Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = lipid-extracted algae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1237 KiB  
Review
Resource Recovery from Green Tide Biomass: Sustainable Cascading Biorefinery Strategies for Ulva spp.
by Gianluca Ottolina, Federica Zaccheria and Jacopo Paini
Biomass 2025, 5(3), 41; https://doi.org/10.3390/biomass5030041 - 2 Jul 2025
Viewed by 493
Abstract
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within [...] Read more.
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within an Ulva biorefinery typically encompass salts, lipids, proteins, cellulose, and ulvan. Each of these components possesses unique properties and diverse applications, contributing to the economic robustness of the biorefinery. Salts can be repurposed for agricultural or even human consumption. Lipids offer high-value applications in nutraceuticals and animal feed. Proteins present significant potential as plant-based nutritional supplements. Cellulose can be transformed into various advanced materials. Finally, ulvan, a polyanionic oligosaccharide unique to Ulva, holds promise due to its distinct properties, particularly in the biomedical field. Furthermore, state-of-the-art chemical modifications of ulvan are presented with the aim of tailoring its properties and broadening its potential applications. Future research should prioritize optimizing these integrated extraction and fractionation processes. Furthermore, a multi-product biorefining approach, integrated with robust Life Cycle Assessment studies, is vital for transforming this environmental challenge into a significant opportunity for sustainable resource valorization and economic growth. Full article
Show Figures

Figure 1

38 pages, 5968 KiB  
Article
Marine Jellyfish Collagen and Other Bioactive Natural Compounds from the Sea, with Significant Potential for Wound Healing and Repair Materials
by Ana-Maria Pesterau, Antoanela Popescu, Rodica Sirbu, Emin Cadar, Florica Busuricu, Ana-Maria Laura Dragan, Carolina Pascale, Ana-Maria Ionescu, Claudia Florina Bogdan-Andreescu, Marius-Daniel Radu and Cezar Laurentiu Tomescu
Mar. Drugs 2025, 23(6), 252; https://doi.org/10.3390/md23060252 - 13 Jun 2025
Viewed by 1030
Abstract
Skin health must be ensured at all times in the case of wounds when the skin is subjected to traumatic actions that require multiple wound-healing measures. Wound healing is a complex, multi-phase biological process critical for restoring skin integrity after trauma. This study [...] Read more.
Skin health must be ensured at all times in the case of wounds when the skin is subjected to traumatic actions that require multiple wound-healing measures. Wound healing is a complex, multi-phase biological process critical for restoring skin integrity after trauma. This study investigates the development and evaluation of a novel composite hydrogel formulated from collagen peptides extracted from the jellyfish Rhizostoma pulmo and hydroethanolic extracts from the brown alga Cystoseira barbata, both sourced from the Romanian Black Sea coast. Throughout the work, the characteristics due to the biochemical compositions of the extracts from the brown alga C. barbata and from the jellyfish R. pulmo are highlighted as important, emphasizing the content of polysaccharides, proteins, and lipids. Total phenol content was analyzed for three extracts from natural products. The biochemical composition, antioxidant, antimicrobial, and in vitro wound-healing properties of the components and their composite (JPC-ALG) were assessed. The rheological behavior and optical microscopy studies of collagen hydrogels were prepared. The general mechanisms of wound healing with the involvement of polysaccharides and collagen peptides existing in all categories of extracts were highlighted. The study of the effects of JPC-ALG composites and individual extracts on fibroblast and keratocyte cell lines is also presented. Results demonstrated that the composite exhibited synergistic effects, enhancing fibroblast and keratinocyte migration and proliferation, key factors in wound closure. The findings support the potential application of this marine-derived bioactive composite as a promising biomaterial for wound-healing therapies. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds for Skin Health)
Show Figures

Graphical abstract

19 pages, 301 KiB  
Review
Emerging Trends in Sustainable Biological Resources and Bioeconomy for Food Production
by Luis A. Trujillo-Cayado, Rosa M. Sánchez-García, Irene García-Domínguez, Azahara Rodríguez-Luna, Elena Hurtado-Fernández and Jenifer Santos
Appl. Sci. 2025, 15(12), 6555; https://doi.org/10.3390/app15126555 - 11 Jun 2025
Viewed by 706
Abstract
The mounting global population and the challenges posed by climate change underline the need for sustainable food production systems. This review synthesizes evidence for a dual-track bioeconomy, green (terrestrial plants and insects) and blue (aquatic algae), as complementary pathways toward sustainable nutrition. A [...] Read more.
The mounting global population and the challenges posed by climate change underline the need for sustainable food production systems. This review synthesizes evidence for a dual-track bioeconomy, green (terrestrial plants and insects) and blue (aquatic algae), as complementary pathways toward sustainable nutrition. A comprehensive review of the extant literature, technical reports, and policy documents published between 2015 and 2025 was conducted, with a particular focus on environmental, nutritional, and techno-economic metrics. In addition, precision agriculture datasets, gene-editing breakthroughs, and circular biorefinery case studies were extracted and compared. As demonstrated in this study, the use of green resources, such as legumes, oilseeds, and edible insects, results in a significant reduction in greenhouse gas emissions, land use, and water footprints compared with conventional livestock production. In addition, these alternative protein sources offer substantial benefits in terms of bioactive lipids. Blue resources, centered on micro- and macroalgae, furnish additional proteins, long-chain polyunsaturated fatty acids, and antioxidant pigments and sequester carbon on non-arable or wastewater substrates. The transition to bio-based resources is facilitated by technological innovations, such as gene editing and advanced extraction methods, which promote the efficient valorization of agricultural residues. In conclusion, the study strongly suggests that policy support be expedited and that research into bioeconomy technologies be increased to ensure the sustainable meeting of future food demands. Full article
(This article belongs to the Special Issue Application of Natural Components in Food Production)
25 pages, 6477 KiB  
Article
Endarachne binghamiae Ameliorates Hepatic Steatosis, Obesity, and Blood Glucose via Modulation of Metabolic Pathways and Oxidative Stress
by Sang-Seop Lee, Sang-Hoon Lee, So-Yeon Kim, Ga-Young Lee, Seung-Yun Han, Bong-Ho Lee and Yung-Choon Yoo
Int. J. Mol. Sci. 2025, 26(11), 5103; https://doi.org/10.3390/ijms26115103 - 26 May 2025
Viewed by 753
Abstract
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a [...] Read more.
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are major contributors to the rise in metabolic disorders, particularly in developed countries. Despite the need for effective therapies, natural product-based interventions remain underexplored. This study investigated the therapeutic effects of Endarachne binghamiae, a type of brown algae, hot water extract (EB-WE) in ameliorating obesity and MASLD using high-fat diet (HFD)-induced ICR mice for an acute obesity model (4-week HFD feeding) and C57BL/6 mice for a long-term MASLD model (12-week HFD feeding). EB-WE administration significantly reduced body and organ weights and improved serum lipid markers, such as triglycerides (TG), total cholesterol (T-CHO), HDL (high-density lipoprotein), LDL (low-density lipoprotein), adiponectin, and apolipoprotein A1 (ApoA1). mRNA expression analysis of liver and skeletal muscle tissues revealed that EB-WE upregulated Ampkα and Cpt1 while downregulating Cebpα and Srebp1, suppressing lipogenic signaling. Additionally, EB-WE activated brown adipose tissue through Pgc1α and Ucp1, contributing to fatty liver alleviation. Western blot analysis of liver tissues demonstrated that EB-WE enhanced AMPK phosphorylation and modulated lipid metabolism by upregulating PGC-1α and UCP-1 and downregulating PPAR-γ, C/EBP-α, and FABP4 proteins. It also reduced oxidation markers, such as OxLDL (oxidized low-density lipoprotein) and ApoB (apolipoprotein B), while increasing ApoA1 levels. EB-WE suppressed lipid peroxidation by modulating oxidative stress markers, such as SOD (superoxide dismutase), CAT (catalase), GSH (glutathione), and MDA (malondialdehyde), in liver tissues. Furthermore, EB-WE regulated the glucose regulatory pathway in the liver and muscle by inhibiting the expression of Sirt1, Sirt4, Glut2, and Glut4 while increasing the expression of Nrf2 and Ho1. Tentative liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis for EB-WE identified bioactive compounds, such as pyropheophorbide A and digiprolactone, which are known to have antioxidant or metabolic regulatory activities. These findings suggest that EB-WE improves obesity and MASLD through regulation of metabolic pathways, glucose homeostasis, and antioxidant activity, making it a promising candidate for natural product-based functional foods and pharmaceuticals targeting metabolic diseases. Full article
(This article belongs to the Special Issue Advances and Emerging Trends in Marine Natural Products)
Show Figures

Figure 1

20 pages, 804 KiB  
Review
Carotenoid Yeasts and Their Application Potential
by Ewa Kulczyk-Małysa and Elżbieta Bogusławska-Wąs
Foods 2025, 14(11), 1866; https://doi.org/10.3390/foods14111866 - 24 May 2025
Cited by 1 | Viewed by 855
Abstract
Carotenoids are part of a diverse group of isoprenoid compounds. Due to the many properties they possess, they may become an alternative to synthetic additives in various industrial sectors. The increase in consumer demand and awareness determines research into extracting them from plants, [...] Read more.
Carotenoids are part of a diverse group of isoprenoid compounds. Due to the many properties they possess, they may become an alternative to synthetic additives in various industrial sectors. The increase in consumer demand and awareness determines research into extracting them from plants, algae and microorganisms. The extraction of carotenoids from plants is an inefficient method and generates additional production costs. On the other hand, the carotenoid potential of microorganisms, especially among yeasts, has not been fully exploited. The diversity of yeast species and strains influences the extraction of many fractions of carotenoids, including the less known ones such as thorulene and tholuradine. The developed adaptability of yeast enables the optimisation of their culture, which facilitates the understanding of their metabolic pathways. At the same time, the coordination of carotenoid and lipid synthesis may prevent their degradation or the loss of their bioactive properties. Application research has been conducted mainly in the feed industry, where their colouring and antimicrobial or immunomodulating properties are used. In the medical and pharmaceutical fields, there is not much research due to safety restrictions and the necessity of the high purity of the fractions. This review also highlights the overlooked aspect of carotenoids’ biodegradability, which is required to exploit the bioactive properties of microbial carotenoids. Full article
Show Figures

Figure 1

16 pages, 2864 KiB  
Article
Brown Algae from San Andres Island, Southwest Caribbean: A Nuclear Magnetic Resonance Spectroscopy–Metabolomic Study
by Felipe de la Roche, Sara P. Abril, Lady J. Sepulveda, Anderson Piza, Leonardo Castellanos, Natalia Rincón, Mónica Puyana and Freddy A. Ramos
Metabolites 2025, 15(5), 305; https://doi.org/10.3390/metabo15050305 - 2 May 2025
Viewed by 629
Abstract
Background: Brown algae from the order Dictyotales are known to produce specialized metabolites with a wide array of biological activities. Studying these compounds is important for understanding their ecological roles, exploring biomedical potential and developing biotechnological applications. Methods: To evaluate the metabolic diversity [...] Read more.
Background: Brown algae from the order Dictyotales are known to produce specialized metabolites with a wide array of biological activities. Studying these compounds is important for understanding their ecological roles, exploring biomedical potential and developing biotechnological applications. Methods: To evaluate the metabolic diversity of brown algae from the shallow habitats of the northern region of San Andrés Island (Colombia, SW Caribbean), a metabolic profiling approach was employed, based on 1H-NMR spectra taken from organic extracts. Four sampling expeditions were conducted to collect the most abundant species, taking into account the taxonomic identity, growth substrate and collection date. Results: Five species were found and identified as Canistrocarpus crispatus, Stypopodium zonale, Dictyopteris delicatula, Padina gymnospora and Dictyota spp. Multivariate analyses applied to these spectra revealed that S. zonale and C. crispatus differentiated from the other samples mainly due to the signals for meroditerpenes and diterpenes, respectively. S. zonale had differential metabolic production observed when comparing algae collected in rocky bottoms with thalli growing on dead coral. This difference was attributed to changes in concentrations of the meroditerpene atomaric acid (1). Meanwhile, the major metabolite found in C. crispatus samples was dictyol B acetate (2). Conclusions: NMR metabolomics of San Andrés brown algae differentiated species based on lipid content and metabolic complexity. Notably, prenylated-guaiane diterpenes characterized C. crispatus, and meroditerpenoid concentrations varied in S. zonale. Temporal lipid variations were observed in P. gymnospora, while juvenile Dictyota spp. presented a less complex metabolic signature. Full article
(This article belongs to the Section Environmental Metabolomics)
Show Figures

Graphical abstract

26 pages, 4188 KiB  
Article
Valorization of Residual Biomass from Sargassum filipendula for the Extraction of Phlorotannins and Pigments Using Eutectic Solvents
by Pedro Afonso Vasconcelos Paes Mello, Cristiane Nunes da Silva and Bernardo Dias Ribeiro
Processes 2025, 13(5), 1345; https://doi.org/10.3390/pr13051345 - 28 Apr 2025
Viewed by 695
Abstract
Sargassum filipendula is a marine macroalgae, also known as brown algae. These species contain significant amounts of polysaccharides, such as alginates, and phenolic compounds, including phlorotannins, with excellent biological properties. This study evaluated the extraction of bioactive compounds from the residual biomass of [...] Read more.
Sargassum filipendula is a marine macroalgae, also known as brown algae. These species contain significant amounts of polysaccharides, such as alginates, and phenolic compounds, including phlorotannins, with excellent biological properties. This study evaluated the extraction of bioactive compounds from the residual biomass of Sargassum filipendula using deep eutectic solvents based on alkanol amines combined with polyols. The residual biomass presented a content of 7.36% protein, 1.11% lipids, 20.51% ash, 14.88% moisture, 50.25% total fibers, and 5.89% alginate. Preliminary screening identified N, N-(dimethylamino)-ethanol: benzyl alcohol (1.30:1) and N, N-(dimethylamino)-ethanol:1,3-propanediol (1.83:1) as the most efficient solvents for the extraction of bioactive compounds. The optimization process showed that the temperature and solid–liquid ratio significantly influenced (p < 0.05) the extraction of total phenolic compounds, phlorotannins, and the content of photosynthetic pigments. Intermediate temperatures (74.4 °C for N, N-(dimethylamino)-ethanol: benzyl alcohol (1.30:1) and 68.4 °C for N, N-(dimethylamino)-ethanol:1,3-propanediol (1.83:1), and a lower solid-to-liquid ratio (0.03) were optimal conditions to extract the low-pigment phlorotannins selectively. In contrast, higher temperatures (120 °C) maximized the extraction of phlorotannins and photosynthetic pigments. N, N-(dimethylamino)-ethanol: benzyl alcohol (1.30) extracted 110.64 mg PGE/g phlorotannins and 78.15 mg GAE/g phenolics, while N, N-(dimethylamino)-ethanol:1,3-propanediol (1.83:1) produced 21.57 mg PGE/g and 72.89 mg GAE/g, respectively. The extraction of photosynthetic pigments reached a maximum yield at 120 °C, using N, N-(dimethylamino)-ethanol: benzyl alcohol (1.30:1), with a content of 21.61 µg/g of chlorophylls and 38.11 µg/g of pheophytins, while N, N-(dimethylamino)-ethanol: 1,3-propanediol (1.83:1) provided content of 17.76 µg/g and 36.32 µg/g, respectively. The extracts exhibited antioxidant activity with 0.69 mg TE/mL in scavenging DPPH radicals, 24.42 mg TE/mL in scavenging ABTS radicals, and 2.26 mg TE/mL of iron-reducing antioxidant power. These results demonstrate the potential of DESs for the sustainable recovery of bioactive compounds from Sargassum filipendula residual biomass. Full article
(This article belongs to the Special Issue Green Separation and Purification Processes)
Show Figures

Figure 1

14 pages, 2061 KiB  
Article
Exploring the Antineoplastic Properties of the Lebanese Jania rubens Against Colorectal Cancer
by Mariam Rifi, Zeina Radwan, Nouha Sari-Chmayssem, Rayan Kassir, Ziad Fajloun, Abir Abdel Rahman, Marwan El-Sabban, Corinne Prévostel, Zeina Dassouki and Hiba Mawlawi
Metabolites 2025, 15(2), 90; https://doi.org/10.3390/metabo15020090 - 2 Feb 2025
Cited by 1 | Viewed by 1379
Abstract
Background/Objective: Colon cancer poses a significant health burden, with current treatments often associated with severe side effects and limited effectiveness for some patients. Natural products are gaining interest as adjuvant therapies, potentially reducing side effects and improving responses to conventional treatments. We previously [...] Read more.
Background/Objective: Colon cancer poses a significant health burden, with current treatments often associated with severe side effects and limited effectiveness for some patients. Natural products are gaining interest as adjuvant therapies, potentially reducing side effects and improving responses to conventional treatments. We previously highlighted the potent antineoplastic effects of organic extracts derived from the Lebanese red algae Jania rubens. This study, investigated the anticancer activities of polysaccharide, protein, and lipid extracts from J. rubens, which may serve as adjuvant therapies to enhance conventional treatments. Methods: we employed colorimetric assays, wound healing assays, and cell cycle analysis to evaluate the anticancer activities of the extracts. The polysaccharide extract was characterized for sulfate content and structure using barium chloride-gelatin and FT-IR methods. Results: All J. rubens extracts exhibited significant anticancer effects, with the polysaccharide extract showing particularly strong cytotoxicity, apoptosis induction, and antiproliferative and anti-migratory activities. Conclusion: These findings confirm that J. rubens is a source of bioactive compounds with anticancer potential. Further investigations are needed to elucidate the molecular pathways targeted by J. rubens extracts in cancer cells. Full article
Show Figures

Graphical abstract

19 pages, 3480 KiB  
Article
Enhancement of the Storage Potential of Farmed Rainbow Trout (Oncorhynchus mykiss) by Using Algal (Cystoseira myrica and Cystoseira trinodis) Extract–Ice Combinations
by Shima Ahmadi, Parastoo Pourashouri, Bahareh Shabanpour and Santiago P. Aubourg
Foods 2025, 14(3), 371; https://doi.org/10.3390/foods14030371 - 23 Jan 2025
Viewed by 1067
Abstract
An attempt to apply extracts of the brown algae Cystoseira myrica and Cystoseira trinodis for the quality enhancement of fish was carried out. Aqueous, ethanolic, and aqueous–ethanolic (1:1, v/v) extracts of both algae were included, respectively, in the icing system [...] Read more.
An attempt to apply extracts of the brown algae Cystoseira myrica and Cystoseira trinodis for the quality enhancement of fish was carried out. Aqueous, ethanolic, and aqueous–ethanolic (1:1, v/v) extracts of both algae were included, respectively, in the icing system employed for the chilled storage of farmed rainbow trout (Oncorhynchus mykiss). Chemical and microbiological quality indices were determined for a 0–16-day storage period. At the end of the experiment, all alga-treated fish revealed lower (p < 0.05) pH values and lower (p < 0.05) lipid hydrolysis (free fatty acid assessment) and oxidation (thiobarbituric acid index) development when compared to Control samples. Regarding microbial activity development (aerobe, psychrophilic, Enterobacteriaceae, proteolytic, and lipolytic counts), lower average values were detected in most cases in fish corresponding to alga-treated batches; preservative effects were found more important at advanced storage times. In general, water and water–ethanol extracts led to higher (p < 0.05) inhibitory effects than their counterpart ethanol extracts. Higher (p < 0.05) total polyphenol values were detected in water and water–ethanol extracts of both algae than in their counterpart extracts obtained only with ethanol. A novel, simple, and practical strategy for the quality enhancement and commercialization of chilled farmed rainbow trout is proposed by employing different extracts obtained from both Cystoseira species. Full article
(This article belongs to the Special Issue Storage and Shelf-Life Assessment of Food Products)
Show Figures

Figure 1

17 pages, 3224 KiB  
Article
Impact of Nannochloropsis oceanica and Chlorococcum amblystomatis Extracts on UVA-Irradiated on 3D Cultured Melanoma Cells: A Proteomic Insight
by Agnieszka Gęgotek, Tiago Conde, Maria Rosário Domingues, Pedro Domingues and Elżbieta Skrzydlewska
Cells 2024, 13(23), 1934; https://doi.org/10.3390/cells13231934 - 21 Nov 2024
Cited by 1 | Viewed by 1386
Abstract
Melanoma is one of the most malignant forms of skin cancer, characterised by the highest mortality rate among affected patients. This study aims to analyse and compare the effects of lipid extracts from the microalgae Nannochloropsis oceanica (N.o.) and Chlorococcum amblystomatis [...] Read more.
Melanoma is one of the most malignant forms of skin cancer, characterised by the highest mortality rate among affected patients. This study aims to analyse and compare the effects of lipid extracts from the microalgae Nannochloropsis oceanica (N.o.) and Chlorococcum amblystomatis (C.a.) on the intra and extracellular proteome of UVA-irradiated melanoma cells using a three-dimensional model. Proteomic analysis revealed that UVA radiation significantly increases the levels of pro-inflammatory proteins in melanoma cells. Treatment with algae extracts reduced these protein levels in both non-irradiated and irradiated cells. Furthermore, untreated cells released proteins responsible for cell growth and proliferation into the medium, a process hindered by UVA radiation through the promotion of pro-inflammatory molecules secretion. The treatment with algae extracts effectively mitigated UVA-induced alterations. Notably, UVA radiation significantly induced the formation of 4-HNE and 15-PGJ2 protein adducts in both cells and the medium, while treatment with algae extracts stimulated the formation of 4-HNE-protein adducts and reduced the level of 15-PGJ2-protein adducts. However, both algae extracts successfully prevented these UVA-induced modifications. In conclusion, lipid extracts from N.o. and C.a. appear to be promising agents in supporting anti-melanoma therapy. However, their potent protective capacity may limit their applicability, particularly following cells exposure to UVA. Full article
Show Figures

Graphical abstract

14 pages, 710 KiB  
Article
Preservative Effect of Alga Flour Extract on Frozen Horse Mackerel (Trachurus trachurus) Lipids
by Miriam Martínez, Marcos Trigo, Santiago P. Aubourg and Alicia Rodríguez
Foods 2024, 13(20), 3265; https://doi.org/10.3390/foods13203265 - 14 Oct 2024
Viewed by 1363
Abstract
The aim of this study was to investigate the preservative properties of alga Gelidium sp. flour when included in the glazing medium employed for the frozen storage (−18 °C) of horse mackerel (Trachurus trachurus). Different concentrations (low, medium, and high) of [...] Read more.
The aim of this study was to investigate the preservative properties of alga Gelidium sp. flour when included in the glazing medium employed for the frozen storage (−18 °C) of horse mackerel (Trachurus trachurus). Different concentrations (low, medium, and high) of an aqueous extract were tested and compared to a control water-glazing condition. Quality changes (lipid oxidation and hydrolysis, fatty acid (FA) profile, and trimethylamine (TMA) formation) were determined after 3- and 6-month storage periods. A general quality loss (lipid oxidation with hydrolysis development and TMA formation) with the frozen storage period was detected in all samples. The presence of an alga flour (AF) extract in the glazing medium led to a lower (p < 0.05) TBARS and fluorescent compound formation and to higher (p < 0.05) polyene values in frozen fish. Furthermore, a preserving effect on free fatty acids was detected in AF-treated fish. On the contrary, the AF-glazing treatment did not affect (p > 0.05) the TMA formation and the total n3/total n6 FA ratio. In general, preservative effects were found to be higher in frozen fish corresponding to the medium concentration tested. Current results show the potential of Gelidium sp. flour as a natural source of preservative hydrophilic compounds for the quality enhancement of frozen horse mackerel. Full article
(This article belongs to the Special Issue New Technological Advances in Meat Packaging: Shelf-Life and Safety)
Show Figures

Figure 1

27 pages, 1699 KiB  
Review
Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects
by Maima Matin, Magdalena Koszarska, Atanas G. Atanasov, Karolina Król-Szmajda, Artur Jóźwik, Adrian Stelmasiak and Monika Hejna
Molecules 2024, 29(19), 4695; https://doi.org/10.3390/molecules29194695 - 3 Oct 2024
Cited by 15 | Viewed by 4474
Abstract
Algae, both micro- and macroalgae, are recognized for their rich repository of bioactive compounds with potential therapeutic applications. These marine organisms produce a variety of secondary metabolites that exhibit significant anti-inflammatory, antioxidant, and antimicrobial properties, offering promising avenues for the development of new [...] Read more.
Algae, both micro- and macroalgae, are recognized for their rich repository of bioactive compounds with potential therapeutic applications. These marine organisms produce a variety of secondary metabolites that exhibit significant anti-inflammatory, antioxidant, and antimicrobial properties, offering promising avenues for the development of new drugs and nutraceuticals. Algae-derived compounds, including polyphenols, carotenoids, lipids, and polysaccharides, have demonstrated efficacy in modulating key inflammatory pathways, reducing oxidative stress, and inhibiting microbial growth. At the molecular level, these compounds influence macrophage activity, suppress the production of pro-inflammatory cytokines, and regulate apoptotic processes. Studies have shown that algae extracts can inhibit inflammatory signaling pathways such as NF-κB and MAPK, reduce oxidative damage by activating Nrf2, and offer an alternative to traditional antibiotics by combatting bacterial infections. Furthermore, algae’s therapeutic potential extends to addressing diseases such as cardiovascular disorders, neurodegenerative conditions, and cancer, with ongoing research exploring their efficacy in preclinical animal models. The pig model, due to its physiological similarities to humans, is highlighted as particularly suitable for validating the bioactivities of algal compounds in vivo. This review underscores the need for further investigation into the specific mechanisms of action and clinical applications of algae-derived biomolecules. Full article
(This article belongs to the Special Issue Marine Bioactives for Human Health)
Show Figures

Figure 1

16 pages, 1544 KiB  
Article
Preservative Effect of a Gelatin-Based Film Including a Gelidium sp. Flour Extract on Refrigerated Atlantic Mackerel
by Lucía López, Antonio Gómez, Marcos Trigo, José M. Miranda, Jorge Barros-Velázquez and Santiago P. Aubourg
Appl. Sci. 2024, 14(19), 8817; https://doi.org/10.3390/app14198817 - 30 Sep 2024
Cited by 1 | Viewed by 1324
Abstract
This research evaluated the preservative properties of flour from the alga Gelidium sp., which is a waste substrate resulting from commercial phycocolloid extraction. Gelatin-based biofilms, which included two different concentrations of red alga flour, were developed and used as packaging systems during refrigerated [...] Read more.
This research evaluated the preservative properties of flour from the alga Gelidium sp., which is a waste substrate resulting from commercial phycocolloid extraction. Gelatin-based biofilms, which included two different concentrations of red alga flour, were developed and used as packaging systems during refrigerated storage (up to 9 days at 4 °C) of Atlantic mackerel (Scomber scombrus) muscle. In all batches tested, a progressive decrease in quality could be observed in the muscle of the fish as the storage time increased. Compared with the control fish, the Gelidium alga flour extract had an inhibitory effect (p < 0.05) on microbial activity (total aerobes, psychrotrophs, and proteolytic bacteria), lipid oxidation (peroxide, thiobarbituric acid, fluorescence and polyene indices), lipid hydrolysis (formation of free fatty acids) and pH increase in refrigerated mackerel muscle. In contrast, no significant effect (p > 0.05) was observed on trimethylamine formation, Enterobacteriaceae, or lipolytic bacteria counts. A preservative effect resulting from the incorporation of Gelidium alga flour into the gelatin-based biofilm was observed, indicating both quality and safety enhancement. In accordance with current global interest in the search for natural and waste sources, a novel and beneficial use of Gelidium flour for enhancing the quality of refrigerated fish has been proposed. Full article
Show Figures

Figure 1

20 pages, 3024 KiB  
Article
Secondary Metabolites from Australian Lichens Ramalina celastri and Stereocaulon ramulosum Affect Growth and Metabolism of Photobiont Asterochloris erici through Allelopathy
by Martin Bačkor, Dajana Kecsey, Blažena Drábová, Dana Urminská, Martina Šemeláková and Michal Goga
Molecules 2024, 29(19), 4620; https://doi.org/10.3390/molecules29194620 - 29 Sep 2024
Viewed by 1194
Abstract
In the present work, the phytotoxic effects of secondary metabolites extracted from lichen Ramalina celastri (usnic acid) and lichen Stereocaulon ramulosum (a naturally occurring mixture of atranorin and perlatolic acid, approx. 3:1) on cultures of the aposymbiotically grown lichen photobiont Asterochloris erici were [...] Read more.
In the present work, the phytotoxic effects of secondary metabolites extracted from lichen Ramalina celastri (usnic acid) and lichen Stereocaulon ramulosum (a naturally occurring mixture of atranorin and perlatolic acid, approx. 3:1) on cultures of the aposymbiotically grown lichen photobiont Asterochloris erici were evaluated. Algae were cultivated on the surface of glass microfiber disks with applied crystals of lichen extracts for 14 days. The toxicity of each extract was tested at the two selected doses in quantities of 0.01 mg/disk and 0.1 mg/disk. Cytotoxicity of lichen extracts was assessed using selected physiological parameters, such as growth (biomass production) of photobiont cultures, content of soluble proteins, chlorophyll a fluorescence, chlorophyll a integrity, contents of chlorophylls and total carotenoids, hydrogen peroxide, superoxide anion, TBARS, ascorbic acid (AsA), reduced (GSH) and oxidized (GSSG) glutathione, and composition of selected organic acids of the Krebs cycle. The application of both tested metabolic extracts decreased the growth of photobiont cells in a dose-dependent manner; however, a mixture of atranorin and perlatolic acid was more effective when compared to usnic acid at the same dose tested. A higher degree of cytotoxicity of extracts from lichen S. ramulosum when compared to identical doses of extracts from lichen R. celastri was also confirmed by a more pronounced decrease in chlorophyll a fluorescence and chlorophyll a integrity, decreased content of chlorophylls and total carotenoids, increased production of hydrogen peroxide and superoxide anion, peroxidation of membrane lipids (assessed as TBARS), and a strong decrease in non-enzymatic antioxidants such as AsA, GSH, and GSSG. The cytotoxicity of lichen compounds was confirmed by a strong alteration in the composition of selected organic acids included in the Krebs cycle. The increased ratio between pyruvic acid and citric acid was a very sensitive parameter of phytotoxicity of lichen secondary metabolites to the algal partner of symbiosis. Secondary metabolites of lichens are potent allelochemicals and play significant roles in maintaining the balance between mycobionts and photobionts, forming lichen thallus. Full article
Show Figures

Figure 1

13 pages, 2341 KiB  
Article
Characteristics of Films Prepared from Wheat Gluten and Phenolic Extracts from Porphyra haitanensis and Its Application for Salmon Preservation
by Tingyue Yu and Jingwen Xu
Foods 2024, 13(15), 2442; https://doi.org/10.3390/foods13152442 - 2 Aug 2024
Cited by 1 | Viewed by 1555
Abstract
The effect of wheat gluten (WG)/phenolic extracts (PE) coating on the storage qualities of salmon fillets was studied. Porphyra haitanensis, belonging to red algae, possesses abundant phenolic compounds. Films were prepared by incorporating phenolic extracts (0, 0.5%, 0.75%, and 1.0%, w/ [...] Read more.
The effect of wheat gluten (WG)/phenolic extracts (PE) coating on the storage qualities of salmon fillets was studied. Porphyra haitanensis, belonging to red algae, possesses abundant phenolic compounds. Films were prepared by incorporating phenolic extracts (0, 0.5%, 0.75%, and 1.0%, w/v) from Porphyra haitanensis to WG. The PE showed strong antioxidant activities by scavenging DPPH and ABTS radicals. The increased addition of PE to WG film significantly increased tensile strength compared to that of WG film, but reduced water vapor permeability. The quality of salmon fillet stored at 4 °C from 0 to 9 days was decreased due to the oxidation of lipid and protein. However, the increased addition of PE to WG significantly reduced pH, TVB-N, TBA, peroxide value, total sulfhydryl content, and carbonyl content of salmon fillet compared to control salmon fillet. In addition, the increased addition of PE to WG also significantly improved water holding capacity, hardness, chewiness, and springiness of salmon fillet during storage compared to those of control salmon fillet. Taken together, this study showed phenolic extracts from Porphyra haitanensis improved wheat gluten-based film properties and further enhanced the qualities of coated salmon fillet during storage. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

Back to TopTop