Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (404)

Search Parameters:
Keywords = linear ultrasonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5631 KiB  
Article
Design and Evaluation of a Capacitive Micromachined Ultrasonic Transducer(CMUT) Linear Array System for Thickness Measurement of Marine Structures Under Varying Environmental Conditions
by Changde He, Mengke Luo, Hanchi Chai, Hongliang Wang, Guojun Zhang, Renxin Wang, Jiangong Cui, Yuhua Yang, Wendong Zhang and Licheng Jia
Micromachines 2025, 16(8), 898; https://doi.org/10.3390/mi16080898 (registering DOI) - 31 Jul 2025
Viewed by 116
Abstract
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to [...] Read more.
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to ensure acoustic impedance matching and environmental protection in underwater conditions. The acoustic performance of the encapsulated CMUT was characterized using standard piezoelectric transducers as reference. The array achieved a transmitting sensitivity of 146.82 dB and a receiving sensitivity of −229.55 dB at 1 MHz. A complete thickness detection system was developed by integrating the CMUT array with a custom transceiver circuit and implementing a time-of-flight (ToF) measurement algorithm. To evaluate environmental robustness, systematic experiments were conducted under varying water temperatures and salinity levels. The results demonstrate that the absolute thickness measurement error remains within ±0.1 mm under all tested conditions, satisfying the accuracy requirements for marine structural health monitoring. The results validate the feasibility of CMUT-based systems for precise and stable thickness measurement in underwater environments, and support their application in non-destructive evaluation of marine infrastructure. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

17 pages, 3228 KiB  
Article
Research on the Laser Ablation Threshold of the Graphene/Aluminum Foil Interface Surface
by Ying Xu, Yi Lv, Dongcheng Zhou, Yixin Chen and Boyong Su
Coatings 2025, 15(7), 853; https://doi.org/10.3390/coatings15070853 - 20 Jul 2025
Viewed by 331
Abstract
The aim was to investigate the impact of laser parameters on the surface morphology of ablated graphene and elucidate the interaction mechanism between carbon materials and femtosecond lasers. A pulsed laser with a wavelength of 1030 nm is employed to infer the ablation [...] Read more.
The aim was to investigate the impact of laser parameters on the surface morphology of ablated graphene and elucidate the interaction mechanism between carbon materials and femtosecond lasers. A pulsed laser with a wavelength of 1030 nm is employed to infer the ablation threshold of the surface and interface of graphene coatings formed through ultrasonic spraying. The ablation threshold of the coating–substrate interface is verified by numerical simulation. Incorporating the data of groove width and depth obtained from a three-dimensional profilometer and finite element simulation, an in-depth analysis of the threshold conditions of laser ablation in coating materials is accomplished. The results indicate that when the femtosecond laser frequency is 10 kHz, the pulse width is 290 fs, and the energy density reaches 0.057 J/cm2, the graphene material can be effectively removed. When the energy density is elevated to 2.167 J/cm2, a complete ablation of a graphite coating with a thickness of 1.5 μm can be achieved. The findings of this study validate the evolution law and linear relationship of ablation crater morphology, offering new references for microstructure design and the selection of controllable laser processing parameters. Full article
Show Figures

Figure 1

25 pages, 7859 KiB  
Article
Methodology for the Early Detection of Damage Using CEEMDAN-Hilbert Spectral Analysis of Ultrasonic Wave Attenuation
by Ammar M. Shakir, Giovanni Cascante and Taher H. Ameen
Materials 2025, 18(14), 3294; https://doi.org/10.3390/ma18143294 - 12 Jul 2025
Viewed by 417
Abstract
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements [...] Read more.
Current non-destructive testing (NDT) methods, such as those based on wave velocity measurements, lack the sensitivity necessary to detect early-stage damage in concrete structures. Similarly, common signal processing techniques often assume linearity and stationarity among the signal data. By analyzing wave attenuation measurements using advanced signal processing techniques, mainly Hilbert–Huang transform (HHT), this work aims to enhance the early detection of damage in concrete. This study presents a novel energy-based technique that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and Hilbert spectrum analysis (HSA), to accurately capture nonlinear and nonstationary signal behaviors. Ultrasonic non-destructive testing was performed in this study on manufactured concrete specimens subjected to micro-damage characterized by internal microcracks smaller than 0.5 mm, induced through controlled freeze–thaw cycles. The recorded signals were decomposed from the time domain using CEEMDAN into frequency-ordered intrinsic mode functions (IMFs). A multi-criteria selection strategy, including damage index evaluation, was employed to identify the most effective IMFs while distinguishing true damage-induced energy loss from spurious nonlinear artifacts or noise. Localized damage was then analyzed in the frequency domain using HSA, achieving an up to 88% reduction in wave energy via Marginal Hilbert Spectrum analysis, compared to 68% using Fourier-based techniques, demonstrating a 20% improvement in sensitivity. The results indicate that the proposed technique enhances early damage detection through wave attenuation analysis and offers a superior ability to handle nonlinear, nonstationary signals. The Hilbert Spectrum provided a higher time-frequency resolution, enabling clearer identification of damage-related features. These findings highlight the potential of CEEMDAN-HSA as a practical, sensitive tool for early-stage microcrack detection in concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 4948 KiB  
Article
Plane-Stress Measurement in Anisotropic Pipe Walls Using an Improved Tri-Directional LCR Ultrasonic Method
by Yukun Li, Longsheng Wang, Fan Fei, Dongying Wang, Zhangna Xue, Xin Liu and Xinyu Sun
Sensors 2025, 25(14), 4371; https://doi.org/10.3390/s25144371 - 12 Jul 2025
Viewed by 367
Abstract
It is important to accurately characterize the plane-stress state of pipe walls for evaluating the bearing capacity of the pipe and ensuring the structural safety. This paper describes a novel ultrasonic technique for evaluating anisotropic pipe-wall plane stresses using three-directional longitudinal critical refracted [...] Read more.
It is important to accurately characterize the plane-stress state of pipe walls for evaluating the bearing capacity of the pipe and ensuring the structural safety. This paper describes a novel ultrasonic technique for evaluating anisotropic pipe-wall plane stresses using three-directional longitudinal critical refracted (LCR) wave time-of-flight (TOF) measurements. The connection between plane stress and ultrasonic TOF is confirmed by examining how the anisotropy of rolled steel plates affects the speed of ultrasonic wave propagation, which is a finding not previously documented in spiral-welded pipes. Then based on this relationship, an ultrasonic stress coefficient calibration experiment for spiral-welded pipes is designed. The results show that the principal stress obtained by the ultrasonic method is closer to the engineering stress than that obtained from the coercivity method. And, as a nondestructive testing technique, the ultrasonic method is more suitable for in-service pipelines. It also elucidates the effects of probe pressure and steel plate surface roughness on the ultrasonic TOF, obtains a threshold for probe pressure, and reveals a linear relationship between roughness and TOF. This study provides a feasible technique for nondestructive measurement of plane stress in anisotropic spiral-welded pipelines, which has potential application prospects in the health monitoring of in-service pipelines. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 3031 KiB  
Article
Influence and Potential of Additive Manufactured Reference Geometries for Ultrasonic Testing
by Stefan Keuler, Anne Jüngert, Martin Werz and Stefan Weihe
J. Manuf. Mater. Process. 2025, 9(7), 224; https://doi.org/10.3390/jmmp9070224 - 1 Jul 2025
Viewed by 492
Abstract
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led [...] Read more.
This study researches and discusses the impact of different manufacturing-induced effects of additive manufacturing (AM), such as anisotropy on sound propagation and attenuation, on the production of test specimens for ultrasonic testing (UT). It was shown that a linear, alternating hatching pattern led to strong anisotropy in sound velocity and attenuation, with a deviation in sound velocity and gain of over 840 m/s and 9 dB, depending on the measuring direction. Furthermore, it was demonstrated that the build direction exhibits distinct acoustic properties. The influence of surface roughness on both the reflector and coupling surfaces was analyzed. It was demonstrated that post-processing of the reflector surface is not necessary, as varying roughness levels did not significantly change the signal amplitude. However, for high frequencies, pre-treatment of the coupling surface can improve sound transmission up to 6 dB at 20 MHz. Finally, the reflection properties of flat bottom holes (FBH) in reference blocks produced by AM and electrical discharge machining (EDM) were compared. The equivalent reflector size (ERS) of the FBH, which refers to the size of an idealized defect with the same ultrasonic reflection behavior as the measured defect, was determined using the distance gain size (DGS) method—a method that uses the relationship between reflector size, scanning depth, and echo amplitude to evaluate defects. The findings suggest that printed FBHs achieve an improved match between the ERS and the actual manufactured reflector size with a deviation of less than 13%, thereby demonstrating the potential for producing standardized test blocks through additive manufacturing. Full article
Show Figures

Figure 1

12 pages, 814 KiB  
Article
Development of LC-MS/MS and GC-MS/MS Methods for the Detection of Ethyl Glucuronide (EtG) and Ethyl Palmitate (EtPa) in Hair
by Sharnette Ashiru, Ethan Webster, Benjamin Barrett, Mathew Wade and Brian Rooney
Molecules 2025, 30(13), 2681; https://doi.org/10.3390/molecules30132681 - 21 Jun 2025
Viewed by 423
Abstract
Alcohol abuse is a widespread addiction globally, leading to long-term health issues and social consequences. Ethyl glucuronide (EtG) and ethyl palmitate (EtPa) are frequently requested by local authorities, solicitors, or private individuals to assess long-term chronic excessive alcohol consumption. In this paper, we [...] Read more.
Alcohol abuse is a widespread addiction globally, leading to long-term health issues and social consequences. Ethyl glucuronide (EtG) and ethyl palmitate (EtPa) are frequently requested by local authorities, solicitors, or private individuals to assess long-term chronic excessive alcohol consumption. In this paper, we present a validation process aimed at developing sensitive methods for detecting EtG and EtPa in hair samples. EtG was extracted by overnight sonication in water followed by sample clean-up using solid phase extraction (SPE) and analysis by liquid chromatography–tandem mass spectrometry (LC-MS/MS). EtPa was extracted using a simple ultrasonication extraction followed by analysis using gas chromatography–tandem mass spectrometry (GC-MS/MS). The analytical method was validated by assessing linearity, precision, accuracy, recovery, sensitivity, and selectivity. Both EtG and EtPa methods obtained a coefficient of determination (r2) above 0.999 across concentration ranges of 4, 8, 16, 24, 48, and 96 pg/mg and 120, 240, 360, 480, 600, and 720 pg/mg. Extraction recoveries were both close to 100% with stable retention times and proven sensitivity and selectivity. These methods were validated according to the standards set by the United Kingdom Accreditation Service (UKAS) Lab51 and ISO 17025. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

14 pages, 4313 KiB  
Article
Metal Thickness Measurement Using an Ultrasonic Probe with a Linear Actuator for a Magnet-Type Climbing Robot: Design and Development
by Yuki Nishimura, Cheng Wang and Wei Song
Actuators 2025, 14(6), 299; https://doi.org/10.3390/act14060299 - 18 Jun 2025
Viewed by 352
Abstract
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their [...] Read more.
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their capability in terms of metal thickness measurement has not been previously evaluated. During thickness inspections, ultrasonic thickness sensors require a probe to be pressed against target surfaces. To automate metal thickness measurements, this pressing motion of the probe needs to be performed by the robot. This study introduces a novel metal thickness measurement device comprising an ultrasonic probe, a linear actuator, a gel pump, and a pressure sensor designed for a magnet-type climbing robot. The linear actuator moves the probe to its initial position, the gel pump injects a coupling gel, and then the actuator moves the probe to the surface and back. Finally, our prototype of an ultrasonic probe with a linear actuator was installed on a magnet-type climbing robot to demonstrate its functionality in a practical application regarding an oil storage tank inspection system. The prototype achieved a measurement success rate of 65.9% and an average error of 0.7% compared to a reference thickness. This article details the design and development of the ultrasonic probe with a linear actuator to enable the probe to make contact with the surface. It then details the experimental results and evaluation of metal thickness measurement performed using the prototype and the climbing robot. Full article
(This article belongs to the Special Issue Advanced Robots: Design, Control and Application—3rd Edition)
Show Figures

Figure 1

13 pages, 6940 KiB  
Article
Interface Block and Microstructure Evolution in Ultrasonic Welding of Aluminum
by Hang Qi, Fuxing Ye, Yingfan Wang and Kaiqi Sun
Materials 2025, 18(12), 2853; https://doi.org/10.3390/ma18122853 - 17 Jun 2025
Viewed by 313
Abstract
Ultrasonic welding, as a solid-state connection technology, has attracted considerable attention. The traditional ultrasonic welding sonotrode is not conducive to the study of the bonding mechanism of a straight interface, while the ultrasonic additive sonotrode does not have this problem. In this study, [...] Read more.
Ultrasonic welding, as a solid-state connection technology, has attracted considerable attention. The traditional ultrasonic welding sonotrode is not conducive to the study of the bonding mechanism of a straight interface, while the ultrasonic additive sonotrode does not have this problem. In this study, a special ultrasonic welding sonotrode was designed to form the joint, which is identical to ultrasonic additive manufacturing, to reveal its interfacial bonding mechanism between layers. Firstly, the linear metallurgical bonding density (LMD) of the joint is found to be positively correlated with welding time and negatively with welding pressure. Furthermore, the joint interface undergoes recrystallization after intense plastic deformation, with the obstruction of surface deformation by interface block resulting in the formation of a non-straight interface, which is beneficial to the formation of metallurgical bonding. Finally, a new concept of “Interface Block” was proposed, which can be applied to explain the formation of metallurgical bonding at the interface in ultrasonic additive manufacturing. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 8548 KiB  
Article
Study on the Motion Trajectory of Abrasives and Surface Improvement Mechanism in Ultrasonic-Assisted Diamond Wire Sawing Monocrystalline Silicon
by Honghao Li, Yufei Gao, Shengtan Hu and Zhipu Huo
Micromachines 2025, 16(6), 708; https://doi.org/10.3390/mi16060708 - 13 Jun 2025
Viewed by 411
Abstract
The surface quality of diamond wire sawing (DWS) wafers directly affects the efficiency and yield of subsequent processing steps. This paper investigates the motion trajectory of abrasives in ultrasonic-assisted diamond wire sawing (UADWS) and its mechanism for improving surface quality. The influence of [...] Read more.
The surface quality of diamond wire sawing (DWS) wafers directly affects the efficiency and yield of subsequent processing steps. This paper investigates the motion trajectory of abrasives in ultrasonic-assisted diamond wire sawing (UADWS) and its mechanism for improving surface quality. The influence of ultrasonic vibration on the cutting arc length, cutting depth, and interference of multi-abrasive trajectories was analyzed through the establishment of an abrasive motion trajectory model. The ultrasonic vibration transforms the abrasive trajectory from linear to sinusoidal, thereby increasing the cutting arc length while reducing the cutting depth. A lower wire speed was found to be more conducive to exploiting the advantages of ultrasonic vibration. Furthermore, the intersecting interference of multi-abrasive trajectories contributes to enhanced surface quality. Experimental studies were conducted on monocrystalline silicon (mono-Si) to verify the effectiveness of ultrasonic vibration in improving surface morphology and reducing wire marks during the sawing process. The experimental results demonstrate that, compared with DWS, UADWS achieves a significantly lower surface roughness Ra and generates micro-pits. The ultrasonic vibration induces a micro-grinding effect on both peaks and valleys of wire marks, effectively reducing their peak–valley (PV) height. This study provides a theoretical basis for optimizing UADWS process parameters and holds significant implications for improving surface quality in mono-Si wafer slicing. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

17 pages, 11318 KiB  
Article
Porous Surface Design with Stability Analysis for Turbulent Transition Control in Hypersonic Boundary Layer
by Youngwoo Kim, Minjae Jeong, Suhun Cho, Donghun Park and Solkeun Jee
Aerospace 2025, 12(6), 518; https://doi.org/10.3390/aerospace12060518 - 8 Jun 2025
Viewed by 344
Abstract
This study presents a design approach for a uniform porous surface to control laminar-to-turbulent transition in hypersonic boundary layers. The focus is on suppressing the Mack second mode, which is a dominant instability in hypersonic boundary layers. The Mack second mode is acoustic-wave-like [...] Read more.
This study presents a design approach for a uniform porous surface to control laminar-to-turbulent transition in hypersonic boundary layers. The focus is on suppressing the Mack second mode, which is a dominant instability in hypersonic boundary layers. The Mack second mode is acoustic-wave-like in the ultrasonic frequency range and can be effectively attenuated by porous surfaces. Previous studies have explored porous surfaces, either by targeting a specific frequency or by adopting geometrically complex configurations for various frequencies. In contrast, the present study proposes a porous surface design that effectively stabilizes the Mack second mode over a wide frequency range, while maintaining structural simplicity. In addition, this porous surface design incorporates constraints associated with practical fabrication to enhance manufacturability. The absorption characteristics of porous surfaces are evaluated with an acoustic impedance model, and the stabilization performance is assessed with linear stability theory. The proposed porous surface design is compared with a conventional design method that focuses on the Mack second mode with a single frequency. Consequently, the proposed design methodology demonstrates robust and consistent suppression of the Mack second mode in a broad frequency range. This approach improves both stabilization performance and manufacturability with a uniform porous surface, contributing to its practical application in high-speed vehicles. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 3363 KiB  
Article
Effect of Elevated Temperature on Mechanical Properties and Shielding Performance of Magnetite–Serpentine Radiation-Proof Concrete
by Dan Wu, Zehua Liu, Zhenfu Chen, Qiongfang Wu and Qiuwang Tao
Materials 2025, 18(12), 2686; https://doi.org/10.3390/ma18122686 - 6 Jun 2025
Viewed by 618
Abstract
High temperatures can induce a range of physical and chemical alterations in radiation-protective concrete, potentially compromising its strength and significantly diminishing its radiation shielding capabilities. Therefore, it is very important to study the high temperature performance of radiation-proof concrete to ensure its safety [...] Read more.
High temperatures can induce a range of physical and chemical alterations in radiation-protective concrete, potentially compromising its strength and significantly diminishing its radiation shielding capabilities. Therefore, it is very important to study the high temperature performance of radiation-proof concrete to ensure its safety and stability in extreme environment. In this study, the magnetite–serpentine radiation-proof concrete is designed with magnetite as coarse aggregate, serpentine as fine aggregate, and Portland cement and granulated blast furnace slag as mixture. The apparent characteristics, mass loss, ultrasonic pulse velocity, mechanical properties, shielding performance, and correlation of this concrete were analyzed through experiments. The results show that the damage degree and relative wave velocity have a good correlation in evaluating the relative mass loss, linear attenuation coefficient, compressive strength, and tensile strength after high temperatures. The compressive strength at 800 °C is 12.2 MPa and the splitting tensile strength is 0.48 MPa; the linear attenuation coefficient of specimen at 800 °C is reduced to 80.9% of that at normal temperature. Meanwhile, penetrating cracks appeared at 600 °C and spalling phenomenon appeared at 800 °C, and better thermal stability and favorable mechanical properties and shielding performance also occurred; thus, suitable radioactive and high temperature environment was determined. The results could provide scientific guidance for nondestructive testing and performance evaluation of shielding structure materials. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

11 pages, 689 KiB  
Article
Simultaneous Determination of Quercetin and Trans-Resveratrol in Winemaking Waste by Solid Phase Microextraction Coupled to High-Performance Liquid Chromatography with Fluorescence and Ultraviolet Detection
by Antonella Maria Aresta, Giovanna Mancini, Nicoletta De Vietro and Carlo Zambonin
Analytica 2025, 6(2), 19; https://doi.org/10.3390/analytica6020019 - 17 May 2025
Viewed by 952
Abstract
A solid phase microextraction (SPME) method coupled with liquid chromatography (LC) and fluorescence/ultraviolet-diode array detection was developed for the simultaneous determination of quercetin and trans-resveratrol. The chromatographic, detection, and SPME extraction/desorption conditions were systematically optimized. The performance of four commercial SPME fibers—polyacrylate (PA), [...] Read more.
A solid phase microextraction (SPME) method coupled with liquid chromatography (LC) and fluorescence/ultraviolet-diode array detection was developed for the simultaneous determination of quercetin and trans-resveratrol. The chromatographic, detection, and SPME extraction/desorption conditions were systematically optimized. The performance of four commercial SPME fibers—polyacrylate (PA), polyethylene glycol (PEG), polydimethylsiloxane (PDMS), and polydimethylsiloxane-divinylbenzene (PDMS-DVB)—was evaluated and compared with a homemade polydopamine (PDA)-coated fiber. While all of the fibers successfully extracted the target analytes, their efficiencies varied significantly. The PA, PEG, and PDA fibers demonstrated superior performance, exhibiting wide linearity ranges (0.03–1 µg/mL (PA and PEG) and 0.06–1 µg/mL (PDA) for quercetin, 0.01–1 µg/mL for trans-resveratrol); high sensitivity (LODs of 0.01 µg/mL (PA and PEG) and 0.02 µg/mL (PDA) for quercetin, 0.003 µg/mL for trans-resveratrol); and excellent precision. Among these, the polyacrylate coating delivered the best analytical performance and was selected for further application. The optimized method was applied to analyze winemaking by-products (seeds, skins, and stalks) using SPME on ethanol-macerated extracts subjected to brief ultrasonication. Quercetin and trans-resveratrol were quantified in pomace extracts at concentrations of 104.3 ± 8.2 µg/g and 38.5 ± 4.1 µg/g, respectively. Recovery experiments confirmed the method’s accuracy, with recoveries of 99.1 ± 7.4% for quercetin and 98.5 ± 9.8% for trans-resveratrol. This study establishes a reliable, sensitive, and efficient approach for the determination of these bioactive compounds in complex matrices, with potential applications in the food and pharmaceutical industries. Full article
(This article belongs to the Special Issue Green Analytical Techniques and Their Applications)
Show Figures

Figure 1

18 pages, 5103 KiB  
Article
Elastic Wave Propagation Through Cylinders with Fluid-Filled Fractures Using the Discontinuous Galerkin Method
by Ana L. Ramos-Barreto, Jonas D. De Basabe and Raul U. Silva-Avalos
Mathematics 2025, 13(10), 1572; https://doi.org/10.3390/math13101572 - 10 May 2025
Viewed by 384
Abstract
Accurately modeling fractures in wave-propagation simulations is challenging due to their small scale relative to other features. While equivalent-media models can approximate fracture-induced anisotropy, they fail to capture their discrete influence on wave propagation. To address this limitation, the Interior-Penalty Discontinuous Galerkin Method [...] Read more.
Accurately modeling fractures in wave-propagation simulations is challenging due to their small scale relative to other features. While equivalent-media models can approximate fracture-induced anisotropy, they fail to capture their discrete influence on wave propagation. To address this limitation, the Interior-Penalty Discontinuous Galerkin Method (IP-DGM) can be adapted to incorporate the Linear-Slip Model (LSM) to represent fractures explicitly. In this study, we apply IP-DGM to elastic wave propagation in fractured cylindrical domains using realistic fracture compliances obtained from laboratory experiments (using ultrasonic-pulse transmission) to simulate the effects of fluid-filled fractures. We analyze how fracture spacing and fluid type influence P- and S-wave behavior, focusing on amplitude attenuation and wave-front delays. Our numerical results align with experimental and theoretical predictions, demonstrating that higher-density fluids enhance wave transmission, reducing the impedance contrast and improving coupling across fracture surfaces. These findings highlight the capability of IP-DGM to accurately model wave propagation in realistic fractured and saturated media, providing a valuable tool for seismic monitoring in fractured reservoirs and other applications where fluid-filled fractures are prevalent. Full article
Show Figures

Figure 1

13 pages, 3640 KiB  
Article
A Multivariate Linear Regression-Based Ultrasonic Non-Destructive Evaluating Method for Characterizing Weld Tensile Strength Properties
by Dazhao Chi, Ziming Wang and Haichun Liu
Materials 2025, 18(9), 1925; https://doi.org/10.3390/ma18091925 - 24 Apr 2025
Viewed by 376
Abstract
Destructive testing is a common method for obtaining tensile strength properties of welds. However, it is inconvenient to characterize the overall weld, and it cannot be applied to in-service structures. Non-destructive testing and evaluation (NDT&E) methods have the potential ability of overcoming these [...] Read more.
Destructive testing is a common method for obtaining tensile strength properties of welds. However, it is inconvenient to characterize the overall weld, and it cannot be applied to in-service structures. Non-destructive testing and evaluation (NDT&E) methods have the potential ability of overcoming these limitations. In this paper, an ultrasonic-based non-destructive evaluating method for weld tensile strength was proposed. Multiple sets of fully automatic welded X80 steel pipes were prepared. Acoustic signals from a total of 240 measurement points of the welds were collected, and ultrasonic characteristic parameters were subtracted through signal processing. Subsequently, tensile strength values were obtained through destructive testing. Using the ultrasonic and tensile test databases, a multivariate regression-based (MLR) non-destructive evaluation model was established to predict the tensile strength value. Based on this, in order to rapidly characterize the welds, a grading evaluation model was introduced. The grading evaluation result of the 240 measurement points indicates that the accuracy of the proposed method is 76.3%. In order to improve accuracy, a deep learning-based method could be used in the future. Full article
Show Figures

Figure 1

16 pages, 2992 KiB  
Article
Simultaneous Determination of Six Common Microplastics by a Domestic Py-GC/MS
by Yuanqiao Zhou, Bingyue Fu, Jinshui Che and Xingnan Ye
Atmosphere 2025, 16(4), 476; https://doi.org/10.3390/atmos16040476 - 19 Apr 2025
Cited by 1 | Viewed by 1072
Abstract
Pyrolysis coupled with gas chromatography–mass spectrometry (Py-GC/MS) is a novel technology capable of detecting micro- and nanoplastics without a size limit. However, the application of Py-GC/MS to airborne microplastic analysis remains inconsistent. This study explores optimal Py-GC/MS procedures using a domestic HenxiTM [...] Read more.
Pyrolysis coupled with gas chromatography–mass spectrometry (Py-GC/MS) is a novel technology capable of detecting micro- and nanoplastics without a size limit. However, the application of Py-GC/MS to airborne microplastic analysis remains inconsistent. This study explores optimal Py-GC/MS procedures using a domestic HenxiTM PY-1S pyrolyzer-based Py-GC/MS. The initial weight loss of PVC occurs at approximately 260 °C, indicating that the maximum thermal desorption temperature prior to pyrolysis should not exceed 250 °C. To avoid interference from semi-volatile organics present in the sample and injected air, it is essential to purge the sample with pure helium at elevated temperatures before pyrolysis. Microplastic standards can be prepared by ultrasonicating a water–microplastic dispersion system. Significant interactions between microplastic mixtures were observed during co-pyrolysis, indicating that the interactions of mixtures cannot be ignored during the optimization of quantitative references. The optimal procedure features good linearity (R2 > 0.98), low detection limit (0.06~0.0002 μg), and acceptable precisions (RSD < 10% in 8 days). Microplastics determined by the domestic PY-1S pyrolyzer coupled with a GC/MS system are comparable to those of the well-established PY-3030D-based Py-GC/MS, indicating that the domestic pyrolyzer coupled with GC/MS is a reliable and powerful tool for microplastic analysis. Full article
Show Figures

Figure 1

Back to TopTop