Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,705)

Search Parameters:
Keywords = lipid parameters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1337 KB  
Article
Dynamic Imaging of Lipid Order and Heterogeneous Microviscosity in Mitochondrial Membranes of Potato Tubers Under Abiotic Stress
by Vadim N. Nurminsky, Svetlana I. Shamanova, Olga I. Grabelnych, Natalia V. Ozolina, Yuguang Wang and Alla I. Perfileva
Membranes 2025, 15(10), 302; https://doi.org/10.3390/membranes15100302 - 6 Oct 2025
Abstract
Microviscosity and lipid order are the main parameters characterizing the phase states of the membrane. Variations in microviscosity and lipid composition in a living cell may indicate serious disturbances, including various kinds of stress. In this work, the effect of hyperosmotic stress on [...] Read more.
Microviscosity and lipid order are the main parameters characterizing the phase states of the membrane. Variations in microviscosity and lipid composition in a living cell may indicate serious disturbances, including various kinds of stress. In this work, the effect of hyperosmotic stress on the microviscosity of mitochondrial membranes was investigated, using potato (Solanum tuberosum L.) tuber mitochondria. The microviscosity of mitochondrial membranes isolated from check and stressed (9 days at 34–36 °C) tubers was estimated by determining the generalized polarization (GP) values using a Laurdan fluorescent probe in confocal microscopy studies. It was revealed that the GP distribution in mitochondria isolated from stressed tubers contained new component-characterizing membrane domains with an increased lipid order compared to the rest of the membrane. We have mapped the microviscosity of mitochondrial membranes for the first time and observed the dynamics of the membrane microviscosity of an individual mitochondrion. The hyperosmotic stress significantly influences the functional state of potato mitochondria, decreasing the substrate oxidation rate and respiratory control coefficient but increasing MitoTracker Orange fluorescence. Under hyperosmotic stress, the microviscosity of mitochondrial membranes changes, and membrane domains with increased lipid order are formed. The revealed changes open up prospects for further research on the participation of raft-like microdomains of mitochondria in plant resistance to stress factors. Full article
(This article belongs to the Special Issue Composition and Biophysical Properties of Lipid Membranes)
Show Figures

Figure 1

22 pages, 794 KB  
Article
The Effect of a Multi-Component Plant Supplement on the Nutritional Value of Meat Patties
by Gulnur Nurymkhan, Zhanar Kalibekkyzy, Duman Orynbekov, Bakhytkul Assenova, Aray Kambarova, Assel Dautova, Aigul Maizhanova, Gulnara Zhumanova, Zhibek Atambayeva and Eleonora Okuskhanova
Processes 2025, 13(10), 3171; https://doi.org/10.3390/pr13103171 - 6 Oct 2025
Abstract
Growing consumer demand for healthier meat products with clean-label ingredients has increased interest in plant-based fortification strategies. The present study evaluated the effects of a multicomponent cereal supplement comprising rice (35%), buckwheat (20%), oats (20%), and corn (25%) on the physicochemical, functional, oxidative, [...] Read more.
Growing consumer demand for healthier meat products with clean-label ingredients has increased interest in plant-based fortification strategies. The present study evaluated the effects of a multicomponent cereal supplement comprising rice (35%), buckwheat (20%), oats (20%), and corn (25%) on the physicochemical, functional, oxidative, hydrolytic, and sensory properties of meat patties. Four formulations were prepared with 0% (control), 5%, 10%, and 15% supplement inclusion. At higher inclusion levels of the cereal supplement, the patties showed reduced moisture, protein, and fat contents, while ash and carbohydrate levels increased. Conversely, ash content increased from 1.38% to 2.82%, and carbohydrates rose to 8.99%. pH remained stable (5.92–6.04), whereas aw decreased significantly at 10% (0.921) and 15% (0.889) inclusion (p < 0.05). Functional tests showed dose-dependent improvements in water-binding capacity, which increased from 65.98% in the control to 71.58% at 10% supplement, and in fat retention, which rose from 38.3% to 54.14% under the same conditions, with optimal performance observed at 10% inclusion. TBARS values in 10% and 15% formulations were 13–20% lower than control throughout storage (p < 0.05). The increase in acid number was significantly slower in supplemented patties, indicating that the cereal blend effectively inhibited lipid hydrolysis during storage. Sensory evaluation revealed maximal acceptability at 10% inclusion, with declines at 15% due to grainy texture and flavor dilution. These findings establish 10% multicomponent cereal supplementation as a promising strategy to enhance yield, shelf-life stability, and consumer appeal of meat patties without compromising processing parameters. Full article
17 pages, 776 KB  
Article
Linking Gastroesophageal Reflux Characteristics to Airway Inflammation: Insights from Bronchoalveolar Lavage Cytology in Severe Preschool Wheeze
by Ivan Pavić, Iva Topalušić, Ana Močić Pavić, Roberta Šarkanji Golub, Ozana Hofman Jaeger and Iva Hojsak
Life 2025, 15(10), 1561; https://doi.org/10.3390/life15101561 - 6 Oct 2025
Abstract
Background: Gastroesophageal reflux disease (GERD) has been implicated in recurrent wheezing, but mechanisms and diagnostic markers remain debated. Multichannel intraluminal impedance-pH (MII-pH) monitoring improves reflux detection compared to pH-metry, while bronchoalveolar lavage (BAL) cytology may provide evidence of aspiration-related airway inflammation. Objectives: This [...] Read more.
Background: Gastroesophageal reflux disease (GERD) has been implicated in recurrent wheezing, but mechanisms and diagnostic markers remain debated. Multichannel intraluminal impedance-pH (MII-pH) monitoring improves reflux detection compared to pH-metry, while bronchoalveolar lavage (BAL) cytology may provide evidence of aspiration-related airway inflammation. Objectives: This study aims to examine the relationship between reflux characteristics, BAL cytology and clinical outcomes in preschool children with severe recurrent wheeze. Methods: Preschool-aged children undergoing combined MII-pH and bronchoscopy for severe recurrent wheeze were included. BAL samples were assessed for lipid-laden macrophages (LLM). Associations between reflux parameters, BAL cytology and response to antireflux treatment were analysed. Results: GERD was identified in 70% of participants, with weakly acidic and proximal reflux episodes predominating. Children with GERD exhibited significantly higher percentages of LLM compared with those without GERD (12% vs. 1%, p < 0.001). LLM percentage correlated with multiple reflux characteristics, including weakly acidic, liquid and proximal reflux (p < 0.047; p < 0.047 and p < 0.047, respectively), as well as symptom indices (p < 0.001). Following antireflux therapy, wheezing episodes were substantially reduced. Conclusions: GERD, particularly weakly acidic and proximal reflux, is associated with airway inflammation and recurrent wheeze in preschool children. BAL LLM percentage may serve as a surrogate marker of reflux-related microaspiration. MII-pH monitoring enhances diagnostic accuracy beyond pH-metry and may help guide targeted antireflux interventions. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

20 pages, 1119 KB  
Article
Metabolic and Inflammatory Adipokine Profiles in PCOS: A Focus on Adiposity, Insulin Resistance, and Atherogenic Risk
by Daniela Koleva-Tyutyundzhieva, Maria Ilieva-Gerova, Tanya Deneva and Maria Orbetzova
Int. J. Mol. Sci. 2025, 26(19), 9702; https://doi.org/10.3390/ijms26199702 - 5 Oct 2025
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder connected with insulin resistance (IR), low-grade inflammation, dyslipidemia, and altered adipokine secretion. We evaluated serum levels of leptin, adiponectin, visfatin, resistin, IL-6, and TNF-α in 150 women with PCOS, stratified by IR status (IR, [...] Read more.
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder connected with insulin resistance (IR), low-grade inflammation, dyslipidemia, and altered adipokine secretion. We evaluated serum levels of leptin, adiponectin, visfatin, resistin, IL-6, and TNF-α in 150 women with PCOS, stratified by IR status (IR, n = 76; non-IR, n = 74), and examined their associations with anthropometric, metabolic, hormonal, inflammatory, and atherogenic parameters. Anthropometric data included body weight, height, BMI, waist circumference, and waist-to-height ratio (WHtR), while IR was assessed using HOMA-IR and the Matsuda index. Serum adipokines were measured using ELISA, and lipid parameters and atherogenic indices—including non-HDL cholesterol, AIP, leptin/adiponectin, and adiponectin/resistin ratios—were calculated. Women with IR had higher levels of leptin, visfatin, resistin, and TNF-α, and lower levels of adiponectin. Leptin correlated positively with weight, WHtR, HOMA-IR, and atherogenic indices. Adiponectin showed the strongest and most consistent associations with anthropometric indices, HOMA-IR, and the Matsuda index. Resistin was linked to IR indices and IL-6, and visfatin correlated negatively with HDL-C and insulin sensitivity. In a multivariate general linear model, WHtR, but not HOMA-IR, remained independently associated with higher leptin levels and with atherogenic indices. These findings suggest that in PCOS, central adiposity rather than IR explains a substantial part of the adverse adipokine and inflammatory profile, thereby contributing to elevated cardiometabolic risk and highlighting the need for targeted treatment strategies. Full article
17 pages, 609 KB  
Article
Portulaca oleracea as a Functional Ingredient in Organic Cooked Frankfurters: A Sustainable Approach to Shelf-Life Extension and Oxidative Stability Without Synthetic Nitrites
by Kadyrzhan Makangali, Gulnazym Ospankulova, Gulzhan Tokysheva, Aknur Muldasheva and Kalamkas Dairova
Processes 2025, 13(10), 3167; https://doi.org/10.3390/pr13103167 - 5 Oct 2025
Abstract
Consumer demand for organic and nitrite-free meat products has stimulated the search for sustainable alternatives to synthetic curing agents. Conventional nitrites are effective in stabilizing color, inhibiting lipid oxidation, and suppressing pathogens, but their use raises health concerns due to potential nitrosamine formation. [...] Read more.
Consumer demand for organic and nitrite-free meat products has stimulated the search for sustainable alternatives to synthetic curing agents. Conventional nitrites are effective in stabilizing color, inhibiting lipid oxidation, and suppressing pathogens, but their use raises health concerns due to potential nitrosamine formation. This study investigated the application of Portulaca oleracea powder as a multifunctional ingredient to fully replace sodium nitrite in organic cooked frankfurters. Two formulations were produced: control frankfurters with sodium nitrite and experimental frankfurters with purslane powder 1.2%. Physicochemical, oxidative, proteomic, and antioxidant parameters were monitored during refrigerated storage. Purslane incorporation improved the lipid profile by increasing α-linolenic acid and lowering the ω-6/ω-3 ratio, while peroxide, thiobarbituric acid reactive substances (TBARS), and acid values remained significantly lower than in nitrite-containing controls after 10 days. Protein oxidation was also reduced, and SDS-PAGE profiles confirmed that the major structural muscle proteins remained stable, indicating that purslane addition did not disrupt the core proteome. Antioxidant assays showed strong ferric-reducing antioxidant power (FRAP) activity 13.7 mg GAE/g and enhanced 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity 22.3%, highlighting purslane’s contribution to oxidative stability. Although redness (a*) was lower than in nitrite controls, overall color stability (L*, b*) remained high. Taken together, purslane enhanced oxidative stability and quality attributes of nitrite-free organic frankfurters; microbiological validation is ongoing and will be reported separately. Full article
(This article belongs to the Special Issue Development of Innovative Processes in Food Engineering)
24 pages, 6712 KB  
Article
Biomarkers Characterizing the Onset of Dietary-Induced Hepatocellular Injury and Visceral Obesity in a Rat Experimental Model: Possible Anti-Inflammatory Effects of Steviol Glycosides
by Krastina Trifonova, Penka Yonkova and Petko Dzhelebov
Metabolites 2025, 15(10), 656; https://doi.org/10.3390/metabo15100656 - 4 Oct 2025
Abstract
Background: The aim of the present study is to compare the potential of a high-fat diet, a high-carbohydrate diet, and a high-fat, high-carbohydrate diet to induce liver injury and visceral obesity within a period of five weeks, identify the pattern and degree of [...] Read more.
Background: The aim of the present study is to compare the potential of a high-fat diet, a high-carbohydrate diet, and a high-fat, high-carbohydrate diet to induce liver injury and visceral obesity within a period of five weeks, identify the pattern and degree of hepatic changes at the tissue level, identify the earliest metabolic markers of specific liver changes induced by each type of diet, and to test the possible beneficial effects of steviol glycosides in a rat experimental model. Methods: Wistar rats (n = 56) were divided into seven groups as follows: group BD (before diet), group SD (standard diet), group HFD (high-fat diet), group HCHD (high-carbohydrate diet), group HFHCHD (high-fat high-carbohydrate diet), group SDS (standard diet supplemented with Stevia extract), and group HFDS (high-fat diet supplemented with Stevia extract). Results: Total cholesterol concentrations (2.02 ± 0.22 mmol/L) increased in the HFD group (2.56 ± 0.82 mmol/L) and in the HFDS group (2.89 ± 0.48 mmol/L). The VLDL values before diets were 0.27 ± 0.11 mmol/L and increased most significantly in the HFHCHD group—1.14 ± 0.62 mmol/L. The baseline ALT values (88.4 ± 10.6 U/L) increased in the HFD group (128.13 ± 19.5 U/L) and the HFDS group (127.00 ± 17.74 U/L). Similar increases were registered in the AST/ALT ratio and ALP. Total bilirubin (7.10 ± 1.39 μmol/L) increased in HFD group (27.86 ± 17.01 μmol/L). Serum NO had the lowest values in groups fed diets supplemented with steviol glycosides. All high-calorie diets induced hepatocellular injury. The mass of the perirenal fat depot and cross-sectional area of adipocytes were highest in HFD, HFHCHD, and HFDS groups. Conclusion: High-calorie diets have the potential to induce visceral obesity and hepatocellular injury within a very short period of time, which produces characteristic histological changes and specific biochemical profile. Steviol glycosides may alleviate some aspects of the inflammatory response, but findings about lipid profile parameters and liver enzymes are controversial. Full article
(This article belongs to the Special Issue Metabolic Changes in Diet-Mediated Inflammatory Diseases)
Show Figures

Figure 1

24 pages, 3937 KB  
Article
Chronic Administration of Calendula officinalis Ethanolic Extract Mitigates Anxiety-like Behavior and Cognitive Impairment Induced by Acute Scopolamine Exposure in Zebrafish
by Lucia-Florina Popovici, Ion Brinza, Simona Oancea and Lucian Hritcu
Pharmaceuticals 2025, 18(10), 1483; https://doi.org/10.3390/ph18101483 - 2 Oct 2025
Abstract
Background/Objectives: Scopolamine (SCO) is widely employed as a pharmacological model of anxiety and amnesia in both rodents and zebrafish, the latter representing a valuable translational model in neuropsychopharmacology. The present study aimed to evaluate the neuroprotective and antioxidant potential of chronic administration of [...] Read more.
Background/Objectives: Scopolamine (SCO) is widely employed as a pharmacological model of anxiety and amnesia in both rodents and zebrafish, the latter representing a valuable translational model in neuropsychopharmacology. The present study aimed to evaluate the neuroprotective and antioxidant potential of chronic administration of an ethanolic extract from Calendula officinalis flowers (CEE). Methods: Adult zebrafish (n = 10/group, both sexes) were exposed to CEE at concentrations of 1, 3, and 10 mg/L, administered daily for 22 consecutive days. After the initial 7-day pretreatment period, fish were challenged with SCO (100 μM, immersion for 30 min) followed by behavioral testing, including the Novel Tank Diving Test, Light/Dark Test, Novel Approach Test, Y-Maze, and Novel Object Recognition. Subsequently, brain homogenates were analyzed for acetylcholinesterase (AChE) activity, antioxidant enzymes (superoxide dismutase—SOD, catalase—CAT, glutathione peroxidase—GPx), reduced glutathione (GSH), protein carbonyls, and malondialdehyde (MDA). Results: Chronic CEE administration significantly attenuated scopolamine-induced anxiety-like behaviors and improved spatial memory (Y-maze) and recognition memory (NOR), as well as reduced anxiety-like behavior in the SCO-induced zebrafish model. Biochemical analyses revealed that CEE restored AChE activity, enhanced the activity of SOD, CAT, and GPx, and increased GSH levels, while concomitantly reducing protein oxidation and lipid peroxidation. The most pronounced effects were observed at 3 mg/L, which nearly normalized both behavioral and biochemical parameters. Conclusions: The CEE exerted anxiolytic and procognitive effects in zebrafish through combined cholinergic and antioxidant mechanisms. These findings highlight its translational potential as a promising candidate for the prevention and treatment of anxiety-related and cognitive disorders. Full article
Show Figures

Graphical abstract

14 pages, 1065 KB  
Article
The Association Between Naples Prognostic Score and Coronary Collateral Circulation in Patients with Chronic Coronary Total Occlusion
by Abdullah Tunçez, Sevil Bütün, Kadri Murat Gürses, Hüseyin Tezcan, Aslıhan Merve Toprak Su, Burak Erdoğan, Mustafa Kırmızıgül, Muhammed Ulvi Yalçın, Yasin Özen, Kenan Demir, Nazif Aygül and Bülent Behlül Altunkeser
Diagnostics 2025, 15(19), 2500; https://doi.org/10.3390/diagnostics15192500 - 1 Oct 2025
Abstract
Background: Coronary collateral circulation (CCC) plays a crucial protective role in patients with chronic total occlusion (CTO), mitigating ischemia and improving long-term outcomes. However, the degree of collateral vessel development varies substantially among individuals. Systemic inflammatory and nutritional status may influence this variability. [...] Read more.
Background: Coronary collateral circulation (CCC) plays a crucial protective role in patients with chronic total occlusion (CTO), mitigating ischemia and improving long-term outcomes. However, the degree of collateral vessel development varies substantially among individuals. Systemic inflammatory and nutritional status may influence this variability. The Naples Prognostic Score (NPS) is a composite index reflecting these parameters, yet its relationship with CCC remains incompletely defined. Methods: We retrospectively analyzed 324 patients with angiographically confirmed CTO at Selçuk University Faculty of Medicine between 2014 and 2025. Coronary collaterals were graded using the Rentrop classification, and patients were categorized as having poor (grades 0–1) or good (grades 2–3) collaterals. The NPS was calculated using serum albumin, cholesterol, neutrophil-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio. Baseline clinical and laboratory data were compared between groups. Univariate and multiple binary logistic regression analyses were performed to identify independent predictors of collateral development. Results: Of the 324 patients, 208 (64.2%) had poor and 116 (35.8%) had good collateral circulation. Patients with good collaterals had higher body mass index, HDL Cholesterol (HDL-C), and triglyceride levels, and significantly lower NPS values compared with those with poor collaterals (p < 0.05 for all). In multiple binary logistic regression analysis, HDL-C (OR 1.035; 95% CI 1.008–1.063; p = 0.011) and NPS (OR 0.226; 95% CI 0.130–0.393; p < 0.001) emerged as independent predictors of well-developed collaterals. Conclusions: Both NPS and HDL-C are independently associated with the degree of coronary collateral circulation in CTO patients. These findings highlight the interplay between systemic inflammation, nutritional status, lipid metabolism, and vascular adaptation. As simple and routinely available measures, NPS and HDL-C may serve as practical tools for risk stratification and identifying patients at risk of inadequate collateral formation. Prospective studies with functional assessments of collateral flow are warranted to confirm these associations and explore potential therapeutic interventions. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

14 pages, 2109 KB  
Article
Impact of Artemisia selengensis Turcz. Leaf Extract on Beer Brewing: Fermentation Dynamics, Flavor Compounds and Hypolipidemic/Antihyperuricemic Effects
by Zeyu Li, Jiazhi Zhou, Chaoqun Ye, Jian Yang and Changli Zeng
Molecules 2025, 30(19), 3936; https://doi.org/10.3390/molecules30193936 - 1 Oct 2025
Abstract
Artemisia selengensis Turcz. (AST), an edible-medicinal herb, contains multifunctional bioactives. This study investigated the application of AST leaf extract (ASTLE) in beer brewing, focusing on the addition stage and its impacts on fermentation dynamics, flavor profile, and functional properties. Fermentation parameters, bioactive compounds [...] Read more.
Artemisia selengensis Turcz. (AST), an edible-medicinal herb, contains multifunctional bioactives. This study investigated the application of AST leaf extract (ASTLE) in beer brewing, focusing on the addition stage and its impacts on fermentation dynamics, flavor profile, and functional properties. Fermentation parameters, bioactive compounds (phenolic; flavonoid), and volatiles (using HS-SPME-GC-MS) were analyzed. In vivo efficacy was assessed in high-fat diet-fed mice supplemented for 8 weeks with beer containing 10% ASTLE (post-primary fermentation), evaluating body weight change, serum lipids, and uric acid levels. It was found that adding ASTLE before primary fermentation promoted yeast activity but increased the risk of excessive diacetyl production. Adding ASTLE after primary fermentation significantly increased total phenolic and flavonoid contents. GC-MS analysis revealed that ASTLE contributed 28 additional volatile compounds, including chrysanthenone and eucalyptol, thereby enriching the beer’s flavor profile and complexity. In mice, beer with 10% ASTLE (post-primary fermentation) reduced body-weight gain, and regulated abnormal blood lipids and serum uric acid levels. Adding ASTLE after primary fermentation optimized fermentation stability, bioactive retention, flavor enhancement, and conferred benefits including body-weight regulation, lipid metabolism improvement, and uric acid control, providing a reference for developing functional beers targeting health-conscious consumers. Full article
(This article belongs to the Collection Advances in Food Chemistry)
Show Figures

Figure 1

18 pages, 716 KB  
Communication
Significant Association Between Abundance of Gut Microbiota and Plasma Levels of microRNAs in Individuals with Metabolic Syndrome and Their Potential as Biomarkers for Metabolic Syndrome: A Pilot Study
by Sanghoo Lee, Jeonghoon Hong, Yiseul Kim, Hee-Ji Choi, Jinhee Park, Jihye Yun, Yun-Tae Kim, Kyeonghwan Choi, SaeYun Baik, Mi-Kyeong Lee and Kyoung-Ryul Lee
Genes 2025, 16(10), 1161; https://doi.org/10.3390/genes16101161 - 30 Sep 2025
Abstract
Background/Objectives: The relationship between gut microbiota (GM) and microRNAs (miRs) related to lipid metabolism in individuals with metabolic syndrome (MetS) remains unclear. This pilot study examined the relationship between Bacteroidetes and Firmicutes abundance at the phylum level and the plasma levels of miR-122 [...] Read more.
Background/Objectives: The relationship between gut microbiota (GM) and microRNAs (miRs) related to lipid metabolism in individuals with metabolic syndrome (MetS) remains unclear. This pilot study examined the relationship between Bacteroidetes and Firmicutes abundance at the phylum level and the plasma levels of miR-122 and miR-370, both of which are associated with lipid metabolism, in Korean individuals with MetS and in healthy controls. We also evaluated the potential of these miRs as biomarkers for MetS. Methods: This study enrolled 7 individuals with MetS and 8 controls. The abundance of GM was analyzed by 16S rRNA amplicon sequencing. To evaluate the relationship between the dominant phyla in the 2 groups, the log ratio of Firmicutes to Bacteroidetes (F/B) was calculated using a centered log-ratio (CLR) transformation. The abundance of the 2 plasma miRs was also quantified by real-time quantitative PCR (RT-qPCR). Pearson’s and Spearman’s correlation analyses were then performed to evaluate the relationship between Bacteroidetes and Firmicutes abundance, the clinical parameters, and plasma levels of the 2 miRs. Additionally, the area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was calculated to evaluate the potential of the 2 miRs as MetS biomarkers. Results: The 2 most abundant phyla were Bacteroidetes and Firmicutes. Bacteroidetes made up an average of 24.7% in the MetS group and 69.7% in the control group. Meanwhile, the average abundance of Firmicutes was 69.8% in the MetS group and 26.5% in the control group. The log F/B ratios in the MetS and control groups were 0.7 ± 0.5 and −0.4 ± 0.1 (p < 0.001), respectively. FDR analysis revealed significant correlations between Bacteroidetes abundance and BMI, DBP, FBG, total chol, insulin and HOMA-IR (FDR-adjusted p < 0.05), as well as between Firmicutes abundance and BMI, FBG, total chol, insulin and HOMA-IR (FDR-adjusted p < 0.05). Plasma levels of the 2 miRs differed significantly between the MetS and control groups: miR-122 (1.43 vs. 0.73; p = 0.0065) and miR-370 (1.39 vs. 0.83; p = 0.0089). The AUC values for miR-122 and miR-370 were 0.946 (p < 0.001) and 0.964 (p < 0.001), respectively. Pearson’s and Spearman’s correlation analyses revealed significant negative correlations between Bacteroidetes abundance and levels of miR-122 (p = 0.0048 and p = 0.0045, respectively) and miR-370 (p = 0.0003 and p < 0.0001, respectively), as well as significant positive correlations between Firmicutes abundance and levels of miR-122 (p = 0.0038 and p = 0.0027, respectively) and miR-370 (p = 0.0004 and p < 0.0001, respectively). However, as our exploratory findings were based on a small sample size, the high correlation results may partly reflect the separation between the MetS and control groups. Conclusions: Our exploratory findings suggest that the GM abundances of individuals with MetS may be significantly associated with plasma levels of miR-122 and miR-370, which are related to lipid metabolism. These miRs may therefore serve as potential MetS biomarkers. Full article
(This article belongs to the Section RNA)
18 pages, 1446 KB  
Article
Effect of a Citicoline-Containing Supplement on Lipid Profile and Redox Status in Healthy Volunteers in Relation to Lifestyle Factors
by Bogdan Roussev, Todorka Sokrateva, Daniela Vankova, Miglena N. Nikolova, Diana Ivanova and Milka Nashar
Appl. Sci. 2025, 15(19), 10512; https://doi.org/10.3390/app151910512 - 28 Sep 2025
Abstract
This study aimed to investigate the effects of a new formulation combining citicoline, vitamin C, and extracts from green tea and aronia (Cytodeox™) on the lipid profile and redox status in healthy individuals following a six-month intervention. Additionally, we examined whether these effects [...] Read more.
This study aimed to investigate the effects of a new formulation combining citicoline, vitamin C, and extracts from green tea and aronia (Cytodeox™) on the lipid profile and redox status in healthy individuals following a six-month intervention. Additionally, we examined whether these effects depend on lifestyle factors such as body mass index (BMI), alcohol consumption, smoking and physical activity. Forty-three volunteers aged 40–65 (F31/M12) completed the study. Prior to the intervention, all participants filled out a questionnaire assessing their health status and lifestyle habits. At baseline and after supplementation, anthropometric and physical parameters were measured, and fasting blood samples were collected from all participants. Furthermore, all participants were grouped based on their gender and lifestyle habits. Cytodeox™ significantly reduced lipid profile parameters and malondialdehyde (MDA) levels in the overall group. The analysis of these effects in relation to lifestyle habits revealed that smoking, but not alcohol consumption, negatively influences the effects of the supplement. Surprisingly, the beneficial effects were observed in the overweight group and those leading a sedentary lifestyle. The results strongly suggest that six months of supplementation with Cytodeox™ can improve the lipid profile and redox status, even in individuals with some poor lifestyle habits. Full article
Show Figures

Figure 1

18 pages, 2404 KB  
Communication
Osteoporosis-Improving Effects of Extracellular Vesicles from Human Amniotic Membrane Stem Cells in Ovariectomized Rats
by Ka Young Kim, Khan-Erdene Tsolmon, Zolzaya Bavuu, Chan Ho Noh, Hyun-Soo Kim, Heon-Sang Jeong, Dongsun Park, Soon-Cheol Hong and Yun-Bae Kim
Int. J. Mol. Sci. 2025, 26(19), 9503; https://doi.org/10.3390/ijms26199503 - 28 Sep 2025
Abstract
Osteoporosis is a common skeletal disease characterized by decreased bone density, leading to bone fragility and fractures, especially in menopausal women. The purpose of this study is to confirm the anti-osteoporosis activity of stem cell extracellular vesicles (EVs) as a material of regenerative [...] Read more.
Osteoporosis is a common skeletal disease characterized by decreased bone density, leading to bone fragility and fractures, especially in menopausal women. The purpose of this study is to confirm the anti-osteoporosis activity of stem cell extracellular vesicles (EVs) as a material of regenerative medicine. Mesenchymal stem cells have a potential to differentiate into osteocytes, so directly reconstruct bone tissue or facilitate bone regeneration via paracrine effects. Paracrine effects are mediated by functional molecules delivered in EVs released from stem cells. EVs containing high concentrations of growth factors (GFs) and neurotrophic factors (NFs) were attained via hypoxia culture of human amniotic membrane stem cells (AMSCs). From the EVs with a mean diameter of 77 nm, 751 proteins and 15 species of lipids were identified. Sprague-Dawley rats were ovariectomized, and eight weeks later, intravenously injected with EVs at doses of 1 × 108, 3 × 108 or 1 × 109 particles/100 μL/body, weekly for eight weeks. One week after the final administration, the serum and bone parameters related to bone density were analyzed. Serum 17β-estradiol, alkaline phosphatase, and calcium levels that decreased in ovariectomized rats were restored by EVs in a dose-dependent manner. Bone parameters such as bone mineral density, bone mineral content, bone volume/tissue volume ratio, trabecular number, trabecular space, and bending strength were also improved by treatment with EVs. Such effects were confirmed by morphological findings of micro-computed tomography. Taken together, it is suggested that AMSC-EVs containing high concentrations of GFs and NFs preserve bone soundness by promoting bone regeneration and inhibiting bone resorption. Full article
(This article belongs to the Special Issue Stem Cells in Health and Disease: 3rd Edition)
Show Figures

Figure 1

16 pages, 1185 KB  
Article
Mitoquinone Can Effectively Improve the Quality of Thawed Boar Sperm
by Yingying Dong, Qian Wang, Hechuan Wang, Qing Guo, Yanbing Li and Jingchun Li
Animals 2025, 15(19), 2808; https://doi.org/10.3390/ani15192808 - 26 Sep 2025
Abstract
Boar sperm is susceptible to damage by reactive oxygen species during in vitro preservation, leading to lipid peroxidation, which changes the sperm structure and affects its quality after thawing. Exogenous antioxidants play a vital role in preventing this damage. This research aimed to [...] Read more.
Boar sperm is susceptible to damage by reactive oxygen species during in vitro preservation, leading to lipid peroxidation, which changes the sperm structure and affects its quality after thawing. Exogenous antioxidants play a vital role in preventing this damage. This research aimed to assess the impact of incorporating Mitoquinone into cryopreservation extenders on the quality and antioxidant capacity of boar sperm. Mitoquinone was added to the cryopreservation extender at varying concentrations, namely, 0, 50, 100, 150, and 200 nmol/L. Post-thawing, the sperm were examined for motility parameters, acrosome integrity, DNA integrity, mitochondrial activity, membrane integrity, and antioxidant enzyme activity. The results showed that compared with the control group, 150 nmol/L Mitoquinone could improve sperm viability after freezing and thawing and significantly reduce the malformation rate (p < 0.05). The addition of 150 nmol/L Mitoquinone led to a significant increase in the acrosome integrity, DNA integrity, mitochondrial activity, and membrane integrity of the boar sperm compared to the control group (p < 0.05). Moreover, it enhanced the antioxidant capacity of the sperm. This study demonstrated that the cryopreservation extender containing 150 nmol/L of Mitoquinone can enhance the effectiveness of semen cryopreservation. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

16 pages, 1228 KB  
Article
Supplementation Effects of Hibiscus sabdariffa L. Flower Aqueous Extract on Body Composition and Metabolism in Eutrophic and Obese Rats
by João Fernando Bernardo da Costa, Alana Louzada Millions Monteiro, Bruna Almeida Nascimento, Clarice Maia Vinagre de Oliveira, Karen Pereira Coutinho, Anderson Junger Teodoro, Barbara Elisabeth Teixeira-Costa and Mariana Sarto Figueiredo
Obesities 2025, 5(4), 67; https://doi.org/10.3390/obesities5040067 - 25 Sep 2025
Abstract
Obesity is a chronic, multifactorial disease characterized by excess body fat and is a major risk factor for various metabolic disorders. Bioactive compounds from the diet have been recognized for their role in preventing chronic non-communicable diseases and as adjuvants in managing endocrine–metabolic [...] Read more.
Obesity is a chronic, multifactorial disease characterized by excess body fat and is a major risk factor for various metabolic disorders. Bioactive compounds from the diet have been recognized for their role in preventing chronic non-communicable diseases and as adjuvants in managing endocrine–metabolic dysfunctions. Hibiscus sabdariffa L. (HSL) is rich in bioactive compounds with antioxidant, antihypertensive, and antihyperlipidemic properties. This study evaluated the effects of HSL flower extract supplementation on body composition, lipid profile, and biochemical parameters in both eutrophic and high-fat diet-induced obese rats. Thirty-two Wistar rats were assigned to four groups: control, control plus HSL extract, high-fat diet, and high-fat diet plus HSL extract. The extract was administered orally at 150 mg kg−1 for thirty days. Dual-energy X-ray absorptiometry revealed that HSL supplementation significantly attenuated fat mass gain (from 98 g to 75 g) and adiposity indices (10.23 to 8.86) in obese rats without altering total body mass. Moreover, the HSL extract improved lipid profiles by reducing LDL cholesterol from 23 to 13 mg dL−1 and exhibited potential hepatoprotective effects linked with decreased ALT (40 to 26.7 U L−1) and total bilirubin (0.12 to 0.07 mg dL−1) levels. Although glucose metabolism parameters had no significant differences, a trend toward improved insulin sensitivity was observed. These results suggest that the aqueous HSL extract may exert cardioprotective, hepatoprotective, and anti-obesity effects, supporting its potential as a complementary therapeutic agent in obesity and related metabolic disorders. Full article
(This article belongs to the Special Issue The Impact of Food Compounds on Obesity Mechanisms)
Show Figures

Figure 1

24 pages, 12694 KB  
Article
Tissue-Specific Enhancement of Insulin Function and Restoration of Glucose-Stimulated Insulin Secretion by Croton guatemalensis Lotsy and Eryngium cymosum F. Delaroche
by Fernanda Artemisa Espinoza-Hernández, Angelina Daniela Moreno-Vargas, Andrea Díaz-Villaseñor, Gerardo Mata-Torres, Jazmín Samario-Román and Adolfo Andrade-Cetto
Pharmaceuticals 2025, 18(10), 1433; https://doi.org/10.3390/ph18101433 - 24 Sep 2025
Viewed by 186
Abstract
Background/Objectives: Ethnopharmacological studies indicates that plant-based infusions are usually consumed by some people in advanced stages of diabetes, that is, when poor pancreatic dysfunction coexists with insulin resistance (IR). Current treatments aim to prevent β-cell deterioration by promoting improved insulin function and/or [...] Read more.
Background/Objectives: Ethnopharmacological studies indicates that plant-based infusions are usually consumed by some people in advanced stages of diabetes, that is, when poor pancreatic dysfunction coexists with insulin resistance (IR). Current treatments aim to prevent β-cell deterioration by promoting improved insulin function and/or enhancing pancreatic function to avoid the development of hyperglycemia. Therefore, Croton guatemalensis (Cg) and Eryngium cymosum (Ec), two medicinal plants with potential insulin-sensitizing effects described in previous studies, were assessed on parameters related to IR and on the architecture of pancreatic islets in rats exposed to a syrup containing 8.8% glucose and 5.2% fructose in drinking water. Methods: After an 8-week exposure to syrup, plant extracts were orally administered for four weeks at traditional doses (Cg: 30 mg/kg body weight; Ec: 470 mg/kg body weight). Body weight, food intake, and drinking water consumption were monitored. At the end of the study, IR surrogate indices were calculated, metabolic assays were performed, and white adipose tissues, liver, gastrocnemius muscle, and pancreas were extracted in fasting and postprandial state for lipid quantification (liver), measurement of Akt phosphorylation status by western blot (liver and muscle), and determination of insulin content by immunohistochemistry (pancreatic islets). Results: Both species decreased hepatic lipid content without promoting significant changes in visceral adiposity. Although they did not improve surrogate markers of fasting IR, both ameliorated insulin function, glucose tolerance, and restored the glucose-stimulated insulin secretory response in metabolic tests. Cg restored the insulin signaling response in liver and muscle, whereas Ec only did so in muscle. Moreover, both appeared to enhance insulin pancreatic content or restore pancreatic islet population. Conclusions: Cg and Ec can reverse the IR phenotype in a tissue-specific manner and improve pancreatic function. Full article
Show Figures

Graphical abstract

Back to TopTop