Trajectory Planning through Model Inversion of an Underactuated Spatial Gantry Crane Moving in Structured Cluttered Environments
Abstract
:1. Introduction
- A complex system, which is not common in the literature, is considered here. The system features an additional degree of freedom with respect to the previous work of the authors [9], and it allows us to impose an additional controlled output and hence perform a spatial task.
- A comprehensive approach is proposed to handle the problem of tip control in the presence of structured obstacles. The resulting method therefore covers the issue of designing smooth reference trajectories and translates them into suitable commanded trajectories for the actuated coordinates.
- The experimental application to some complex test cases—by exploiting an industrial setup—is proposed, and experimental benchmarking against other methods is carried out.
2. Model of the System
3. The Proposed Trajectory Planning Method
3.1. Method Formulation
3.2. Analysis of the Internal Dynamics
3.3. Redefinition of the Output
4. Method Assessment
4.1. Simulations and Experiments
- A spatial Archimedean spiral (Section 4.2).
- A complex path with obstacles (Section 4.3).
4.2. Archimedean Spiral: Results
4.3. Path with Obstacles: Results
- 1st part: Rest-to-motion 5th degree polynomial.
- 2nd part: Constant speed along two axes (null on the third).
- 3rd part: Spline 4-3-4 trajectory.
- 4th part: Constant speed along an axis (null on the other two axes).
- 5th part: Motion-to-rest 5th degree polynomial.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mojallizadeh, M.R.; Brogliato, B.; Prieur, C. Modeling and Control of Overhead Cranes: A Tutorial Overview and Perspectives. Annu. Rev. Control 2023, 56, 100877. [Google Scholar] [CrossRef]
- Richiedei, D.; Tamellin, I.; Trevisani, A. Beyond the Tuned Mass Damper: A Comparative Study of Passive Approaches to Vibration Absorption through Antiresonance Assignment. Arch. Comput. Methods Eng. 2021, 29, 519–544. [Google Scholar] [CrossRef]
- Devasia, S. Optimal Output Trajectory Redesign for Invertible Systems. J. Guid. Control Dyn. 1996, 19, 1189–1191. [Google Scholar] [CrossRef]
- Devasia, S.; Chen, D.; Paden, B. Nonlinear Inversion-Based Output Tracking. IEEE Trans. Autom. Control 1996, 41, 930–942. [Google Scholar] [CrossRef]
- Tonan, M.; Doria, A.; Bottin, M.; Rosati, G. Oscillation-Free Point-to-Point Motions of Planar Differentially Flat under-Actuated Robots: A Laplace Transform Method. Robotica 2024, 42, 1262–1280. [Google Scholar] [CrossRef]
- Bettega, J.; Richiedei, D.; Tamellin, I.; Trevisani, A. Stable Inverse Dynamics for Feedforward Control of Nonminimum-Phase Underactuated Systems. J. Mech. Robot. 2023, 15, 031002. [Google Scholar] [CrossRef]
- Blajer, W.; Kołodziejczyk, K. Control of Underactuated Mechanical Systems with Servo-Constraints. Nonlinear Dyn. 2007, 50, 781–791. [Google Scholar] [CrossRef]
- Seifried, R.; Blajer, W. Analysis of Servo-Constraint Problems for Underactuated Multibody Systems. Mech. Sci. 2013, 4, 113–129. [Google Scholar] [CrossRef]
- Bettega, J.; Richiedei, D.; Tamellin, I.; Trevisani, A. Model Inversion for Precise Path and Trajectory Tracking in an Underactuated, Non-Minimum Phase, Spatial Overhead Crane. J. Vib. Eng. Technol. 2023, 11, 3841–3857. [Google Scholar] [CrossRef]
- Bastos, G. Analysis of Internal Dynamics in Trajectory Tracking Problems. Int. J. Dyn. Control 2023, 11, 2870–2885. [Google Scholar] [CrossRef]
- De Luca, A.; Lucibello, P.; Ulivi, A.G. Inversion Techniques for Trajectory Control of Flexible Robot Arms. J. Robot. Syst. 1989, 6, 325–344. [Google Scholar] [CrossRef]
- Seifried, R. Two Approaches for Feedforward Control and Optimal Design of Underactuated Multibody Systems. Multibody Syst. Dyn. 2012, 27, 75–93. [Google Scholar] [CrossRef]
- Seifried, R. Integrated Mechanical and Control Design of Underactuated Multibody Systems. Nonlinear Dyn. 2012, 67, 1539–1557. [Google Scholar] [CrossRef]
- Morlock, M.; Meyer, N.; Pick, M.-A.; Seifried, R. Real-Time Trajectory Tracking Control of a Parallel Robot with Flexible Links. Mech. Mach. Theory 2021, 158, 104220. [Google Scholar] [CrossRef]
- Berger, T.; Lanza, L. Output Tracking for a Non-Minimum Phase Robotic Manipulator. IFAC-Pap. 2021, 54, 178–185. [Google Scholar] [CrossRef]
- Berger, T.; Drücker, S.; Lanza, L.; Reis, T.; Seifried, R. Tracking Control for Underactuated Non-Minimum Phase Multibody Systems. Nonlinear Dyn. 2021, 104, 3671–3699. [Google Scholar] [CrossRef]
- Bastos, G.; Brüls, O. Analysis of Open-Loop Control Design and Parallel Computation for Underactuated Manipulators. Acta Mech. 2020, 231, 2439–2456. [Google Scholar] [CrossRef]
- Boscariol, P.; Richiedei, D. Robust Point-to-Point Trajectory Planning for Nonlinear Underactuated Systems: Theory and Experimental Assessment. Robot. Comput. Integr. Manuf. 2018, 50, 256–265. [Google Scholar] [CrossRef]
- Boschetti, G.; Caracciolo, R.; Richiedei, D.; Trevisani, A. A Non-Time Based Controller for Load Swing Damping and Path-Tracking in Robotic Cranes. J. Intell. Robot. Syst. 2014, 76, 201–217. [Google Scholar] [CrossRef]
- Kołodziejczyk, K.; Blajer, W. Motion Planning and Control of Gantry Cranes in Cluttered Work Environment. IET Control Theory Appl. 2007, 1, 1370–1379. [Google Scholar] [CrossRef]
- Blajer, W.; Kołodziejczyk, K. Improved DAE Formulation for Inverse Dynamics Simulation of Cranes. Multibody Syst. Dyn. 2011, 25, 131–143. [Google Scholar] [CrossRef]
- Vu, M.N.; Lobe, A.; Beck, F.; Weingartshofer, T.; Hartl-Nesic, C.; Kugi, A. Fast Trajectory Planning and Control of a Lab-Scale 3D Gantry Crane for a Moving Target in an Environment with Obstacles. Control Eng. Pract. 2022, 126, 105255. [Google Scholar] [CrossRef]
- Iftikhar, S.; Faqir, O.J.; Kemgan, E.C. Nonlinear Model Predictive Control of an Overhead Laboratory-Scale Gantry Crane with Obstacle Avoidance. In Proceedings of the 2019 IEEE Conference on Control Technology and Applications (CCTA), Hong Kong, China, 19–21 August 2019; pp. 382–387. [Google Scholar]
- Zhang, W.; Chen, H.; Chen, H.; Liu, W. A Time Optimal Trajectory Planning Method for Double-Pendulum Crane Systems with Obstacle Avoidance. IEEE Access 2021, 9, 13022–13030. [Google Scholar] [CrossRef]
- Boschetti, G.; Caracciolo, R.; Richiedei, D.; Trevisani, A. Moving the Suspended Load of an Overhead Crane along a Pre-Specified Path: A Non-Time Based Approach. Robot. Comput. Integr. Manuf. 2014, 30, 256–264. [Google Scholar] [CrossRef]
- Blajer, W. The Use of Servo-Constraints in the Inverse Dynamics Analysis of Underactuated Multibody Systems. J. Comput. Nonlinear Dyn. 2014, 9, 041008. [Google Scholar] [CrossRef]
- Oriolo, G.; Nakamura, Y. Control of Mechanical Systems with Second-Order Nonholonomic Constraints: Underactuated Manipulators. In Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, UK, 11–13 December 1991; pp. 2398–2403. [Google Scholar]
- Berger, T. Tracking with Prescribed Performance for Linear Non-Minimum Phase Systems. Automatica 2020, 115, 108909. [Google Scholar] [CrossRef]
- García de Jalón, J. Kinematic and Dynamic Simulation of Multibody Systems The Real-Time Challenge; Springer: New York, NY, USA, 1994; Volume 71. [Google Scholar]
- Peláez, G.; Pelaez, G.; Perez, J.M.; Vizán, A.; Bautista, E. Input Shaping Reference Commands for Trajectory Following Cartesian Machines. Control Eng. Pr. 2005, 13, 941–958. [Google Scholar] [CrossRef]
- Singhose, W. Command Shaping for Flexible Systems: A Review of the First 50 Years. Int. J. Precis. Eng. Manuf. 2009, 10, 153–168. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Mx, My, Mz | [kg] | 30, 30, 30 |
m | [kg] | 0.2235 |
l | [m] | 0.7354 |
cx, cy, cz | [Ns/m] | 0.5, 0.5, 0.5 |
cθx, cθy | [Nms/rad] | 0.5 × 10−3, 0.5 × 10−3 |
g | [m/s2] | 9.80665 |
Part | Point Number | Coordinates | Time [s] | ||
---|---|---|---|---|---|
x [mm] | y [mm] | z [mm] | |||
1 | 1 | −300 | 300 | 0 | 0 |
2 | −290 | 200 | 200 | 2 | |
2 | 3 | −290 | −250 | 50 | 5 |
3 | 4 | −150 | −300 | 20 | 6 |
5 | −20 | −150 | 20 | 7 | |
6 | 0 | −100 | 120 | 8 | |
7 | 0 | 100 | 120 | 9 | |
8 | 20 | 140 | 20 | 10 | |
9 | 10 | 240 | 10 | 11 | |
10 | −80 | 300 | 10 | 12 | |
11 | −160 | 220 | 10 | 13 | |
12 | −80 | 140 | 10 | 14 | |
13 | 0 | 220 | 20 | 15 | |
14 | −80 | 300 | 10 | 16 | |
15 | −200 | 200 | 10 | 17 | |
16 | −200 | 30 | 20 | 18 | |
17 | −100 | 0 | 120 | 19 | |
18 | 100 | 0 | 120 | 20 | |
19 | 200 | −50 | 10 | 21 | |
20 | 50 | −150 | 40 | 22 | |
21 | 160 | −300 | 150 | 23 | |
4 | 22 | 290 | −220 | 200 | 24 |
5 | 23 | 290 | 100 | 200 | 27 |
24 | 300 | 300 | 0 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bettega, J.; Richiedei, D.; Tamellin, I. Trajectory Planning through Model Inversion of an Underactuated Spatial Gantry Crane Moving in Structured Cluttered Environments. Actuators 2024, 13, 176. https://doi.org/10.3390/act13050176
Bettega J, Richiedei D, Tamellin I. Trajectory Planning through Model Inversion of an Underactuated Spatial Gantry Crane Moving in Structured Cluttered Environments. Actuators. 2024; 13(5):176. https://doi.org/10.3390/act13050176
Chicago/Turabian StyleBettega, Jason, Dario Richiedei, and Iacopo Tamellin. 2024. "Trajectory Planning through Model Inversion of an Underactuated Spatial Gantry Crane Moving in Structured Cluttered Environments" Actuators 13, no. 5: 176. https://doi.org/10.3390/act13050176
APA StyleBettega, J., Richiedei, D., & Tamellin, I. (2024). Trajectory Planning through Model Inversion of an Underactuated Spatial Gantry Crane Moving in Structured Cluttered Environments. Actuators, 13(5), 176. https://doi.org/10.3390/act13050176