols that produced stronger and more resilient foams with higher compressive strength and modulus of elasticity. Mechanical properties of the foams were influenced by the NCO/OH ratio and catalyst levels. Overall, the internal bark demonstrated superior performance for foam production, highlighting its potential as an eco-friendly alternative to petroleum-derived materials. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

18 pages, 37908 KiB  
Article
Unlocking Nature’s Potential: Modelling Acacia melanoxylon as a Renewable Resource for Bio-Oil Production through Thermochemical Liquefaction
by Sila Ozkan, Henrique Sousa, Diogo Gonçalves, Jaime Puna, Ana Carvalho, João Bordado, Rui Galhano dos Santos and João Gomes
Energies 2024, 17(19), 4899; https://doi.org/10.3390/en17194899 - 30 Sep 2024
Cited by 2 | Viewed by 1377
Abstract
This study is focused on the modelling of the production of bio-oil by thermochemical liquefaction. Species Acacia melanoxylon was used as the source of biomass, the standard chemical 2-Ethylhexanol (2-EHEX) was used as solvent, p-Toluenesulfonic acid (pTSA) was used as the catalyst, and [...] Read more.
This study is focused on the modelling of the production of bio-oil by thermochemical liquefaction. Species Acacia melanoxylon was used as the source of biomass, the standard chemical 2-Ethylhexanol (2-EHEX) was used as solvent, p-Toluenesulfonic acid (pTSA) was used as the catalyst, and acetone was used for the washing process. This procedure consisted of a moderate acid-catalysed liquefaction process and was applied at 3 different temperatures to determine the proper model: 100, 135, and 170 °C, and at 30-, 115-, and 200-min periods with 0.5%, 5.25%, and 10% (m/m) catalyst concentrations of overall mass. Optimized results showed a bio-oil yield of 83.29% and an HHV of 34.31 MJ/kg. A central composite face-centred (CCF) design was applied to the liquefaction reaction optimization. Reaction time, reaction temperature, as well as catalyst concentration, were chosen as independent variables. The resulting model exhibited very good results, with a highly adjusted R-squared (1.000). The liquefied products and biochar samples were characterized by Fourier-transformed infrared (FTIR) and thermogravimetric analysis (TGA); scanning electron microscopy (SEM) was also performed. The results show that invasive species such as acacia may have very good potential to generate biofuels and utilize lignocellulosic biomass in different ways. Additionally, using acacia as feedstock for bio-oil liquefaction will allow the valorisation of woody biomass and prevent forest fires as well. Besides, this process may provide a chance to control the invasive species in the forests, reduce the effect of forest fires, and produce bio-oil as a renewable energy. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

18 pages, 3591 KiB  
Article
Characterization and Sources of VOCs during PM2.5 Pollution Periods in a Typical City of the Yangtze River Delta
by Dan Zhang, Xiaoqing Huang, Shaoxuan Xiao, Zhou Zhang, Yanli Zhang and Xinming Wang
Atmosphere 2024, 15(10), 1162; https://doi.org/10.3390/atmos15101162 - 28 Sep 2024
Cited by 1 | Viewed by 1381
Abstract
To investigate the characteristics and sources of volatile organic compounds (VOCs) as well as their impacts on secondary organic aerosols (SOAs) formation during high-incidence periods of PM2.5 pollution, a field measurement was conducted in December 2019 in Hefei, a typical city of [...] Read more.
To investigate the characteristics and sources of volatile organic compounds (VOCs) as well as their impacts on secondary organic aerosols (SOAs) formation during high-incidence periods of PM2.5 pollution, a field measurement was conducted in December 2019 in Hefei, a typical city of the Yangtze River Delta (YRD). During the whole process, the mixing ratios of VOCs were averaged as 21.1 ± 15.9 ppb, with alkanes, alkenes, alkyne, and aromatics accounting for 59.9%, 15.3%, 15.0%, and 9.8% of the total VOCs, respectively. It is worth noting that the contributions of alkenes and alkyne increased significantly during PM2.5 pollution periods. Based on source apportionment via the positive matrix factorization (PMF) model, vehicle emissions, liquefied petroleum gas/natural gas (LPG/NG), and biomass/coal burning were the main sources of VOCs during the research in Hefei. During pollution periods, however, the contribution of biomass/coal burning to VOCs increased significantly, reaching as much as 47.6%. The calculated SOA formation potential (SOAFP) of VOCs was 0.38 ± 1.04 µg m−3 (range: 0.04–7.30 µg m−3), and aromatics were the dominant contributors, with a percentage of 96.8%. The source contributions showed that industrial emissions (49.1%) and vehicle emissions (28.3%) contributed the most to SOAFP during non-pollution periods, whereas the contribution of biomass/coal burning to SOA formation increased significantly (32.8%) during PM2.5 pollution periods. These findings suggest that reducing VOCs emissions from biomass/coal burning, vehicle, and industrial sources is a crucial approach for the effective control of SOA formation in Hefei, which provides a scientific basis for controlling PM2.5 pollution and improving air quality in the YRD region. Full article
(This article belongs to the Section Aerosols)
Show Figures

Graphical abstract

18 pages, 4689 KiB  
Article
Possibilities of Liquefied Spruce (Picea abies) and Oak (Quercus robur) Biomass as an Environmentally Friendly Additive in Conventional Phenol–Formaldehyde Resin Wood Adhesives
by Božidar Matin, Ivan Brandić, Ana Matin, Josip Ištvanić and Alan Antonović
Energies 2024, 17(17), 4456; https://doi.org/10.3390/en17174456 - 5 Sep 2024
Cited by 2 | Viewed by 1229
Abstract
Considerable efforts have been made to replace formaldehyde-containing adhesives in the manufacturing of wood products, particularly particleboard, with natural alternatives. One promising solution is the liquefaction of lignocellulosic materials such as wood using glycerol (C3H8O3) under sulfuric [...] Read more.
Considerable efforts have been made to replace formaldehyde-containing adhesives in the manufacturing of wood products, particularly particleboard, with natural alternatives. One promising solution is the liquefaction of lignocellulosic materials such as wood using glycerol (C3H8O3) under sulfuric acid catalysis (H2SO4). The aim of this study was to investigate the chemical composition and properties of spruce and oak biomass after liquefaction and to evaluate its potential as a formaldehyde-free adhesive substitute. All samples were liquefied at 150 °C for 120 min in five different wood–glycerol ratios (1:1 to 1:5). The liquefaction percentage, the insoluble residue, the dry matter and the hydroxyl (OH) number were determined as characteristic values for the polymer properties of the liquefied samples. The results showed the liquefaction percentage was up to 90% for spruce and oak. The insoluble residue ranged from 10 to 29% for spruce and from 10 to 22% for oak, the dry matter ranged from 54 to 70% for spruce and from 51 to 62% for oak, while the highest xydroxyl number was 570 mg KOH/g for spruce and 839 mg KOH/g for oak. Based on these results, liquefied wood was shown to be an effective natural alternative to synthetic resins in particleboard adhesives and a way to reduce formaldehyde emissions. This research not only supports environmentally sustainable practices but also paves the way for various bioproducts derived from liquefied biomass and points to future avenues for innovation and development in this area. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

16 pages, 2276 KiB  
Article
Transcriptome Analysis Reveals the Variations in Enzyme Production of Saccharopolyspora rosea A22 under Different Temperatures
by Congyu Lin, Peiqi Lu, Jingqiu Ma, Zhihui Li, Xiao Han, Zhongwei Ji, Shuangping Liu and Jian Mao
Foods 2024, 13(17), 2696; https://doi.org/10.3390/foods13172696 - 26 Aug 2024
Viewed by 1080
Abstract
Saccharopolyspora is a key microorganism in the fermentation of traditional fermented foods, capable of producing saccharifying and liquefying enzymes at elevated temperatures. However, the specific mechanisms and regulatory pathways governing Saccharopolyspora’s response to ambient temperatures are not yet fully understood. In this [...] Read more.
Saccharopolyspora is a key microorganism in the fermentation of traditional fermented foods, capable of producing saccharifying and liquefying enzymes at elevated temperatures. However, the specific mechanisms and regulatory pathways governing Saccharopolyspora’s response to ambient temperatures are not yet fully understood. In this study, the morphological differences in Saccharopolyspora rosea screened from traditional handmade wheat Qu at different temperatures were initially explored. At 37 °C, the mycelium exhibited abundant growth and radiated in a network-like pattern. As the temperature increased, the mycelium aggregated into clusters. At 50 °C, it formed highly aggregated ellipsoidal structures, with the mycelium distributed on the spherical surface. Subsequently, we assessed the biomass, saccharifying enzyme activity and liquefying enzyme activity of Saccharopolyspora rosea cultured at 37 °C, 42 °C and 50 °C. Furthermore, transcriptome analysis demonstrated that Saccharopolyspora rosea employs mechanisms related to the carbon metabolism, the TCA cycle, glycine, serine and threonine metabolisms, and microbial metabolism in diverse environments to coordinate its responses to changes in environmental temperature, as verified by the expression of typical genes. This study enhances our understanding of the differences in high-temperature enzyme production by Saccharopolyspora, and offers valuable guidance for the traditional fermented food industry to drive innovation. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

28 pages, 29006 KiB  
Review
Recent Advances of Solvent Effects in Biomass Liquefaction Conversion
by Hui Ming, Xin Yang, Pu Zheng, Yifan Zhang, Haoxin Jiang and Libo Zhang
Energies 2024, 17(12), 2814; https://doi.org/10.3390/en17122814 - 7 Jun 2024
Cited by 8 | Viewed by 2102
Abstract
Liquefaction conversion technology has become one of the hottest biomass conversion methods due to its flexible material selection and extensive product applications. Exploring biomass liquefaction conversion focuses on catalysts, biomass/water ratio, and reaction temperature. However, it is found that solvents are crucial in [...] Read more.
Liquefaction conversion technology has become one of the hottest biomass conversion methods due to its flexible material selection and extensive product applications. Exploring biomass liquefaction conversion focuses on catalysts, biomass/water ratio, and reaction temperature. However, it is found that solvents are crucial in the biomass liquefaction process and significantly impact the type of liquefied products and bio-oil yield. Given the current rapid development trend, timely sorting and summary of the solvent effect in the biomass liquefaction process can promote the subsequent development and industrialization of more efficient and cleaner biomass liquefaction technology. Therefore, this review first introduces the characteristics of water as the liquefaction solvent, then summarizes the effects of organic solvents on liquefaction, and finally elaborates on the synergistic effect of co-solvents, which provides a more systematic overview of solvent effects in the liquefaction process. Meanwhile, prospects are put forward for the future development of biomass liquefaction conversion. Full article
(This article belongs to the Topic Advances in Biomass Conversion)
Show Figures

Graphical abstract

20 pages, 8272 KiB  
Article
Industrial Scale Direct Liquefaction of E. globulus Biomass
by Irina Fernandes, Maria Joana Neiva Correia, José Condeço, Duarte M. Cecílio, João Bordado and Margarida Mateus
Catalysts 2023, 13(10), 1379; https://doi.org/10.3390/catal13101379 - 19 Oct 2023
Cited by 2 | Viewed by 1715
Abstract
This work presents the study of Eucalyptus globulus bark and sawdust direct liquefaction. Laboratory scale experiments were carried out to assess the impact of several variables on the reaction yield and the sugar content of the bio-oil. These variables were the biomass type [...] Read more.
This work presents the study of Eucalyptus globulus bark and sawdust direct liquefaction. Laboratory scale experiments were carried out to assess the impact of several variables on the reaction yield and the sugar content of the bio-oil. These variables were the biomass type and concentration, the solvent, and the reaction time. The results show that E. globulus sawdust presented the highest yields (>95%), but the highest sugar content after water extraction was obtained for E. globulus bark (~5.5% vs. 1.2% for sawdust). Simultaneously, industrial-scale tests were carried out at the ENERGREEN pilot plant using the same reaction variables, which resulted in reaction yields of nearly 100%. The reagents and raw materials used, as well as the products obtained (bio-oil, reaction condensates, polyols, and sugar phases) were characterized by elemental analysis, infrared spectroscopy, thermogravimetry, and high-performance liquid chromatography with mass spectrometry. The heating value of the bio-oils is higher than the original biomass (higher heating value of E. globulus sawdust bio-oil 29 MJ/kg vs. 19.5 MJ/kg of the original E. globulus sawdust). The analyses of the bio-oils allowed us to identify the presence of high-added-value compounds, such as levulinic acid and furfural. Finally, a study of the accelerated aging of liquefied biomass showed that the biofuel density increases from 1.35 to 1.44 kg/dm3 after 7 days of storage due to the occurrence of repolymerization reactions. Full article
Show Figures

Figure 1

14 pages, 4106 KiB  
Article
Evaluation of Polyurethane Foam Derived from the Liquefied Driftwood Approaching for Untapped Biomass
by Go Masuda, Ayana Nagao, Weiqian Wang and Qingyue Wang
Processes 2023, 11(10), 2929; https://doi.org/10.3390/pr11102929 - 9 Oct 2023
Cited by 2 | Viewed by 1967
Abstract
Nowadays, climate change has become a serious concern, and more attention has been drawn to utilizing biomass sources instead of fossil sources and how petroleum chemical plastics should be reduced or replaced with bio-based materials. In this study, the optimized condition of liquefaction [...] Read more.
Nowadays, climate change has become a serious concern, and more attention has been drawn to utilizing biomass sources instead of fossil sources and how petroleum chemical plastics should be reduced or replaced with bio-based materials. In this study, the optimized condition of liquefaction of driftwood was examined. There was a concern that driftwood might have some decay and chemical change. However, according to the Organic Micro Element Analyzer (CHN analyzer) test and Klason lignin and Wise methods, the results proved that lignin content (37.5%), holocellulose content (66.9%), and CHN compositions were very similar to regular wood. The lowest residue content of bio-polyols was produced using liquefaction conditions of 150 °C, reaction time of 180 min, catalyst content of 10%w/w, and 12.5%w/w driftwood loading. Polyurethane foam (PUF) derived from the liquefaction of driftwood and bio-based cyanate was prepared. The PUF prepared from the liquefaction of the driftwood exhibited slightly decreased thermal durability but was superior in terms of 3-time faster biodegradation and 2.8-time increased water adsorption rate compared to pure petroleum-based PUF. As a result, it was shown that driftwood can be identified as a biomass resource for biodegradable PUF. Full article
Show Figures

Figure 1

Back to TopTop