Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = linear oscillation actuator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9885 KB  
Article
Hybrid LQR-H2 Control of a Kestrel-Based Ornithopter with a Nature-Inspired Flow Control Device for Gust Mitigation
by Saddam Hussain, Ali Hennache, Nouman Abbasi and Dajun Xu
Biomimetics 2026, 11(2), 109; https://doi.org/10.3390/biomimetics11020109 - 3 Feb 2026
Viewed by 31
Abstract
Unsteady atmospheric disturbances significantly compromise the stability of ornithopters, necessitating advanced turbulence-mitigation strategies. In contrast, natural flyers display remarkable aerodynamic adaptability through dynamic flow-control mechanisms such as covert feathers, enabling stability across unsteady flow regimes. Drawing inspiration from this biological phenomenon, this study [...] Read more.
Unsteady atmospheric disturbances significantly compromise the stability of ornithopters, necessitating advanced turbulence-mitigation strategies. In contrast, natural flyers display remarkable aerodynamic adaptability through dynamic flow-control mechanisms such as covert feathers, enabling stability across unsteady flow regimes. Drawing inspiration from this biological phenomenon, this study presents the modeling and hybrid control of a kestrel-based ornithopter equipped with a Nature-Inspired Flow Control Device (NFCD) that replicates the adaptive feather deployment mechanism observed in kestrels. A reduced-order multibody bond-graph model (BGM) of the full ornithopter is developed, incorporating the main body, propulsion system, rigid wings, and the NFCD subsystem. The model captures key fluid-structure-interaction (FSI) effects between morphing feathers and surrounding airflow. A Linear Quadratic Regulator (LQR) ensures optimal performance under nominal gust conditions (≤3 m/s), while an H2 controller activates during high-intensity gusts (≥4 m/s) to enhance disturbance rejection through electromechanical feather actuation. A gain-scheduled transition is employed in the intermediate gust range (3–4 m/s) to ensure a smooth transition between controllers. Simulations indicate up to 70% reduction in gust-induced oscillations and 32% gust-mitigation efficiency, achieved through feather actuation in the NFCD combined with hybrid control, stabilizing the ornithopter in less than 1.4 s under higher gust conditions. The close correspondence between simulated responses and previously reported findings validates the proposed approach. Overall, by merging biomimetic aerodynamics, nature-inspired flow control, and advanced control design, the LQR-H2 governed NFCD provides a promising pathway toward gust-tolerant ornithopters capable of resilient and stable flight in unsteady atmospheric environments. Full article
(This article belongs to the Special Issue Bioinspired Aerodynamic-Fluidic Design)
Show Figures

Graphical abstract

15 pages, 2307 KB  
Article
Navigation and Load Adaptability of a Flatworm-Inspired Soft Robot Actuated by Staggered Magnetization Structure
by Zixu Wang, Miaozhang Shen, Chunying Li, Pengcheng Li, Anran Zheng and Shuxiang Guo
Biomimetics 2026, 11(1), 41; https://doi.org/10.3390/biomimetics11010041 - 6 Jan 2026
Viewed by 399
Abstract
This study presents a magnetically actuated soft robot inspired by the peristaltic locomotion of flatworms, designed to replicate the biological locomotion of worms to achieve robust maneuverability. Fabricated entirely from photocurable soft resin, the robot features a flexible elastomeric body and two webbed [...] Read more.
This study presents a magnetically actuated soft robot inspired by the peristaltic locomotion of flatworms, designed to replicate the biological locomotion of worms to achieve robust maneuverability. Fabricated entirely from photocurable soft resin, the robot features a flexible elastomeric body and two webbed fins with embedded soft magnets. By applying a vertically oscillating magnetic field, the robot achieves forward crawling through the coordinated bending and lifting of fins, converting oscillating magnetic fields into continuous undulatory motion that mimics the gait of flatworms. The experimental results demonstrate that the system maintains consistent bidirectional velocities in the range of 4–7 mm/s on flat surfaces. Beyond linear locomotion, the robot demonstrates effective terrain adaptability, navigating complex topographies, including curved obstacles up to 16 times its body thickness, by autonomously adopting a high-lifting kinematic strategy to overcome gravitational resistance. Furthermore, load-carrying tests reveal that the robot can transport a 6 g payload without velocity degradation. These findings underscore the robot’s efficacy in overcoming mobility constraints, highlighting promising applications in fields requiring non-invasive intervention, such as biomedical capsule endoscopy and industrial pipeline inspection. Full article
Show Figures

Graphical abstract

20 pages, 1300 KB  
Article
Techno-Economic Analysis and Power Take-Off Optimization of a Wave Energy Converter Adjacent to a Vertical Seawall
by Senthil Kumar Natarajan and Il Hyoung Cho
Energies 2025, 18(16), 4246; https://doi.org/10.3390/en18164246 - 9 Aug 2025
Cited by 1 | Viewed by 794
Abstract
Wave energy converters (WECs) that are installed in nearshore environments offer several practical advantages, including easier access, lower maintenance, reduced transmission costs, and potential integration with the existing coastal infrastructure, leading to cost savings and improved commercial viability. This study presents a techno-economic [...] Read more.
Wave energy converters (WECs) that are installed in nearshore environments offer several practical advantages, including easier access, lower maintenance, reduced transmission costs, and potential integration with the existing coastal infrastructure, leading to cost savings and improved commercial viability. This study presents a techno-economic analysis and power take-off (PTO) optimization for a vertical cylindrical WEC positioned adjacent to a vertical seawall under irregular wave conditions. The PTO system is connected via frames and hinges, with one end connected to the vertical seawall and the other end to the arm extending to the oscillating WEC. Hydrodynamic parameters were obtained from WAMIT, incorporating the seawall effect via the image method using linear potential theory. This analysis considers variations in WEC diameter, the lengths of frame segments supporting the PTO system, and the PTO damping. First, the geometric configuration is optimized. The results show that placing the WEC closer to the seawall and positioning the hinge joint of the PTO frame at the midpoint of the actuating arm significantly enhances power extraction, due to intensified hydrodynamic interactions near the seawall. A techno-economic analysis is then conducted using two techno-economic metrics, with one representing device cost and the other a newly introduced metric for PTO cost, combined through the weighted sum model (WSM) within a multi-criteria decision analysis (MCDA) framework. Our findings indicate that a smaller-diameter WEC is more cost-effective within a narrow range of PTO damping, while larger WECs, although requiring higher PTO damping capacity, become more cost-effective at higher PTO damping values, due to increased power absorption. Optimal PTO damping values were identified for each diameter of the WEC, demonstrating the trade-off between power output and system cost. These findings provide practical guidance for optimizing nearshore WEC designs to achieve a balance between performance and cost. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

18 pages, 2280 KB  
Article
Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination
by Changshen Du, Shuhong Dai and Qinglin Sun
Polymers 2025, 17(15), 2122; https://doi.org/10.3390/polym17152122 - 31 Jul 2025
Viewed by 669
Abstract
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of [...] Read more.
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of a bionic arm using an LCE fiber as artificial muscle is established, which exhibits periodic oscillation controlled by periodic illumination. Based on the assumption of linear damping and angular momentum theorem, the dynamics equation of the model oscillation is derived. Then, based on the assumption of linear elasticity model, the periodic spring force of the fiber is given. Subsequently, the evolution equations for the cis number fraction within the fiber are developed, and consequently, the analytical solution for the light-excited strain is derived. Following that, the dynamics equation is numerically solved, and the mechanism of the controllable oscillation is elucidated. Numerical calculations show that the stable oscillation period of the bionic arm depends on the illumination period. When the illumination period aligns with the natural period of the bionic arm, the resonance is formed and the amplitude is the largest. Additionally, the effects of various parameters on forced oscillation are analyzed. The results of numerical studies on the bionic arm can provide theoretical support for the design of micro-machines, bionic devices, soft robots, biomedical devices, and energy harvesters. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

28 pages, 2841 KB  
Article
A Multi-Constraint Co-Optimization LQG Frequency Steering Method for LEO Satellite Oscillators
by Dongdong Wang, Wenhe Liao, Bin Liu and Qianghua Yu
Sensors 2025, 25(15), 4733; https://doi.org/10.3390/s25154733 - 31 Jul 2025
Viewed by 777
Abstract
High-precision time–frequency systems are essential for low Earth orbit (LEO) navigation satellites to achieve real-time (RT) centimeter-level positioning services. However, subject to stringent size, power, and cost constraints, LEO satellites are typically equipped with oven-controlled crystal oscillators (OCXOs) as the system clock. The [...] Read more.
High-precision time–frequency systems are essential for low Earth orbit (LEO) navigation satellites to achieve real-time (RT) centimeter-level positioning services. However, subject to stringent size, power, and cost constraints, LEO satellites are typically equipped with oven-controlled crystal oscillators (OCXOs) as the system clock. The inherent long-term stability of OCXOs leads to rapid clock error accumulation, severely degrading positioning accuracy. To simultaneously balance multi-dimensional requirements such as clock bias accuracy, and frequency stability and phase continuity, this study proposes a linear quadratic Gaussian (LQG) frequency precision steering method that integrates a four-dimensional constraint integrated (FDCI) model and hierarchical weight optimization. An improved system error model is refined to quantify the covariance components (Σ11, Σ22) of the LQG closed-loop control system. Then, based on the FDCI model that explicitly incorporates quantization noise, frequency adjustment, frequency stability, and clock bias variance, a priority-driven collaborative optimization mechanism systematically determines the weight matrices, ensuring a robust tradeoff among multiple performance criteria. Experiments on OCXO payload products, with micro-step actuation, demonstrate that the proposed method reduces the clock error RMS to 0.14 ns and achieves multi-timescale stability enhancement. The short-to-long-term frequency stability reaches 9.38 × 10−13 at 100 s, and long-term frequency stability is 4.22 × 10−14 at 10,000 s, representing three orders of magnitude enhancement over a free-running OCXO. Compared to conventional PID control (clock bias RMS 0.38 ns) and pure Kalman filtering (stability 6.1 × 10−13 at 10,000 s), the proposed method reduces clock bias by 37% and improves stability by 93%. The impact of quantization noise on short-term stability (1–40 s) is contained within 13%. The principal novelty arises from the systematic integration of theoretical constraints and performance optimization within a unified framework. This approach comprehensively enhances the time–frequency performance of OCXOs, providing a low-cost, high-precision timing–frequency reference solution for LEO satellites. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 3225 KB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 783
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 4471 KB  
Article
Comb-Tipped Coupled Cantilever Sensor for Enhanced Real-Time Detection of E. coli Bacteria
by Syed Ali Raza Bukhari, Elham Alaei, Zongchao Jia and Yongjun Lai
Sensors 2025, 25(13), 4145; https://doi.org/10.3390/s25134145 - 3 Jul 2025
Cited by 1 | Viewed by 3426
Abstract
The detection of particulate matter, particularly pathogenic bacteria, is essential in environmental monitoring, food safety, and clinical diagnostics. Among the various sensing techniques used, cantilever-based sensors offer a promising platform for label-free, real-time detection due to their high sensitivity. Here, we present a [...] Read more.
The detection of particulate matter, particularly pathogenic bacteria, is essential in environmental monitoring, food safety, and clinical diagnostics. Among the various sensing techniques used, cantilever-based sensors offer a promising platform for label-free, real-time detection due to their high sensitivity. Here, we present a coupled cantilever sensor incorporating interdigitated comb-shaped structures to enhance dielectrophoretic (DEP) capture of Escherichia coli in liquid samples. During operation, one cantilever is externally actuated and the other oscillates passively through fluid-mediated coupling. The sensor was experimentally evaluated across a broad concentration range from 10 to 105 cells/mL and the resonant frequency shifts were recorded for both beams. The results showed a strong linear frequency shift across all tested concentrations, without saturation. This demonstrates the sensor’s ability to detect both trace and high bacterial loads without needing recalibration. High frequency shifts of 4863 Hz were recorded for 105 cells/mL and 225 Hz for the lowest concentration of 10 cells/mL, giving a limit of detection of 10 cells/mL. The sensor also showed a higher signal to noise ratio of 265.7 compared to previously reported designs. These findings showed that the enhanced sensor design enables sensitive, linear, and reliable bioparticle detection across a wide range, making it suitable for diverse applications. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

19 pages, 3230 KB  
Article
Research on Nonlinear Pitch Control Strategy for Large Wind Turbine Units Based on Effective Wind Speed Estimation
by Longjun Li, Xiangtian Deng, Yandong Liu, Xuxin Yue, Haoran Wang, Ruibo Liu, Zhaobing Cai and Ruiqi Cai
Electronics 2025, 14(12), 2460; https://doi.org/10.3390/electronics14122460 - 17 Jun 2025
Cited by 3 | Viewed by 830
Abstract
With the increasing capacity of wind turbines, key components including the rotor diameter, tower height, and tower radius expand correspondingly. This heightened inertia extends the response time of pitch actuators during rapid wind speed variations occurring above the rated wind speed. Consequently, wind [...] Read more.
With the increasing capacity of wind turbines, key components including the rotor diameter, tower height, and tower radius expand correspondingly. This heightened inertia extends the response time of pitch actuators during rapid wind speed variations occurring above the rated wind speed. Consequently, wind turbines encounter significant output power oscillations and complex structural loading challenges. To address these issues, this paper proposes a novel pitch control strategy combining an effective wind speed estimation with the inverse system method. The developed control system aims to stabilize the power output and rotational speed despite wind speed fluctuations. Central to this approach is the estimation of the aerodynamic rotor torque using an extended Kalman filter (EKF) applied to the drive train model. The estimated torque is then utilized to compute the effective wind speed at the rotor plane via a differential method. Leveraging this wind speed estimate, the inverse system technique transforms the nonlinear wind turbine dynamics into a linearized, decoupled pseudo-linear system. This linearization facilitates the design of a more agile pitch controller. Simulation outcomes demonstrate that the proposed strategy markedly enhances the pitch response speed, diminishes output power oscillations, and alleviates structural loads, notably at the tower base. These improvements bolster operational safety and stability under the above-rated wind speed conditions. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

15 pages, 6878 KB  
Article
Finite Element Analysis of Electromagnetic Characteristics of a Single-Phase Permanent Magnet Linear Oscillation Actuator
by Hongbin Zhang, Zhaoxin Wang, Minshuo Chen, Zhan Shen, Haitao Yu and Zhike Xu
Sensors 2025, 25(2), 452; https://doi.org/10.3390/s25020452 - 14 Jan 2025
Cited by 2 | Viewed by 2064
Abstract
The electromagnetic characteristics of a single-phase permanent magnet linear oscillation actuator are analyzed by the finite element method. Firstly, the basic structure and operation principle of the linear oscillation actuator are introduced. The internal stator slot and arc tooth are used to reduce [...] Read more.
The electromagnetic characteristics of a single-phase permanent magnet linear oscillation actuator are analyzed by the finite element method. Firstly, the basic structure and operation principle of the linear oscillation actuator are introduced. The internal stator slot and arc tooth are used to reduce the detent force. According to the principle of electromagnetic fields, the electromagnetic field equation is listed and the function of the motor is deduced. At the same time, the eight-node hexahedral element is used to calculate the listed universal functions, and the inductance, flux linkage, induced electromotive force and electromagnetic force of the motor are deduced. The electromagnetic field of the motor is simulated by two-dimensional and three-dimensional finite element methods, and the accuracy of the calculation results of the electromagnetic characteristics of the cylindrical linear oscillation motor by the two methods is compared and analyzed. Finally, an experimental prototype was developed and the no-load characteristics of the motor were tested using the existing linear motor towing method. By comparing the experimental and simulation results, the accuracy of the theoretical analysis and the rationality of the motor design are verified. Full article
Show Figures

Figure 1

17 pages, 2821 KB  
Article
On the Piezomagnetism of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields: Height Modulation in the Vicinity of an Operating Point by Time-Harmonic Fields
by Gašper Glavan, Inna A. Belyaeva and Mikhail Shamonin
Polymers 2024, 16(19), 2706; https://doi.org/10.3390/polym16192706 - 25 Sep 2024
Cited by 1 | Viewed by 6734
Abstract
Soft magnetoactive elastomers (MAEs) are currently considered to be promising materials for actuators in soft robotics. Magnetically controlled actuators often operate in the vicinity of a bias point. Their dynamic properties can be characterized by the piezomagnetic strain coefficient, which is a ratio [...] Read more.
Soft magnetoactive elastomers (MAEs) are currently considered to be promising materials for actuators in soft robotics. Magnetically controlled actuators often operate in the vicinity of a bias point. Their dynamic properties can be characterized by the piezomagnetic strain coefficient, which is a ratio of the time-harmonic strain amplitude to the corresponding magnetic field strength. Herein, the dynamic strain response of a family of MAE cylinders to the time-harmonic (frequency of 0.1–2.5 Hz) magnetic fields of varying amplitude (12.5 kA/m–62.5 kA/m), superimposed on different bias magnetic fields (25–127 kA/m), is systematically investigated for the first time. Strain measurements are based on optical imaging with sub-pixel resolution. It is found that the dynamic strain response of MAEs is considerably different from that in conventional magnetostrictive polymer composites (MPCs), and it cannot be described by the effective piezomagnetic constant from the quasi-static measurements. The obtained maximum values of the piezomagnetic strain coefficient (∼102 nm/A) are one to two orders of magnitude higher than in conventional MPCs, but there is a significant phase lag (35–60°) in the magnetostrictive response with respect to an alternating magnetic field. The experimental dependencies of the characteristics of the alternating strain on the amplitude of the alternating field, bias field, oscillation frequency, and aspect ratio of cylinders are given for several representative examples. It is hypothesized that the main cause of observed peculiarities is the non-linear viscoelasticity of these composite materials. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites II)
Show Figures

Graphical abstract

13 pages, 4323 KB  
Article
Experimental Determination of Pitch Damping Coefficient Using Free Oscillation Method
by Ionuț Bunescu, Mihăiță-Gilbert Stoican and Mihai-Vlăduț Hothazie
Aerospace 2024, 11(7), 579; https://doi.org/10.3390/aerospace11070579 - 16 Jul 2024
Cited by 2 | Viewed by 3102
Abstract
This paper outlines an experimental investigation conducted at the INCAS trisonic wind tunnel, focusing on the determination of pitch damping coefficient. The model used for this investigation is the Basic Finner Model, a standard model for dynamic tests which consists in a cone-cylinder [...] Read more.
This paper outlines an experimental investigation conducted at the INCAS trisonic wind tunnel, focusing on the determination of pitch damping coefficient. The model used for this investigation is the Basic Finner Model, a standard model for dynamic tests which consists in a cone-cylinder body with four rectangular fins. The study aims to evaluate the influence of various parameters—including the Mach number, angle of attack, reduced frequency, center of rotation, and roll angle—on pitch damping coefficient. The employed method for determining these coefficients is the free oscillation method which consists in measuring the model oscillation in free stream after an initial perturbation. In order to perform these dynamic tests in the wind tunnel, a dedicated rig was developed to initiate the model’s oscillation using a linear servo-actuator and to record its oscillation using a strain gauge. The results obtained from the experiments illustrate how each parameter impacts the pitch damping coefficient, highlighting the precision of the measurements. The paper’s conclusion presents that the developed rig and the method used provide accurate results, and the variation in different parameters can change the damping coefficient. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 7759 KB  
Article
Trajectory Planning through Model Inversion of an Underactuated Spatial Gantry Crane Moving in Structured Cluttered Environments
by Jason Bettega, Dario Richiedei and Iacopo Tamellin
Actuators 2024, 13(5), 176; https://doi.org/10.3390/act13050176 - 7 May 2024
Cited by 3 | Viewed by 1843
Abstract
Handling suspended loads in cluttered environments is critical due to the oscillations arising while the load is traveling. Exploiting active control algorithms is often unviable in industrial applications, due to the necessity of installing sensors on the load side, which is expensive and [...] Read more.
Handling suspended loads in cluttered environments is critical due to the oscillations arising while the load is traveling. Exploiting active control algorithms is often unviable in industrial applications, due to the necessity of installing sensors on the load side, which is expensive and often impractical due to technological limitations. In this light, this paper proposes a trajectory planning method for underactuated, non-flat, non-minimum phase spatial gantry crane moving in structured cluttered environments. The method relies on model inversion. First, the system dynamics is partitioned into actuated and unactuated coordinates and then the load displacements are described as a non-linear separable function of these. The unactuated dynamic is unstable; hence, the displacement, velocity, and acceleration references are modified through the output redefinition technique. Finally, platform trajectory is computed, and the desired displacements of the load are obtained. The effectiveness of the proposed method is assessed through numerical and experimental tests performed on a laboratory testbed composed by an Adept Quattro robot moving a pendulum. The load is moved in a cluttered environment, and collisions are avoided while simultaneously tracking the prescribed trajectory effectively. Full article
(This article belongs to the Special Issue Dynamics and Control of Underactuated Systems)
Show Figures

Figure 1

26 pages, 45915 KB  
Article
Analysis of a Novel Fluidic Oscillator under Several Dimensional Modifications
by Kavoos Karimzadegan, Masoud Mirzaei and Josep M. Bergada
Appl. Sci. 2024, 14(5), 1690; https://doi.org/10.3390/app14051690 - 20 Feb 2024
Cited by 2 | Viewed by 2158
Abstract
To activate the boundary layer in Active Flow Control (AFC) applications, the use of pulsating flow has notable energy advantages over constant blowing/suction jet injections. For a given AFC application, five parameters, jet location and width, inclination angle, frequency of injection, and the [...] Read more.
To activate the boundary layer in Active Flow Control (AFC) applications, the use of pulsating flow has notable energy advantages over constant blowing/suction jet injections. For a given AFC application, five parameters, jet location and width, inclination angle, frequency of injection, and the momentum coefficient, need to be tuned. Presently, two main devices are capable of injecting pulsating flow with a momentum coefficient sufficient to delay the boundary layer separation: these are zero-net-mass-flow Actuators (ZNMFAs) and fluidic oscillators (FOs). In the present study, a novel FO configuration is analyzed for the first time at relatively high Reynolds numbers, and fluid is considered to be incompressible. After obtaining the typical linear correlation between the incoming Reynolds number and the outlet flow oscillating frequency, the effects of dimensional modifications on outlet width and mixing chamber wedge inclination angle are addressed. Modifications of the outlet width were observed to create large variations in FO performance. The origin of self-sustained oscillations is also analyzed in the present manuscript and greatly helps in clarifying the forces acting on the jet inside the mixing chamber. In fact, we can conclude by saying that the current FO configuration is pressure-driven, although the mass flow forces appear to be much more relevant than in previously studied FO configurations. Full article
(This article belongs to the Special Issue Advances in Active and Passive Techniques for Fluid Flow Manipulation)
Show Figures

Figure 1

14 pages, 28583 KB  
Article
Damping of Oscillations of a Rotary Pendulum System
by Adam Gavula, Peter Hubinský and Andrej Babinec
Appl. Sci. 2023, 13(21), 11946; https://doi.org/10.3390/app132111946 - 1 Nov 2023
Cited by 3 | Viewed by 4057
Abstract
This paper describes an innovative design based on the spectral approach of a novel shaper that eliminates frequency components that induce unwanted residual oscillations in various flexible mechanical systems, such as tower cranes or chain carousels, which are vital to many manufacturing and [...] Read more.
This paper describes an innovative design based on the spectral approach of a novel shaper that eliminates frequency components that induce unwanted residual oscillations in various flexible mechanical systems, such as tower cranes or chain carousels, which are vital to many manufacturing and material-handling processes. However, their physical structure leads to flexible effects that limit their usefulness. Apart from the circular motion problem, control is provided by a single actuator, which makes it a so-called underactuated system. The input signal needs to be modified so that the spectral components from several interconnected degrees of freedom are considered together during shaper design, which increases the complexity of this task since one of its components induces nonlinear behavior. This means that traditional shaping techniques, based on linear theory, fail to provide good performance over the whole input range. The underdamped dynamics of the model and the effect of nonlinearities on the spectrum of the final signal are examined; the proposed method for application as a command shaping control technique is applied; and its effectiveness is analyzed by simulation and real-time implementation. The theoretical results verified on an experimental crane system confirm the expected oscillation phenomenon and show that the designed nonlinear shaper can reduce the payload swing significantly. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

12 pages, 2323 KB  
Article
Design and Analysis of the Model Based Control System for an MRE Axisymmetric Actuator
by Paweł Czopek and Jakub Bernat
Electronics 2023, 12(21), 4386; https://doi.org/10.3390/electronics12214386 - 24 Oct 2023
Viewed by 1469
Abstract
The magnetorheological elastomer membrane is an interesting kind of smart material that is gaining new innovative applications. This work is focused on the design of the control system for magnetorheological elastomer actuators. In general, the plant is characterized by fast oscillations and slow [...] Read more.
The magnetorheological elastomer membrane is an interesting kind of smart material that is gaining new innovative applications. This work is focused on the design of the control system for magnetorheological elastomer actuators. In general, the plant is characterized by fast oscillations and slow drift. Therefore, controllers utilize the described features to obtain the solution aimed at, which makes them unique. We analyze two approaches based on output feedback with state estimation. The control algorithms have different observers to estimate the state. The first is a Linear Extended State Observer, which is applied to reject the disturbances in a case with a simple model. The second is a Linear State Observer, which is used to estimate a state based on the plant model. Furthermore, in both cases, we have the same proportional-derivative controller after decoupling the dynamics. The main goal of the paper is to examine both controllers for the magnetorheological actuator. Therefore, the designed control systems are verified in a series of experiments. Full article
Show Figures

Figure 1

Back to TopTop