Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects
Abstract
:1. Introduction
2. Bioactive Potential of Algae Extracts: Their Anti-Inflammatory Activity
2.1. Influence of Algae Extracts on Anti-Inflammatory Response
2.1.1. Regulation of Inflammatory Mediator Production in Macrophages
Bioactive Constituents | Algae Species | Bioactive Agent | Cell Model | Effects of Algae Extracts | Cytotoxicity | Reference |
---|---|---|---|---|---|---|
Lipids/ pigments | Nostoc commune var. sphaeroides | Palmitic acid, palmitoleic acid, linoleic acid, linolenic acid, triacylglycerol, wax esters/steryl esters, and moreover pigments. | LPS-induced RAW 264.7 macrophages. | Inhibition of TNF-α, IL-6, and IL-1β mRNA expression. Inhibition of PGE2 and NO. | Non-cytotoxic in the tested range. | [23,29] |
Palmaria palmata | Phospholipids, galactolipids, and three polar lipids (sulfoquinovosyl diacylglycerol (SQDG)) and two phosphatidylglycerols. | LPS-induced RAW 264.7 macrophages. | Inhibition of NO production. | Non-cytotoxic in the tested range. | [44] | |
Aurantiochytrium mangrovei | Squalene, moreover astaxanthin, and canthaxanthin (pigments). | LPS-induced RAW 264.7 macrophages. | Inhibition of IL-6, IL-1β, and TNF-α. | Cytotoxic at a concentration of 1/500 to 1/100. | [45] | |
Palmaria palmata | Fatty acids (n-3 PUFA), and pigments (chlorophyll a, β-carotene, and fucoxanthin). | LPS-induced THP-1 macrophages. | Suppression of IL-6 and IL-8 production. | [40] | ||
Haematoccus pluvialis | Carotenoids (astaxanthin). | LPS-induced 7 mice bone marrow-derived macrophages. | Inhibition of TNF-α, IL-6 and IL-1β mRNA expression. | - | [46] | |
Phyllospora comosa Ulva sp. | Carotenoids (fucoxanthin). Caretonoids (β-carotene, lutein). | LPS-induced RAW 264.7 macrophages. | Inhibition of NO production. | Low cytotoxicity in ETOAc extracts, high toxicity in DCM and BuOH. | [39,47] | |
Protein–pigment complex | Chlorella pyrenoidosa | Chlorophyll, β-carotene, lutein, zeaxanthin, alpha-linolenic acid, sporopollenin. | LPS-induced RAW 264.7 macrophages. | Suppression of TNF-α, IL-6, IL-10. Reduced the NO production. | Non-cytoxicity in the range of 0 to 500 μg /mL. | [37,48] |
Phenols | Polysiphonia morrowii Ecklonia stoloonifera Laminaria japonica Ulva lactuca | 3,4-dihydroxybenzaldehyde (DHB). Phlorofucofuroeckol A. Polyphenol-rich components (e.g., Ferulic acid, Rosmarinic acid, Gallic acid, Kaempferol, Epigallocatehin). Polyphenol-rich components (e.g., Rutin, Hesperidin, Quecertin, EpigallocatechinGallate). | LPS-induced RAW 264.7 macrophages. | Suppression of IL-1β, IL-6 and TNF-α. Inhibition of PGE2 and NO production. Inhibition of NO production, as well as the expression of IL-1, IL-6, TNF-α, iNOS, and COX-2. Elevated expression of the antioxidant enzymes HO-1 and NQO-1. | Non-cytotoxic in the tested range cytoprotective effect. | [6,31,32,39,49] |
Ecklonia cava | Phloroglucinol, dieckol. | LPS-induced the PMA-differentiated THP-1 macrophages. | Suppression of IL-1β, IL-6, and TNF-α. Inhibition of PGE2 and NO production. | Cytotoxic effect above 50 μM. | [32,43] | |
Polysaccharide | Ascophyllum nodosum | Ascophyllan. | RAW 264.7 macrophages (non-induced). | Stimulation of the production of NO, TNF-α, and G-CSF. | No significant cytotoxic effects up to 1000 μg/mL. | [50] |
Phyllospora comosa Ulva sp. | Fucoidans, alginates. Ulvan. | LPS-induced RAW 264.7 macrophages. | Inhibition of NO production. | Low cytotoxicity in ETOAc extracts, high toxicity in DCM and BuOH. | [39,47] | |
Coccomyxa gloeobotrydiforms | Not mentioned. | LPS-induced RAW 264.7 macrophages. | Inhibition of TNF-α, IL-6, and IL-1β mRNA expression, increasing of IL-10 mRNA expression. Inhibition of PGE2 and NO production. | Non-cytotoxic in the tested range. | [4] | |
Turbinaria decurrens | Sulfated polygalactofucan (SPTd-2). | LPS-induced THP-1 macrophages. | Suppression of IL-6, IL-2, INF-γ, IL-1β, TNF-α, IL-12, and increasing TGF-β. Inhibition of PGE2 and NO production. | - | [41] | |
Saccharina japonica | Fucoidan. | LPS-induced RAW 264.7 macrophages | Inhibition of TNF-α, IL-L, and IL-1β secretion. | Non-cytoxicity in the range of up to 200 μg/mL. | [7] |
2.1.2. Modulation of MAPK/NF-κB Pathways in Macrophages by Algal Constituents
2.1.3. Modulation of the PI3K/AKT and JAK/STAT Signaling Pathways in Macrophages by Algal Constituents
2.1.4. Modulation of the Nrf2 Pathway in Macrophages by Algal Constituents
3. Bioactive Potential of Algae Extracts: Regulation of Oxidative Stress in Macrophages by Algae Constituents
Regulation of Apoptosis by Algal Constituents
4. Diversity of Bioactivities and Potential of Algae as Therapeutic Agents
4.1. Potential to Replace Antibiotics and Studies on Antimicrobial Activity to Counteract Infections
Algae Species | Bioactive Agent | Experimental Conditions | Extraction Method and Concentration | Antimicrobial Activity | Reference |
---|---|---|---|---|---|
Haematococcus pluvialis | Astaxanthin from red phase (pigments). | Culture was grown in Bold’s Basal Medium with NaNO3 (0.75 g/L). Green phase was cultured in 20 L Carboys bubbled at 25 °C in light/dark cycles (16:8 h). Red phases were transferred to nitrogen-deprived medium and illuminated with 200 µmol m−2 s−1 for 6 days. | Hexane and ethanol as solvents were used at 50, 100, 150, and 200 °C for 20 min. Pressurized liquid extraction was applied by freezing and mashing with liquid nitrogen in a ceramic mortar. The pathogen was supplemented in concentration of 1 mg/mL. | Exhibited bactericidal action against Escherichia coli, Staphylococcus aureus, Escherichia coli, Candida albicans, Aspergillus niger from ethanol extract. | [102,117] |
Chlorella vulgaris | Flavonoids, tannins, phenolic compounds, terpenoids. | Alga was collected from surface lake water bodies. Pure cultures prior to the stationary phase of growth (10 days) were then collected by centrifuging (10,000 rpm, 3 min). The pellets were shade-dried and ground into a coarse powder with a mechanical grinder. | The dried powders (20 gm) were extracted using serial with chloroform, acetone, ethanol solvents (10 mL of solvent in 1 gm of powder). The pathogen was supplemented at concentration of 100 mg/mL. | Extracts prepared with different solvents suppressed the growth of E.coli, Klebsilla sp., Bacillus sp., and Pseudomonas sp. | [118] |
Isochrysis galbana | Myristic acid, behenic acid, oleic acid, tearidonic acid (lipids). | Three different strains were maintained as monospecific, nonaxenic batch cultures in 500 mL Erlenmeyer flasks with 200 mL “f” medium. The initial culture concentration was 1 × 105 cells mL−1. The conditions were 22 ± 1 °C, salinity 33 ± 1‰, 24 h of continuous light at 110 μmol photons m−2 s−1. | No extraction method was used. The bacteria flasks were inoculated with alga at 1 × 105 cells mL−1. | Isochrysis galbana inhibits the growth of Vibrio alginolyticus, Vibrio campbellii, and Vibrio harveyi. | [101,119] |
Dunaliella salina | β-cyclocitral and α- and β-ionone (carotenoid derivatives), 2-hexadiene-1-ol,3,7,11,15-tetra-methyl (neophytadiene, phytol), palmitic, α-linolenic, and oleic acids (fatty acids). | Freeze-dried microalgae were stored under dry and dark conditions. | Extraction in solvents (hexane, petroleum ether, ethanol, and water) and different temperatures (40, 100, and 160 °C) in 15 min as extraction time were used by pressurized liquid extracts. In analysis of volatile fractions, petroleum ether and hexane extracts were injected at concentration of 2 mg/mL, ethanol extracts at concentration of 25 mg/mL. | Extracts suppressed the growth of Escherichia coli, Staphylococcus aureus, Candida albicans, and Aspergillus niger. The best antimicrobial activity was obtained at highest extraction temperature in ethanol solvent. | [120] |
Scenedesmus obliquus | Palmitic acid, linoleic acid (fatty acids). | Batch cultures were grown (30 days) in flasks containing 200 mL of medium, at 25 °C, and under continuous illumination with fluorescent daylight lamps (35 µmolphoton m−2 s−1) using OHM and TAP as culture media. | The 30-day cultures were centrifuged (1790× g, 10 min, 15 °C), and pellet was homogenized in 25 mL of ethanol–water (1:1), the cells were then centrifugated. Intra- and extracellular extracts were used. A 500 µL aliquot was added to 9.5 mL of medium, along with 100 µL of each pathogen suspension. | Extracts of Scenedesmus obliquus exhibited antibacterial activity against Pseudomonas aeruginosa, Escherichia coli Staphylococcus aureus. | [121] |
Phaeodactylum tricornutum | Eicosapentaenoic acid (fatty acids). | Strain was maintained at +4 °C on 2216E medium, Luria–Bertani (LB), nutrient, or YPD agar. | The compound was extracted from a cell pellet in 50 mL methanol/water (5:1) for 16 h on ice. After centrifugation (5525× g, 1 h, 4 °C), the extract was dried (~4 h, 30 °C) and reconstituted in 20 mL of 70% methanol. Aliquots of 75 μL were tested. | A fatty acid isolated from Phaeodactylum tricornutum exhibited antibacterial activity against multi-resistant Staphylococcus aureus. | [122] |
Tetrasekmis suecica | Methyl carprate, Methyl stearate, Decoic acid, Palmitic acid, Nonoic acid, and Caprylic acid (fatty acids). | Filtered seawater was placed in a 250 mL flask, amended with Miquell’s medium, and autoclaved. After sterilization, 10% of actively growing inoculum was added into culture flasks and was incubated at 28 ± 2 °C under 1000 lux light for 8 days. Once the culture reached its maximum exponential phase, light intensity was reduced. | Algal cells were centrifuged (200 rpm, 10 min); the pellet was air-dried. Dried cells (10 g) were extracted in 100 mL of organic solvents (acetone, n-butanol, isopropanol, acetone + n-butanol (1:1), acetone + isopropanol (1:1), acetone + chloroform (1:1), butanol + isopropanol (1:1), chloroform + methanol (1:1)) under stirring (50 rpm) for 7 d. The solution was filtered and dried in a desiccator (40 °C, 24 h). The dried powder was dissolved to obtain a 50 mg/mL extract. | Chloroform + methanol (1:1) extract of Tetraselmis suecica exhibited antibacterial activity against Proteus sp. and Streptococcus pyogens. | [123] |
4.2. Mode of Action of the Antimicrobial Properties of Algae
5. Significance of Swine Animal Models for the Validation of Bioactivities of Algal Ingredients and Importance of Algal Therapeutic Application in Gut Immunity
6. Future Research Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kholssi, R.; Lougraimzi, H.; Grina, F.; Lorentz, J.F.; Silva, I.; Castaño-Sánchez, O.; Marks, E.A.N. Green Agriculture: A Review of the Application of Micro- and Macroalgae and Their Impact on Crop Production on Soil Quality. J. Soil Sci. Plant Nutr. 2022, 22, 4627–4641. [Google Scholar] [CrossRef]
- Tan, P.X.; Thiyagarasaiyar, K.; Tan, C.-Y.; Jeon, Y.-J.; Nadzir, M.S.M.; Wu, Y.-J.; Low, L.-E.; Atanasov, A.G.; Ming, L.C.; Liew, K.B.; et al. Algae-Derived Anti-Inflammatory Compounds against Particulate Matters-Induced Respiratory Diseases: A Systematic Review. Mar. Drugs 2021, 19, 317. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Silva, S.A.; Carpena, M.; Garcia-Oliveira, P.; Gullón, P.; Barroso, M.F.; Prieto, M.A.; Simal-Gandara, J. Macroalgae as a Source of Valuable Antimicrobial Compounds: Extraction and Applications. Antibiotics 2020, 9, 642. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Wei, D.; Zheng, N.; Chi, Z.; Xin, N.; Ma, T.; Zheng, L.; Sumi, R.; Sun, L. Coccomyxa Gloeobotrydiformis Polysaccharide Inhibits Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophages. Cell. Physiol. Biochem. 2018, 51, 2523–2535. [Google Scholar] [CrossRef]
- Daskalaki, M.; Vyrla, D.; Harizani, M.; Doxaki, C.; Eliopoulos, A.; Roussis, V.; Ioannou, E.; Tsatsanis, C.; Kampranis, S. Neorogioltriol and Related Diterpenes from the Red Alga Laurencia Inhibit Inflammatory Bowel Disease in Mice by Suppressing M1 and Promoting M2-Like Macrophage Responses. Mar. Drugs 2019, 17, 97. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.-R.; Lee, M.-S.; Shin, T.-S.; Hua, H.; Jang, B.-C.; Choi, J.-S.; Byun, D.-S.; Utsuki, T.; Ingram, D.; Kim, H.-R. Phlorofucofuroeckol A Inhibits the LPS-Stimulated INOS and COX-2 Expressions in Macrophages via Inhibition of NF-ΚB, Akt, and P38 MAPK. Toxicol. In Vitro 2011, 25, 1789–1795. [Google Scholar] [CrossRef]
- Ye, J.; Chen, D.; Ye, Z.; Huang, Y.; Zhang, N.; Lui, E.M.K.; Xue, C.; Xiao, M. Fucoidan Isolated from Saccharina japonica Inhibits LPS-Induced Inflammation in Macrophages via Blocking NF-ΚB, MAPK and JAK-STAT Pathways. Mar. Drugs 2020, 18, 328. [Google Scholar] [CrossRef]
- Li, C.-Q.; Ma, Q.-Y.; Gao, X.-Z.; Wang, X.; Zhang, B.-L. Research Progress in Anti-Inflammatory Bioactive Substances Derived from Marine Microorganisms, Sponges, Algae, and Corals. Mar. Drugs 2021, 19, 572. [Google Scholar] [CrossRef]
- Tabarzad, M.; Atabaki, V.; Hosseinabadi, T. Anti-Inflammatory Activity of Bioactive Compounds from Microalgae and Cyanobacteria by Focusing on the Mechanisms of Action. Mol. Biol. Rep. 2020, 47, 6193–6205. [Google Scholar] [CrossRef]
- Rocha, D.H.A.; Pinto, D.C.G.A.; Silva, A.M.S. Macroalgae Specialized Metabolites: Evidence for Their Anti-Inflammatory Health Benefits. Mar. Drugs 2022, 20, 789. [Google Scholar] [CrossRef]
- Ghosh, S.; Sarkar, T.; Pati, S.; Kari, Z.A.; Edinur, H.A.; Chakraborty, R. Novel Bioactive Compounds from Marine Sources as a Tool for Functional Food Development. Front. Mar. Sci. 2022, 9, 832957. [Google Scholar] [CrossRef]
- Sagnia, B.; Fedeli, D.; Casetti, R.; Montesano, C.; Falcioni, G.; Colizzi, V. Antioxidant and Anti-Inflammatory Activities of Extracts from Cassia alata, Eleusine indica, Eremomastax speciosa, Carica papaya and Polyscias fulva Medicinal Plants Collected in Cameroon. PLoS ONE 2014, 9, e103999. [Google Scholar] [CrossRef] [PubMed]
- Mhadhebi, L.; Mhadhebi, A.; Robert, J.; Bouraoui, A. Antioxidant, Anti-Inflammatory and Antiproliferative Effects of Aqueous Extracts of Three Mediterranean Brown Seaweeds of the Genus Cystoseira. Iran J. Pharm. Res. 2014, 13, 207–220. [Google Scholar] [PubMed]
- Fernando, I.P.S.; Nah, J.-W.; Jeon, Y.-J. Potential Anti-Inflammatory Natural Products from Marine Algae. Environ. Toxicol. Pharmacol. 2016, 48, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Shikov, A.N. In Vitro Anti-Inflammatory Activities of Fucoidans from Five Species of Brown Seaweeds. Mar. Drugs 2022, 20, 606. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Hsieh, C.-C.; de Lumen, B.O. Antioxidant and Anti-Inflammatory Properties of Cancer Preventive Peptide Lunasin in RAW 264.7 Macrophages. Biochem. Biophys. Res. Commun. 2009, 390, 803–808. [Google Scholar] [CrossRef]
- Swanson, K.V.; Deng, M.; Ting, J.P.-Y. The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef]
- Remya, R.R.; Samrot, A.V.; Kumar, S.S.; Mohanavel, V.; Karthick, A.; Chinnaiyan, V.K.; Umapathy, D.; Muhibbullah, M. Bioactive Potential of Brown Algae. Adsorpt. Sci. Technol. 2022, 2022, 9104835. [Google Scholar] [CrossRef]
- Pangestuti, R.; Vo, T.-S.; Ngo, D.-H.; Kim, S.-K. Fucoxanthin Ameliorates Inflammation and Oxidative Reponses in Microglia. J. Agric. Food Chem. 2013, 61, 3876–3883. [Google Scholar] [CrossRef]
- Chae, D.; Manzoor, Z.; Kim, S.; Kim, S.; Oh, T.-H.; Yoo, E.-S.; Kang, H.-K.; Hyun, J.-W.; Lee, N.; Ko, M.-H.; et al. Apo-9′-Fucoxanthinone, Isolated from Sargassum muticum, Inhibits CpG-Induced Inflammatory Response by Attenuating the Mitogen-Activated Protein Kinase Pathway. Mar. Drugs 2013, 11, 3272–3287. [Google Scholar] [CrossRef]
- Mease, P.J.; Armstrong, A.W. Managing Patients with Psoriatic Disease: The Diagnosis and Pharmacologic Treatment of Psoriatic Arthritis in Patients with Psoriasis. Drugs 2014, 74, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.; Massarotti, E. Rheumatoid Arthritis: An Overview of New and Emerging Therapies. J. Clin. Pharmacol. 2005, 45, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-K.; Rasmussen, H.E.; Ehlers, S.J.; Blobaum, K.R.; Lu, F.; Schlegal, V.L.; Carr, T.P.; Lee, J.-Y. Repression of Proinflammatory Gene Expression by Lipid Extract of Nostoc Commune Var Sphaeroides Kützing, a Blue-Green Alga, via Inhibition of Nuclear Factor-ΚB in RAW 264.7 Macrophages. Nutr. Res. 2008, 28, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Burayk, S.; Oh-hashi, K.; Kandeel, M. Drug Discovery of New Anti-Inflammatory Compounds by Targeting Cyclooxygenases. Pharmaceuticals 2022, 15, 282. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Tzvetkov, N.T.; Kirilov, K.; Matin, M.; Atanasov, A.G. Natural Product Drug Discovery and Drug Design: Two Approaches Shaping New Pharmaceutical Development. Nephrol. Dial. Transplant. 2023, 39, 375–378. [Google Scholar] [CrossRef]
- Schmid-Schönbein, G.W. Analysis of Inflammation. Annu. Rev. Biomed. Eng. 2006, 8, 93–151. [Google Scholar] [CrossRef]
- Kim, E.J.; Park, S.Y.; Lee, J.-Y.; Park, J.H.Y. Fucoidan Present in Brown Algae Induces Apoptosis of Human Colon Cancer Cells. BMC Gastroenterol. 2010, 10, 96. [Google Scholar] [CrossRef]
- Ku, C.S.; Pham, T.X.; Park, Y.; Kim, B.; Shin, M.S.; Kang, I.; Lee, J. Edible Blue-Green Algae Reduce the Production of pro-Inflammatory Cytokines by Inhibiting NF-ΚB Pathway in Macrophages and Splenocytes. Biochim. Biophys. Acta (BBA) Gen. Subj. 2013, 1830, 2981–2988. [Google Scholar] [CrossRef]
- Maj, D.; Migdał, Ł.; Zapletal, P. Effects of Dietary Supplementation with Algae, Sunflower Oil, or Soybean Oil, and Age on Fat Content, Fatty Acid Profile and the Expression of Related Genes in Rabbits. Anim. Sci. Pap. Rep. 2023, 41, 243–260. [Google Scholar] [CrossRef]
- Jayawardena, T.U.; Sanjeewa, K.K.A.; Lee, H.-G.; Nagahawatta, D.P.; Yang, H.-W.; Kang, M.-C.; Jeon, Y.-J. Particulate Matter-Induced Inflammation/Oxidative Stress in Macrophages: Fucosterol from Padina boryana as a Potent Protector, Activated via NF-ΚB/MAPK Pathways and Nrf2/HO-1 Involvement. Mar. Drugs 2020, 18, 628. [Google Scholar] [CrossRef] [PubMed]
- Sanjeewa, K.K.A.; Fernando, I.P.S.; Kim, H.-S.; Jayawardena, T.U.; Ryu, B.; Yang, H.-W.; Ahn, G.; Lee, W.; Jeon, Y.-J. Dieckol: An Algal Polyphenol Attenuates Urban Fine Dust-Induced Inflammation in RAW 264.7 Cells via the Activation of Anti-Inflammatory and Antioxidant Signaling Pathways. J. Appl. Phycol. 2020, 32, 2387–2396. [Google Scholar] [CrossRef]
- Watkins, L.R.; Maier, S.F.; Goehler, L.E. Immune Activation: The Role of pro-Inflammatory Cytokines in Inflammation, Illness Responses and Pathological Pain States. Pain 1995, 63, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Mhadhebi, L. Anti-Inflammatory, Anti-Proliferative and Anti-Oxidant Activities of Organic Extracts from the Mediterranean Seaweed, Cystoseira crinita. Afr. J. Biotechnol. 2011, 10, 16682–16690. [Google Scholar] [CrossRef]
- Mhadhebi, L.; Dellai, A.; Clary-Laroche, A.; Said, R.B.; Robert, J.; Bouraoui, A. Anti-Inflammatory and Antiproliferative Activities of Organic Fractions from the Mediterranean Brown Seaweed, Cystoseira compressa. Drug Dev. Res. 2012, 73, 82–89. [Google Scholar] [CrossRef]
- Harada, H.; Kamei, Y. Selective Cytotoxicity of Marine Algae Extracts to Several Human Leukemic Cell Lines. Cytotechnology 1997, 25, 213–219. [Google Scholar] [CrossRef]
- Zhang, Z.; Teruya, K.; Yoshida, T.; Eto, H.; Shirahata, S. Fucoidan Extract Enhances the Anti-Cancer Activity of Chemotherapeutic Agents in MDA-MB-231 and MCF-7 Breast Cancer Cells. Mar. Drugs 2013, 11, 81–98. [Google Scholar] [CrossRef]
- Álvarez-Gómez, F.; Korbee, N.; Casas-Arrojo, V.; Abdala-Díaz, R.T.; Figueroa, F.L. UV Photoprotection, Cytotoxicity and Immunology Capacity of Red Algae Extracts. Molecules 2019, 24, 341. [Google Scholar] [CrossRef]
- Choi, Y.K.; Ye, B.-R.; Kim, E.-A.; Kim, J.; Kim, M.-S.; Lee, W.W.; Ahn, G.-N.; Kang, N.; Jung, W.-K.; Heo, S.-J. Bis (3-Bromo-4,5-Dihydroxybenzyl) Ether, a Novel Bromophenol from the Marine Red Alga Polysiphonia Morrowii That Suppresses LPS-Induced Inflammatory Response by Inhibiting ROS-Mediated ERK Signaling Pathway in RAW 264.7 Macrophages. Biomed. Pharmacother. 2018, 103, 1170–1177. [Google Scholar] [CrossRef]
- Robertson, R.; Guihéneuf, F.; Bahar, B.; Schmid, M.; Stengel, D.; Fitzgerald, G.; Ross, R.; Stanton, C. The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS)-Stimulated Human THP-1 Macrophages. Mar. Drugs 2015, 13, 5402–5424. [Google Scholar] [CrossRef]
- Chakraborty, K.; Thambi, A.; Dhara, S. Sulfated Polygalactofucan from Triangular Sea Bell Turbinaria Decurrens Attenuates Inflammatory Cytokines on THP-1 Human Monocytic Macrophages. Int. J. Biol. Macromol. 2023, 231, 123220. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.R.; Attur, M.; Abramson, S.B. Nitric Oxide Synthase and Cyclooxygenases. Curr. Opin. Rheumatol. 1999, 11, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.-S.; Kim, J.-A.; Ahn, B.-N.; Kim, S.-K. Potential Effect of Phloroglucinol Derivatives from Ecklonia cava on Matrix Metalloproteinase Expression and the Inflammatory Profile in Lipopolysaccharide-Stimulated Human THP-1 Macrophages. Fish Sci. 2011, 77, 867–873. [Google Scholar] [CrossRef]
- Banskota, A.H.; Stefanova, R.; Sperker, S.; Lall, S.P.; Craigie, J.S.; Hafting, J.T.; Critchley, A.T. Polar Lipids from the Marine Macroalga Palmaria Palmata Inhibit Lipopolysaccharide-Induced Nitric Oxide Production in RAW264.7 Macrophage Cells. Phytochemistry 2014, 101, 101–108. [Google Scholar] [CrossRef]
- Takahashi, S.; Sakamaki, M.; Ferdousi, F.; Yoshida, M.; Demura, M.; Watanabe, M.M.; Isoda, H. Ethanol Extract of Aurantiochytrium mangrovei 18W-13a Strain Possesses Anti-Inflammatory Effects on Murine Macrophage RAW264 Cells. Front. Physiol. 2018, 9, 1205. [Google Scholar] [CrossRef]
- Farruggia, C.; Kim, M.-B.; Bae, M.; Lee, Y.; Pham, T.X.; Yang, Y.; Han, M.J.; Park, Y.-K.; Lee, J.-Y. Astaxanthin Exerts Anti-Inflammatory and Antioxidant Effects in Macrophages in NRF2-Dependent and Independent Manners. J. Nutr. Biochem. 2018, 62, 202–209. [Google Scholar] [CrossRef]
- McCauley, J.I.; Meyer, B.J.; Winberg, P.C.; Ranson, M.; Skropeta, D. Selecting Australian Marine Macroalgae Based on the Fatty Acid Composition and Anti-Inflammatory Activity. J. Appl. Phycol. 2015, 27, 2111–2121. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Mao, X.; Qi, P.; Zhang, X. Anti-Inflammatory and Anti-Aging Evaluation of Pigment–Protein Complex Extracted from Chlorella pyrenoidosa. Mar. Drugs 2019, 17, 586. [Google Scholar] [CrossRef]
- Yi, L.; Wang, Q.; Luo, H.; Lei, D.; Tang, Z.; Lei, S.; Xiao, H. Inhibitory Effects of Polyphenols-Rich Components from Three Edible Seaweeds on Inflammation and Colon Cancer in Vitro. Front. Nutr. 2022, 9, 856273. [Google Scholar] [CrossRef]
- Jiang, Z.; Okimura, T.; Yamaguchi, K.; Oda, T. The Potent Activity of Sulfated Polysaccharide, Ascophyllan, Isolated from Ascophyllum Nodosum to Induce Nitric Oxide and Cytokine Production from Mouse Macrophage RAW264.7 Cells: Comparison between Ascophyllan and Fucoidan. Nitric Oxide 2011, 25, 407–415. [Google Scholar] [CrossRef]
- Kim, K.-N.; Heo, S.-J.; Yoon, W.-J.; Kang, S.-M.; Ahn, G.; Yi, T.-H.; Jeon, Y.-J. Fucoxanthin Inhibits the Inflammatory Response by Suppressing the Activation of NF-ΚB and MAPKs in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Eur. J. Pharmacol. 2010, 649, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Muxel, S.M.; Laranjeira-Silva, M.F.; Carvalho-Sousa, C.E.; Floeter-Winter, L.M.; Markus, R.P. The RelA/cRel nuclear factor-κB (NF-κB) dimer, crucial for inflammation resolution, mediates the transcription of the key enzyme in melatonin synthesis in RAW 264.7 macrophages. J. Pineal Res. 2016, 60, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Qiu, H.-M.; Cheong, K.-L.; Zhong, S. Advances in Anti-Cancer Effects and Underlying Mechanisms of Marine Algae Polysaccharides. Int. J. Biol. Macromol. 2022, 221, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Bittner, M.; Štern, A.; Smutná, M.; Hilscherová, K.; Žegura, B. Cytotoxic and Genotoxic Effects of Cyanobacterial and Algal Extracts—Microcystin and Retinoic Acid Content. Toxins 2021, 13, 107. [Google Scholar] [CrossRef]
- Yang, D.-J.; Lin, J.-T.; Chen, Y.-C.; Liu, S.-C.; Lu, F.-J.; Chang, T.-J.; Wang, M.; Lin, H.-W.; Chang, Y.-Y. Suppressive Effect of Carotenoid Extract of Dunaliella salina Alga on Production of LPS-Stimulated pro-Inflammatory Mediators in RAW264.7 Cells via NF-ΚB and JNK Inactivation. J. Funct. Foods 2013, 5, 607–615. [Google Scholar] [CrossRef]
- Lee, M.-S.; Kim, J.-I.; Utsuki, T.; Park, N.-G.; Kim, H.-R. Cytoprotective Effects of Phlorofucofuroeckol A Isolated from Ecklonia stolonifera against Tacrine-Treated HepG2 Cells. Fitoterapia 2012, 83, 1060–1067. [Google Scholar] [CrossRef]
- Pei, Y.; Yang, S.; Xiao, Z.; Zhou, C.; Hong, P.; Qian, Z.-J. Structural Characterization of Sulfated Polysaccharide Isolated from Red Algae (Gelidium crinale) and Antioxidant and Anti-Inflammatory Effects in Macrophage Cells. Front. Bioeng. Biotechnol. 2021, 9, 794818. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Jayawardena, T.U.; Kim, S.-Y.; Kim, H.-S.; Ahn, G.; Kim, J.; Jeon, Y.-J. Fucoidan Isolated from Invasive Sargassum Horneri Inhibit LPS-Induced Inflammation via Blocking NF-ΚB and MAPK Pathways. Algal Res. 2019, 41, 101561. [Google Scholar] [CrossRef]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT Signaling Pathway: From Bench to Clinic. Signal Transduct. Target Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Kiu, H.; Nicholson, S.E. Biology and Significance of the JAK/STAT Signalling Pathways. Growth Factors 2012, 30, 88–106. [Google Scholar] [CrossRef]
- Wu, M.; Song, D.; Li, H.; Yang, Y.; Ma, X.; Deng, S.; Ren, C.; Shu, X. Negative Regulators of STAT3 Signaling Pathway in Cancers. Cancer Manag. Res. 2019, 11, 4957–4969. [Google Scholar] [CrossRef] [PubMed]
- Seif, F.; Khoshmirsafa, M.; Aazami, H.; Mohsenzadegan, M.; Sedighi, G.; Bahar, M. The Role of JAK-STAT Signaling Pathway and Its Regulators in the Fate of T Helper Cells. Cell Commun. Signal. 2017, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Hemmings, B.A.; Restuccia, D.F. PI3K-PKB/Akt Pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a011189. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, Y.; Deng, B.; Lin, A.; Zhang, G.; Ma, M.; Wang, Y.; Yang, Y.; Kang, X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif. 2022, 55, e13275. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Dang, H.-T.; Kang, G.-J.; Yang, E.-J.; Park, S.-S.; Yoon, W.-J.; Jung, J.H.; Kang, H.-K.; Yoo, E.-S. Two Enone Fatty Acids Isolated from Gracilaria verrucosa Suppress the Production of Inflammatory Mediators by Down-Regulating NF-ΚB and STAT1 Activity in Lipopolysaccharide-Stimulated RAW 264.7 Cells. Arch. Pharm. Res. 2009, 32, 453–462. [Google Scholar] [CrossRef]
- Kobayashi, E.H.; Suzuki, T.; Funayama, R.; Nagashima, T.; Hayashi, M.; Sekine, H.; Tanaka, N.; Moriguchi, T.; Motohashi, H.; Nakayama, K.; et al. Nrf2 Suppresses Macrophage Inflammatory Response by Blocking Proinflammatory Cytokine Transcription. Nat. Commun. 2016, 7, 11624. [Google Scholar] [CrossRef]
- Tebay, L.E.; Robertson, H.; Durant, S.T.; Vitale, S.R.; Penning, T.M.; Dinkova-Kostova, A.T.; Hayes, J.D. Mechanisms of Activation of the Transcription Factor Nrf2 by Redox Stressors, Nutrient Cues, and Energy Status and the Pathways through Which It Attenuates Degenerative Disease. Free Radic. Biol. Med. 2015, 88, 108–146. [Google Scholar] [CrossRef]
- Alcaraz, M.J.; Fernández, P.; Guillén, M.I. Anti-Inflammatory Actions of the Heme Oxygenase-1 Pathway. Curr. Pharm. Des. 2003, 9, 2541–2551. [Google Scholar] [CrossRef]
- Laskin, D.L.; Sunil, V.R.; Gardner, C.R.; Laskin, J.D. Macrophages and Tissue Injury: Agents of Defense or Destruction? Annu. Rev. Pharmacol. Toxicol. 2011, 51, 267–288. [Google Scholar] [CrossRef]
- Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An Overview of Nrf2 Signaling Pathway and Its Role in Inflammation. Molecules 2020, 25, 5474. [Google Scholar] [CrossRef]
- Kang, H.; Lee, Y.; Bae, M.; Park, Y.-K.; Lee, J.-Y. Astaxanthin Inhibits Alcohol-Induced Inflammation and Oxidative Stress in Macrophages in a Sirtuin 1-Dependent Manner. J. Nutr. Biochem. 2020, 85, 108477. [Google Scholar] [CrossRef] [PubMed]
- Sirajunnisa, A.R.; Surendhiran, D.; Kozani, P.S.; Kozani, P.S.; Hamidi, M.; Cabrera-Barjas, G.; Delattre, C. An Overview on the Role of Microalgal Metabolites and Pigments in Apoptosis Induction against Copious Diseases. Algal Res. 2021, 60, 102556. [Google Scholar] [CrossRef]
- Canton, M.; Sánchez-Rodríguez, R.; Spera, I.; Venegas, F.C.; Favia, M.; Viola, A.; Castegna, A. Reactive Oxygen Species in Macrophages: Sources and Targets. Front. Immunol. 2021, 12, 734229. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-B.; Kang, H.; Li, Y.; Park, Y.-K.; Lee, J.-Y. Fucoxanthin Inhibits Lipopolysaccharide-Induced Inflammation and Oxidative Stress by Activating Nuclear Factor E2-Related Factor 2 via the Phosphatidylinositol 3-Kinase/AKT Pathway in Macrophages. Eur. J. Nutr. 2021, 60, 3315–3324. [Google Scholar] [CrossRef]
- Din, N.A.S.; Mohd Alayudin, A.S.; Sofian-Seng, N.-S.; Rahman, H.A.; Razali, N.S.M.; Lim, S.J.; Mustapha, W.A.W. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods 2022, 11, 2235. [Google Scholar] [CrossRef]
- Wang, X.; Ma, J.; Bai, X.; Yan, H.; Qin, C.; Ren, D. Antioxidant Properties of Astaxanthin Produced by Cofermentation between Spirulina Platensis and Recombinant Saccharomyces cerevisiae against Mouse Macrophage RAW 264.7 Damaged by H2O2. Food Bioprod. Process. 2019, 118, 318–325. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- DeNardo, D.G.; Ruffell, B. Macrophages as Regulators of Tumour Immunity and Immunotherapy. Nat. Rev. Immunol. 2019, 19, 369–382. [Google Scholar] [CrossRef]
- Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-Associated Macrophages as Treatment Targets in Oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef]
- Seimon, T.; Tabas, I. Mechanisms and Consequences of Macrophage Apoptosis in Atherosclerosis. J. Lipid Res. 2009, 50, S382–S387. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Fazeela Mahaboob Begum, S.M.; Hemalatha, S. Phytoconstituents from Gelidiella acerosa Induce Apoptosis by Regulating Bax, Bcl2 Expression in A549 Cells. Biocatal. Agric. Biotechnol. 2020, 29, 101757. [Google Scholar] [CrossRef]
- Han, M.H.; Lee, D.; Jeong, J.; Hong, S.; Choi, I.; Cha, H.; Kim, S.; Kim, H.; Park, C.; Kim, G.; et al. Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway. Drug Dev. Res. 2017, 78, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-E.; Choi, E.-S.; Shin, J.-A.; Lee, S.-O.; Park, K.-S.; Cho, N.-P.; Cho, S.-D. Fucoidan Induces Caspase-Dependent Apoptosis in MC3 Human Mucoepidermoid Carcinoma Cells. Exp. Ther. Med. 2014, 7, 228–232. [Google Scholar] [CrossRef]
- Pradhan, B.; Patra, S.; Nayak, R.; Behera, C.; Dash, S.R.; Nayak, S.; Sahu, B.B.; Bhutia, S.K.; Jena, M. Multifunctional Role of Fucoidan, Sulfated Polysaccharides in Human Health and Disease: A Journey under the Sea in Pursuit of Potent Therapeutic Agents. Int. J. Biol. Macromol. 2020, 164, 4263–4278. [Google Scholar] [CrossRef]
- Aisa, Y.; Miyakawa, Y.; Nakazato, T.; Shibata, H.; Saito, K.; Ikeda, Y.; Kizaki, M. Fucoidan Induces Apoptosis of Human HS-Sultan Cells Accompanied by Activation of Caspase-3 and down-Regulation of ERK Pathways. Am. J. Hematol. 2005, 78, 7–14. [Google Scholar] [CrossRef]
- Teruya, T.; Konishi, T.; Uechi, S.; Tamaki, H.; Tako, M. Anti-Proliferative Activity of Oversulfated Fucoidan from Commercially Cultured Cladosiphon okamuranus TOKIDA in U937 Cells. Int. J. Biol. Macromol. 2007, 41, 221–226. [Google Scholar] [CrossRef]
- Nakamura, T.; Suzuki, H.; Wada, Y.; Kodama, T.; Doi, T. Fucoidan Induces Nitric Oxide Production via P38 Mitogen-Activated Protein Kinase and NF-ΚB-Dependent Signaling Pathways through Macrophage Scavenger Receptors. Biochem. Biophys. Res. Commun. 2006, 343, 286–294. [Google Scholar] [CrossRef]
- Hang, D.; Choi, H.-S.; Kang, S.-C.; Kim, K.-R.; Sohn, E.-S.; Kim, M.-H.; Pyo, S.; Son, E.-W. Effects of Fucoidan on NO Production and Phagocytosis of Macrophages and the Proliferation of Neuron Cells. Prev. Nutr. Food Sci. 2005, 10, 344–348. [Google Scholar] [CrossRef]
- Suganya, A.M.; Sanjivkumar, M.; Chandran, M.N.; Palavesam, A.; Immanuel, G. Pharmacological Importance of Sulphated Polysaccharide Carrageenan from Red Seaweed Kappaphycus alvarezii in Comparison with Commercial Carrageenan. Biomed. Pharmacother. 2016, 84, 1300–1312. [Google Scholar] [CrossRef]
- Ghannam, A.; Murad, H.; Jazzara, M.; Odeh, A.; Allaf, A.W. Isolation, Structural Characterization, and Antiproliferative Activity of Phycocolloids from the Red Seaweed Laurencia Papillosa on MCF-7 Human Breast Cancer Cells. Int. J. Biol. Macromol. 2018, 108, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Khotimchenko, M.; Tiasto, V.; Kalitnik, A.; Begun, M.; Khotimchenko, R.; Leonteva, E.; Bryukhovetskiy, I.; Khotimchenko, Y. Antitumor Potential of Carrageenans from Marine Red Algae. Carbohydr. Polym. 2020, 246, 116568. [Google Scholar] [CrossRef] [PubMed]
- Anand, J.; Sathuvan, M.; Babu, G.V.; Sakthivel, M.; Palani, P.; Nagaraj, S. Bioactive Potential and Composition Analysis of Sulfated Polysaccharide from Acanthophora spicifera (Vahl) Borgeson. Int. J. Biol. Macromol. 2018, 111, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, U.; Velusamy, S.; Devaraj, N.S. Cytotoxicity and Apoptosis of Human Colon Carcinoma Cell Line (HT29 Cells), Treated with Methanolic Extract of Chlorococcum Humicola. In Biotechnological Applications in Human Health; Springer: Singapore, 2020; pp. 39–44. [Google Scholar]
- Ryu, M.J.; Kim, A.D.; Kang, K.A.; Chung, H.S.; Kim, H.S.; Suh, I.S.; Chang, W.Y.; Hyun, J.W. The Green Algae Ulva fasciata Delile Extract Induces Apoptotic Cell Death in Human Colon Cancer Cells. In Vitro Cell Dev. Biol. Anim. 2013, 49, 74–81. [Google Scholar] [CrossRef]
- Al Monla, R.; Dassouki, Z.; Kouzayha, A.; Salma, Y.; Gali-Muhtasib, H.; Mawlawi, H. The Cytotoxic and Apoptotic Effects of the Brown Algae Colpomenia sinuosa Are Mediated by the Generation of Reactive Oxygen Species. Molecules 2020, 25, 1993. [Google Scholar] [CrossRef]
- Leiro, J.M.; Castro, R.; Arranz, J.A.; Lamas, J. Immunomodulating Activities of Acidic Sulphated Polysaccharides Obtained from the Seaweed Ulva rigida C. Agardh. Int. Immunopharmacol. 2007, 7, 879–888. [Google Scholar] [CrossRef]
- Barbalace, M.C.; Malaguti, M.; Giusti, L.; Lucacchini, A.; Hrelia, S.; Angeloni, C. Anti-Inflammatory Activities of Marine Algae in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 3061. [Google Scholar] [CrossRef]
- Olasehinde, T.; Olaniran, A.; Okoh, A. Therapeutic Potentials of Microalgae in the Treatment of Alzheimer’s Disease. Molecules 2017, 22, 480. [Google Scholar] [CrossRef]
- Miguel, S.P.; Ribeiro, M.P.; Otero, A.; Coutinho, P. Application of Microalgae and Microalgal Bioactive Compounds in Skin Regeneration. Algal Res. 2021, 58, 102395. [Google Scholar] [CrossRef]
- Ognistaia, A.V.; Markina, Z.V.; Orlova, T.Y. Antimicrobial Activity of Marine Microalgae. Russ. J. Mar. Biol. 2022, 48, 217–230. [Google Scholar] [CrossRef]
- Wong, J.F.; Hong, H.J.; Foo, S.C.; Yap, M.K.K.; Tan, J.W. A Review on Current and Future Advancements for Commercialized Microalgae Species. Food Sci. Hum. Wellness 2022, 11, 1156–1170. [Google Scholar] [CrossRef]
- Shannon, E.; Abu-Ghannam, N. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications. Mar. Drugs 2016, 14, 81. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.Y.; Liao, W.R.; Huang, R.; Lin, L.P. Haemagglutinating and Antibiotic Activities of Freshwater Microalgae. World J. Microbiol. Biotechnol. 2004, 20, 817–825. [Google Scholar] [CrossRef]
- Frazzini, S.; Scaglia, E.; Dell’Anno, M.; Reggi, S.; Panseri, S.; Giromini, C.; Lanzoni, D.; Sgoifo Rossi, C.A.; Rossi, L. Antioxidant and Antimicrobial Activity of Algal and Cyanobacterial Extracts: An In Vitro Study. Antioxidants 2022, 11, 992. [Google Scholar] [CrossRef]
- Dell’Anno, M.; Sotira, S.; Rebucci, R.; Reggi, S.; Castiglioni, B.; Rossi, L. In Vitro Evaluation of Antimicrobial and Antioxidant Activities of Algal Extracts. Ital. J. Anim. Sci. 2020, 19, 103–113. [Google Scholar] [CrossRef]
- Wong, B.T.; Park, S.; Kovanda, L.; He, Y.; Kim, K.; Xu, S.; Lingga, C.; Hejna, M.; Wall, E.; Sripathy, R.; et al. Dietary Supplementation of Botanical Blends Enhanced Performance and Disease Resistance of Weaned Pigs Experimentally Infected with Enterotoxigenic Escherichia Coli F18. J. Anim. Sci. 2022, 100, skac353. [Google Scholar] [CrossRef]
- Rodrigues, D.; Alves, C.; Horta, A.; Pinteus, S.; Silva, J.; Culioli, G.; Thomas, O.; Pedrosa, R. Antitumor and Antimicrobial Potential of Bromoditerpenes Isolated from the Red Alga, Sphaerococcus coronopifolius. Mar. Drugs 2015, 13, 713–726. [Google Scholar] [CrossRef]
- Beaulieu, L.; Bondu, S.; Doiron, K.; Rioux, L.-E.; Turgeon, S.L. Characterization of Antibacterial Activity from Protein Hydrolysates of the Macroalga Saccharina longicruris and Identification of Peptides Implied in Bioactivity. J. Funct. Foods 2015, 17, 685–697. [Google Scholar] [CrossRef]
- Corino, C.; Modina, S.C.; Di Giancamillo, A.; Chiapparini, S.; Rossi, R. Seaweeds in Pig Nutrition. Animals 2019, 9, 1126. [Google Scholar] [CrossRef]
- Berri, M.; Slugocki, C.; Olivier, M.; Helloin, E.; Jacques, I.; Salmon, H.; Demais, H.; Le Goff, M.; Collen, P.N. Marine-Sulfated Polysaccharides Extract of Ulva armoricana Green Algae Exhibits an Antimicrobial Activity and Stimulates Cytokine Expression by Intestinal Epithelial Cells. J. Appl. Phycol. 2016, 28, 2999–3008. [Google Scholar] [CrossRef]
- Mcelwain, T.F.; Thumbi, S.M. Animal Pathogens and Their Impact on Animal Health, the Economy, Food Security, Food Safety and Public Health. Rev. Sci. Tech. 2017, 36, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Niemi, J.K. The Economic Cost of Bacterial Infections. In Advancements and Technologies in Pig and Poultry Bacterial Disease Control; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–23. [Google Scholar]
- Hejna, M.; Dell’Anno, M.; Liu, Y.; Rossi, L.; Aksmann, A.; Pogorzelski, G.; Jóźwik, A. Assessment of the Antibacterial and Antioxidant Activities of Seaweed-Derived Extracts. Sci. Rep. 2024, 14, 21044. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, S.; Mazumdar, A.; Moulick, A.; Adam, V. Algal Metabolites: An Inevitable Substitute for Antibiotics. Biotechnol. Adv. 2020, 43, 107571. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.D.; Wright, G.D. Antibacterial Drug Discovery in the Resistance Era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Santoyo, S.; Rodríguez-Meizoso, I.; Cifuentes, A.; Jaime, L.; García-Blairsy Reina, G.; Señorans, F.J.; Ibáñez, E. Green Processes Based on the Extraction with Pressurized Fluids to Obtain Potent Antimicrobials from Haematococcus pluvialis Microalgae. LWT Food Sci. Technol. 2009, 42, 1213–1218. [Google Scholar] [CrossRef]
- Syed, S.; Arasu, A.; Ponnuswamy, I. The Uses of Chlorella vulgaris as Antimicrobial Agent and as a Diet: The Presence of Bio-Active Compounds Which Caters the Vitamins, Minerals in General. Int. J. Bio-Sci. Bio-Technol. 2015, 7, 185–190. [Google Scholar] [CrossRef]
- Molina-Cárdenas, C.A.; Sánchez-Saavedra, M.d.P.; Lizárraga-Partida, M.L. Inhibition of Pathogenic Vibrio by the Microalgae Isochrysis galbana. J. Appl. Phycol. 2014, 26, 2347–2355. [Google Scholar] [CrossRef]
- Herrero, M.; Ibáñez, E.; Cifuentes, A.; Reglero, G.; Santoyo, S. Dunaliella salina Microalga Pressurized Liquid Extracts as Potential Antimicrobials. J. Food Prot. 2006, 69, 2471–2477. [Google Scholar] [CrossRef]
- Catarina Guedes, A.; Barbosa, C.R.; Amaro, H.M.; Pereira, C.I.; Xavier Malcata, F. Microalgal and Cyanobacterial Cell Extracts for Use as Natural Antibacterial Additives against Food Pathogens. Int. J. Food Sci. Technol. 2011, 46, 862–870. [Google Scholar] [CrossRef]
- Desbois, A.P.; Mearns-Spragg, A.; Smith, V.J. A Fatty Acid from the Diatom Phaeodactylum tricornutum Is Antibacterial against Diverse Bacteria Including Multi-Resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 2009, 11, 45–52. [Google Scholar] [CrossRef]
- Bai, V.D.M.; Krishnakumar, S. Evaluation of Antimicrobial Metabolites from Marine Microalgae Tetraselmis suecica Using Gas Chromatography–Mass Spectrometry (GC–MS) Analysis. Int. J. Pharm. Pharm. Sci. 2013, 5, 17–23. [Google Scholar]
- Menaa, F.; Wijesinghe, U.; Thiripuranathar, G.; Althobaiti, N.A.; Albalawi, A.E.; Khan, B.A.; Menaa, B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Mar. Drugs 2021, 19, 484. [Google Scholar] [CrossRef] [PubMed]
- Abu-Ghannam, N.; Rajauria, G. Antimicrobial Activity of Compounds Isolated from Algae. In Functional Ingredients from Algae for Foods and Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2013; pp. 287–306. [Google Scholar]
- Karpiński, T.M.; Adamczak, A. Fucoxanthin—An Antibacterial Carotenoid. Antioxidants 2019, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.L.; Stout, E.P.; Lin, A.-S.; Prudhomme, J.; Le Roch, K.; Fairchild, C.R.; Franzblau, S.G.; Hay, M.E.; Aalbersberg, W.; Kubanek, J. Antimalarial Bromophycolides J–Q from the Fijian Red Alga Callophycus serratus. J. Org. Chem. 2009, 74, 2736–2742. [Google Scholar] [CrossRef] [PubMed]
- Bassols, A.; Costa, C.; Eckersall, P.D.; Osada, J.; Sabrià, J.; Tibau, J. The Pig as an Animal Model for Human Pathologies: A Proteomics Perspective. Proteom. Clin. Appl. 2014, 8, 715–731. [Google Scholar] [CrossRef] [PubMed]
- Meurens, F.; Summerfield, A.; Nauwynck, H.; Saif, L.; Gerdts, V. The Pig: A Model for Human Infectious Diseases. Trends Microbiol. 2012, 20, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Walters, E.M.; Wells, K.D.; Bryda, E.C.; Schommer, S.; Prather, R.S. Swine Models, Genomic Tools and Services to Enhance Our Understanding of Human Health and Diseases. Lab. Anim. 2017, 46, 167–172. [Google Scholar] [CrossRef]
- Walters, E.M.; Prather, R.S. Advancing Swine Models for Human Health and Diseases. Mo. Med. 2013, 110, 212–215. [Google Scholar]
- Rose, E.C.; Blikslager, A.T.; Ziegler, A.L. Porcine Models of the Intestinal Microbiota: The Translational Key to Understanding How Gut Commensals Contribute to Gastrointestinal Disease. Front. Vet. Sci. 2022, 9, 834598. [Google Scholar] [CrossRef]
- Singh, V.K.; Thrall, K.D.; Hauer-Jensen, M. Minipigs as Models in Drug Discovery. Expert Opin. Drug Discov. 2016, 11, 1131–1134. [Google Scholar] [CrossRef]
- Kleinert, M.; Clemmensen, C.; Hofmann, S.M.; Moore, M.C.; Renner, S.; Woods, S.C.; Huypens, P.; Beckers, J.; de Angelis, M.H.; Schürmann, A.; et al. Animal Models of Obesity and Diabetes Mellitus. Nat. Rev. Endocrinol. 2018, 14, 140–162. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Rettenmeier, A.W.; Schmitz-Spanke, S. Recent Advances in the Use of Sus scrofa (Pig) as a Model System for Proteomic Studies. Proteomics 2011, 11, 776–793. [Google Scholar] [CrossRef] [PubMed]
- Osada, H.; Murata, K.; Masumoto, H. Large Animal Models in Cardiovascular Research. In Animal Models and Experimental Research in Medicine; IntechOpen: London, UK, 2023. [Google Scholar]
- Babich, O.; Sukhikh, S.; Larina, V.; Kalashnikova, O.; Kashirskikh, E.; Prosekov, A.; Noskova, S.; Ivanova, S.; Fendri, I.; Smaoui, S.; et al. Algae: Study of Edible and Biologically Active Fractions, Their Properties and Applications. Plants 2022, 11, 780. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, E.A. Algae as Promising Organisms for Environment and Health. Plant Signal. Behav. 2011, 6, 1338–1350. [Google Scholar] [CrossRef]
- Kim, K.; Ehrlich, A.; Perng, V.; Chase, J.A.; Raybould, H.; Li, X.; Atwill, E.R.; Whelan, R.; Sokale, A.; Liu, Y. Algae-Derived β-Glucan Enhanced Gut Health and Immune Responses of Weaned Pigs Experimentally Infected with a Pathogenic E. coli. Anim. Feed. Sci. Technol. 2019, 248, 114–125. [Google Scholar] [CrossRef]
- Manor, M.L.; Kim, J.; Derksen, T.J.; Schwartz, R.L.; Roneker, C.A.; Bhatnagar, R.S.; Lei, X.G. Defatted Microalgae Serve as a Dual Dietary Source of Highly Bioavailable Iron and Protein in an Anemic Pig Model. Algal Res. 2017, 26, 409–414. [Google Scholar] [CrossRef]
- Smith, A.G.; O’Doherty, J.V.; Reilly, P.; Ryan, M.T.; Bahar, B.; Sweeney, T. The Effects of Laminarin Derived from Laminaria digitata on Measurements of Gut Health: Selected Bacterial Populations, Intestinal Fermentation, Mucin Gene Expression and Cytokine Gene Expression in the Pig. Br. J. Nutr. 2011, 105, 669–677. [Google Scholar] [CrossRef]
- Zheng, L.-X.; Chen, X.-Q.; Cheong, K.-L. Current Trends in Marine Algae Polysaccharides: The Digestive Tract, Microbial Catabolism, and Prebiotic Potential. Int. J. Biol. Macromol. 2020, 151, 344–354. [Google Scholar] [CrossRef]
- Shannon, E.; Conlon, M.; Hayes, M. Seaweed Components as Potential Modulators of the Gut Microbiota. Mar. Drugs 2021, 19, 358. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, F.; Zhang, J.; Wang, W.; Li, L.; Yan, J. Modulatory Effects of Polysaccharides from Plants, Marine Algae and Edible Mushrooms on Gut Microbiota and Related Health Benefits: A Review. Int. J. Biol. Macromol. 2022, 204, 169–192. [Google Scholar] [CrossRef]
- Cheong, K.-L.; Yu, B.; Chen, J.; Zhong, S. A Comprehensive Review of the Cardioprotective Effect of Marine Algae Polysaccharide on the Gut Microbiota. Foods 2022, 11, 3550. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, N.M.; Nagahawatta, D.P.; Jayawardena, T.U.; Jeon, Y.-J. The Role of Seaweed Polysaccharides in Gastrointestinal Health: Protective Effect against Inflammatory Bowel Disease. Life 2023, 13, 1026. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Bhaiyya, R.; Khandare, K.; Tingirikari, J.M.R. Macroalgal Dietary Glycans: Potential Source for Human Gut Bacteria and Enhancing Immune System for Better Health. Crit. Rev. Food Sci. Nutr. 2022, 62, 1674–1695. [Google Scholar] [CrossRef] [PubMed]
Bioactive Ingredients | Algae Species | Bioactive Agent | Effect of the Bioactive Compounds | Cytotoxicity | Reference |
---|---|---|---|---|---|
Microalgae | |||||
Lipids/pigments | Nostoc commune var. sphaeroides | Free fatty acids, triacylglycerol, wax esters/steryl esters, and moreover pigments. | Inhibition NF-κB DNA binding activity. | Non-cytotoxic in the tested range (25–200 μg/mL). | [23,29] |
Dunaliella salina | Carotenoids (all-trans forms of α-carotene, β-carotene, lutein, and zeaxanthin, 13- or 13′-cis-β-carotene, 9- or 9′-cis-α-carotene, and 9- or 9′-cis-β-carotene). | Reduction of IkBα phosphorylation. Reduction of p50 but not p65 translocations. | Cytotoxic effect above 50 μM. | [55] | |
Haematoccus pluvialis | Carotenoids (astaxanthin). | Reduction of p65 translocation to the nucleus. | - | [46] | |
Polysaccharide | Coccomyxa gloeobotrydiform | Not mentioned. | Inhibition of NF-κB p65 phosphorylation, inhibition of phosphorylation of MAPK molecules including p38, JNK, and ERK1/2. | Non-cytotoxic in the tested range (2 or 4 mg/mL as determined by LDH release assay). | [4] |
Macroalgae | |||||
Lipids/pigments | Porphyra dioica Palmaria palmata Chondrus crispus Pavlova lutheri (microalga) | n-3 PUFA and pigments (chlorophyll a, β-carotene). | Downregulation of the expression of 14 pro-inflammatory genes (TLR1, TLR2, TLR4, TLR8, TRAF5, TRAF6, TNFSF18, IL6R, IL23, CCR1, CCR4, CCL17, STAT3, MAP3K1) indicating inhibition of the signaling pathways mediated via toll-like receptors, chemokines, and NF-κB. | Non-cytotoxic in the tested range. | [40] |
Phenols | Ecklonia cava | Phloroglucinol derivatives. | Inhibition of expression of phosphorylated proteins JNK, ERK, and p38. | Cytotoxic effect above 50 μM. | [43] |
Ecklonia stolonifera | Phlorotannins (phlorofucofuroeckol A). | Inhibition of JNK phosphorylation. Inhibition of AP-1 activity. Inhibition of expression of Fas-mediated apoptotic proteins including Fas ligand, cleaved caspase-8, cleaved caspase-3. | - | [28,56] | |
Polysaccharide | Gelidium crinale | Glycans (sulfated polysaccharides). | Inhibition of p38, JNN, and ERK phosphorylation. Inhibition of p65 and IkBα translocation. | Non-cytotoxic in the tested range (1–1000 μg/mL). | [57] |
Ascophyllum nodosum | Ascophyllan (sulfated polysaccharide). | Increased nuclear translocation of p65 and phosphorylation and degradation of IκB-α. Increase in the phosphorylated levels of ERK, p38, and JNK. | No significant cytotoxic effects up to 1000 μg/mL. | [50] | |
Sargassum horneri | Fucoidan (sulfated polysaccharide). | Inhibition of p50 and p65 translocation. Inhibition of p38 and ERK activation. | Non-cytotoxicity in the range of 12.5 μg to 50.0 μg. | [58] | |
Saccharina japonica | Fucoidan (sulfated polysaccharide). | Inhibition of phosphorylation and proteolytic degradation of cytoplasmic IKK-α, IκB-α, p50, and p65. Suppression of ERK1/2, JNK, and p38 MAP phosphorylation. | Non-cytotoxicity in the range of up to 200 μg/mL. | [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matin, M.; Koszarska, M.; Atanasov, A.G.; Król-Szmajda, K.; Jóźwik, A.; Stelmasiak, A.; Hejna, M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules 2024, 29, 4695. https://doi.org/10.3390/molecules29194695
Matin M, Koszarska M, Atanasov AG, Król-Szmajda K, Jóźwik A, Stelmasiak A, Hejna M. Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules. 2024; 29(19):4695. https://doi.org/10.3390/molecules29194695
Chicago/Turabian StyleMatin, Maima, Magdalena Koszarska, Atanas G. Atanasov, Karolina Król-Szmajda, Artur Jóźwik, Adrian Stelmasiak, and Monika Hejna. 2024. "Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects" Molecules 29, no. 19: 4695. https://doi.org/10.3390/molecules29194695
APA StyleMatin, M., Koszarska, M., Atanasov, A. G., Król-Szmajda, K., Jóźwik, A., Stelmasiak, A., & Hejna, M. (2024). Bioactive Potential of Algae and Algae-Derived Compounds: Focus on Anti-Inflammatory, Antimicrobial, and Antioxidant Effects. Molecules, 29(19), 4695. https://doi.org/10.3390/molecules29194695