Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (536)

Search Parameters:
Keywords = linear matrix inequalities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4336 KiB  
Article
A Hybrid Flying Robot Utilizing Water Thrust and Aerial Propellers: Modeling and Motion Control System Design
by Thien-Dinh Nguyen, Cao-Tri Dinh, Tan-Ngoc Nguyen, Jung-Suk Park, Thinh Huynh and Young-Bok Kim
Actuators 2025, 14(7), 350; https://doi.org/10.3390/act14070350 - 17 Jul 2025
Abstract
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such [...] Read more.
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such tasks, existing solutions like drones and water-powered robots inherited fundamental limitations, making their use ineffective. For instance, drones are constrained by limited flight endurance, while water-powered robots struggle with horizontal motion due to the couplings between translational motions. The proposed hydro-aerodynamic hybrid actuation in this study addresses these significant drawbacks by utilizing water thrust for sustainable vertical propulsion and propeller-based actuation for more controllable horizontal motion. The characteristics and mathematical models of the proposed flying robots are presented in detail. A state feedback controller and a proportional–integral–derivative (PID) controller are designed and implemented in order to govern the proposed robot’s motion. In particular, a linear matrix inequality approach is also proposed for the former design so that a robust performance is ensured. Simulation studies are conducted where a purely water-powered flying robot using a nozzle rotation mechanism is deployed for comparison, to evaluate and validate the feasibility of the flying robot. Results demonstrate that the proposed system exhibits superior performance in terms of stability and tracking, even in the presence of external disturbances. Full article
(This article belongs to the Special Issue Actuator-Based Control Strategies for Marine Vehicles)
Show Figures

Figure 1

14 pages, 380 KiB  
Article
Stability Analysis of a Mathematical Model for Infection Diseases with Stochastic Perturbations
by Marina Bershadsky and Leonid Shaikhet
Mathematics 2025, 13(14), 2265; https://doi.org/10.3390/math13142265 - 14 Jul 2025
Viewed by 85
Abstract
A well-known model of infectious diseases, described by a nonlinear system of delay differential equations, is investigated under the influence of stochastic perturbations. Using the general method of Lyapunov functional construction combined with the linear matrix inequality (LMI) approach, we derive sufficient conditions [...] Read more.
A well-known model of infectious diseases, described by a nonlinear system of delay differential equations, is investigated under the influence of stochastic perturbations. Using the general method of Lyapunov functional construction combined with the linear matrix inequality (LMI) approach, we derive sufficient conditions for the stability of the equilibria of the considered system. Numerical simulations illustrating the system’s behavior under stochastic perturbations are provided to support the thoretical findings. The proposed method for stability analysis is broadly applicable to other systems of nonlinear stochastic differential equations across various fields. Full article
Show Figures

Figure 1

20 pages, 2198 KiB  
Article
Ellipsoidal-Set Design of Robust and Secure Control Against Denial-of-Service Cyber Attacks in Electric-Vehicle Induction Motor Drives
by Ehab H. E. Bayoumi, Hisham M. Soliman and Sangkeum Lee
Technologies 2025, 13(7), 289; https://doi.org/10.3390/technologies13070289 - 7 Jul 2025
Viewed by 195
Abstract
Electric vehicles face increasing cybersecurity threats that can compromise the integrity of their electric drive systems, especially under Denial-of-Service (DoS) attacks. To precisely regulate torque and speed in electric vehicles, vector-controlled induction motor drives rely on continuous communication between controllers and sensors. This [...] Read more.
Electric vehicles face increasing cybersecurity threats that can compromise the integrity of their electric drive systems, especially under Denial-of-Service (DoS) attacks. To precisely regulate torque and speed in electric vehicles, vector-controlled induction motor drives rely on continuous communication between controllers and sensors. This flow could be broken by a DoS attack, which could result in unstable motor operation or complete drive system failure. To address this, we propose a novel ellipsoidal-set-based state feedback controller with integral action, formulated via linear matrix inequalities (LMIs). This controller improves disturbance rejection, maintains system stability under DoS-induced input disruptions, and enhances security by constraining the system response within a bounded invariant set. The proposed tracker has a faster dynamic reaction and better disturbance attenuation capabilities than the traditional H control method. The effectiveness of the proposed controller is validated through a series of diverse testing scenarios. Full article
(This article belongs to the Special Issue Smart Transportation and Driving)
Show Figures

Figure 1

15 pages, 1239 KiB  
Article
Extremum Seeking for the First Derivative of Nonlinear Maps with Constant Delays via a Time-Delay Approach
by Jianzhong Li, Hongye Su and Yang Zhu
Mathematics 2025, 13(13), 2196; https://doi.org/10.3390/math13132196 - 4 Jul 2025
Viewed by 152
Abstract
This paper introduces an extremum seeking (ES) scheme for the unknown map’s first derivative by tailoring a demodulation signal in which the closed-loop system is subject to constant transmission delays. Unlike most publications that manage delays using predictor-based methods, we are concerned with [...] Read more.
This paper introduces an extremum seeking (ES) scheme for the unknown map’s first derivative by tailoring a demodulation signal in which the closed-loop system is subject to constant transmission delays. Unlike most publications that manage delays using predictor-based methods, we are concerned with the delay-robustness of the introduced ES system via the newly developed time-delay approach. The original ES system is transformed to a nonlinear retarded-type plant with disturbances and the stability condition in the form of linear matrix inequalities is achieved. When the related bounds of the nonlinear map are not known, a rigorous practical stability proof is provided. Second, and more importantly, under the availability of prior knowledge about the nonlinear map, we are able to provide a quantitative calculation on the maximum allowable delay, the upper bound of the dither period, and the ultimate seeking error. Numerical examples are offered to exemplify the effectiveness of the proposed method. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

16 pages, 1648 KiB  
Article
Robust Control and Energy Management in Wind Energy Systems Using LMI-Based Fuzzy H∞ Design and Neural Network Delay Compensation
by Kaoutar Lahmadi, Oumaima Lahmadi, Soufiane Jounaidi and Ismail Boumhidi
Processes 2025, 13(7), 2097; https://doi.org/10.3390/pr13072097 - 2 Jul 2025
Viewed by 260
Abstract
This study presents advanced control and energy management strategies for uncertain wind energy systems using a Takagi–Sugeno (T-S) fuzzy modeling framework. To address key challenges, such as system uncertainties, external disturbances, and input delays, the study integrates a fuzzy H∞ robust control approach [...] Read more.
This study presents advanced control and energy management strategies for uncertain wind energy systems using a Takagi–Sugeno (T-S) fuzzy modeling framework. To address key challenges, such as system uncertainties, external disturbances, and input delays, the study integrates a fuzzy H∞ robust control approach with a neural network-based delay compensation mechanism. A fuzzy observer-based H∞ tracking controller is developed to enhance robustness and minimize the impact of disturbances. The stability conditions are rigorously derived using a quadratic Lyapunov function, H∞ performance criteria, and Young’s inequality and are expressed as Linear Matrix Inequalities (LMIs) for computational efficiency. In parallel, a neural network-based controller is employed to compensate for the input delays introduced by online learning processes. Furthermore, an energy management layer is incorporated to regulate the power flow and optimize energy utilization under varying operating conditions. The proposed framework effectively combines control and energy coordination to improve the systems’ performance. The simulation results confirm the effectiveness of the proposed strategies, demonstrating enhanced stability, robustness, delay tolerance, and energy efficiency in wind energy systems. Full article
Show Figures

Figure 1

18 pages, 2714 KiB  
Article
Quasi-LPV Approach for the Stabilization of an Innovative Quadrotor
by Said Chaabani and Naoufel Azouz
Modelling 2025, 6(3), 60; https://doi.org/10.3390/modelling6030060 - 1 Jul 2025
Viewed by 286
Abstract
In recent decades, the deployment of quadcopters has significantly expanded, particularly in outdoor applications such as parcel delivery. These missions require highly stable aerial platforms capable of maintaining balance under diverse environmental conditions, ensuring the safe operation of both the drone and its [...] Read more.
In recent decades, the deployment of quadcopters has significantly expanded, particularly in outdoor applications such as parcel delivery. These missions require highly stable aerial platforms capable of maintaining balance under diverse environmental conditions, ensuring the safe operation of both the drone and its payload. This paper focuses on the stabilization of a quadcopter designed for outdoor use. A detailed dynamic model of a compact vertical takeoff and landing (VTOL) drone forms the basis for a non-linear control strategy targeting stability during the critical takeoff phase. The control law is designed using a quasi-linear parameter-varying (quasi-LPV) model that captures the system’s non-linear dynamics. Lyapunov theory and linear matrix inequalities (LMIs) are employed to validate the stability and design the controller. Numerical simulations demonstrate the controller’s effectiveness, and a comparative study is conducted to benchmark its performance against a reference quadrotor model. Full article
Show Figures

Figure 1

19 pages, 910 KiB  
Article
Non-Fragile Observer-Based Dissipative Control of Active Suspensions for In-Wheel Drive EVs with Input Delays and Faults
by A. Srinidhi, R. Raja, J. Alzabut, S. Vimal Kumar and M. Niezabitowski
Automation 2025, 6(3), 28; https://doi.org/10.3390/automation6030028 - 30 Jun 2025
Viewed by 280
Abstract
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, [...] Read more.
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, often address these challenges in isolation and with increased conservatism. In contrast, this work introduces a unified framework that integrates fault-tolerant control, delay compensation, and robust state estimation within a dissipativity-based setting. A novel dissipativity analysis tailored to Electric Vehicle Active Suspension Systems (EV-ASSs) is developed, with nonzero delay bounds explicitly incorporated into the stability conditions. The observer is designed to ensure accurate state estimation under gain perturbations, enabling robust full-state feedback control. Stability and performance criteria are formulated via Linear Matrix Inequalities (LMIs) using advanced integral inequalities to reduce conservatism. Numerical simulations validate the proposed method, demonstrating effective fault-tolerant performance, disturbance rejection, and precise state reconstruction, thereby extending beyond the capabilities of traditional control frameworks. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

21 pages, 1675 KiB  
Article
H Preview Tracking Control of Time-Delay Discrete Systems and Its Application in Nuclear Reactor Problems
by Fucheng Liao, Hao Xie, Xianchun Meng, Jiang Wu, Yucheng Wei and Jiamei Deng
Axioms 2025, 14(7), 505; https://doi.org/10.3390/axioms14070505 - 27 Jun 2025
Viewed by 176
Abstract
Improving the tracking accuracy and effectiveness of the pressurizer control system with respect to the reference signal is an effective method to enhance the safe and stable operation of nuclear reactors. This paper applies preview tracking control to the pressurizer control system. For [...] Read more.
Improving the tracking accuracy and effectiveness of the pressurizer control system with respect to the reference signal is an effective method to enhance the safe and stable operation of nuclear reactors. This paper applies preview tracking control to the pressurizer control system. For the simplified control system model of the pressurizer, we first study its general structure, which can be characterized as a discrete-time system with state delay. Unlike conventional control systems, the system considered in this study features control inputs that are represented as cumulative sums of historical inputs. In order to design a preview tracking controller for such systems, we adopt the difference method and state augmentation technique and introduce an equality containing the reference signal and a discrete integrator to construct an augmented error system. Simultaneously, a performance signal is defined to evaluate the impact of external disturbances on system performance. Thus, the preview tracking control problem of the original system is reformulated as an H control problem for the augmented error system. Subsequently, a memory-based state feedback controller is designed for the augmented error system. Then, by employing the Lyapunov function and linear matrix inequality (LMI), the H preview tracking controller for the original system is derived. Finally, the proposed control strategy is applied to a pressurizer control system model, and numerical simulations are conducted to validate the effectiveness of the proposed controller by using MATLAB (R2023a, MathWorks, Natick, MA, USA). Full article
Show Figures

Figure 1

19 pages, 3066 KiB  
Article
A Convex Constraint Approach for High-Type Control Loop Design
by Chao Liu, Xiaoxia Qiu and Yao Mao
Electronics 2025, 14(12), 2491; https://doi.org/10.3390/electronics14122491 - 19 Jun 2025
Viewed by 252
Abstract
This paper proposes a high-type control loop design method for LQR-LMI based on Lyapunov and polyhedral model theory. The high-type control loop design problem is simplified into a convex constraint problem, which achieves superior tracking performance. In this framework, the input amplitude of [...] Read more.
This paper proposes a high-type control loop design method for LQR-LMI based on Lyapunov and polyhedral model theory. The high-type control loop design problem is simplified into a convex constraint problem, which achieves superior tracking performance. In this framework, the input amplitude of the control signal, the poles of the closed-loop system, the suppression of external interference and the perturbation of internal parameters are considered, and the linear matrix inequality (LMI) method is effectively used to solve the problems. In this paper, the polyhedral model control theory is introduced to characterize the uncertainty of the system for the change of model parameters of the controlled plant. Aiming at the problem of external disturbance suppression, the H2/H control method is introduced into the system. These control methods provide the basis for the design of the high-type control loop. Compared with the simulation results of other optimization algorithms, the effectiveness and superiority of the controller parameter tuning rules in the proposed high-type control loop are verified. Full article
Show Figures

Figure 1

28 pages, 1246 KiB  
Article
Event-Based Dissipative Fuzzy Tracking Control for Nonlinear Networked Systems with Dynamic Quantization and Stochastic Deception Attacks
by Shuai Fang, Zhimin Li and Tianwei Jiang
Processes 2025, 13(6), 1902; https://doi.org/10.3390/pr13061902 - 16 Jun 2025
Viewed by 247
Abstract
This paper investigates the event-triggered dissipative fuzzy tracking control problem of nonlinear networked systems with dynamic quantization and stochastic deception attacks, where the Takagi–Sugeno (T-S) fuzzy system theory is utilized to represent the studied nonlinear networked systems. The event-triggered scheme and the dynamic [...] Read more.
This paper investigates the event-triggered dissipative fuzzy tracking control problem of nonlinear networked systems with dynamic quantization and stochastic deception attacks, where the Takagi–Sugeno (T-S) fuzzy system theory is utilized to represent the studied nonlinear networked systems. The event-triggered scheme and the dynamic quantization scheme with general online adjustment rule are employed to significantly decrease the data transmission amount and achieve the rational use of the limited communication and computation resources. A stochastic variable satisfying the Bernoulli random binary distribution is utilized to model the phenomenon of the stochastic deception attacks. The main purpose of this paper is to develop a secure event-triggered quantized tracking control scheme. This scheme guarantees the stochastic stability and prescribed dissipative tracking performance of the closed-loop system under stochastic deception attacks. Moreover, the design conditions for the desired static output feedback tracking controller are formulated in the form of linear matrix inequalities based on the matrix inequality decoupling strategy. Finally, two examples are exploited to illustrate the effectiveness of the developed tracking control scheme. Full article
(This article belongs to the Special Issue Stability and Optimal Control of Linear Systems)
Show Figures

Figure 1

24 pages, 2289 KiB  
Article
Advanced Control Strategy for Induction Motors Using Dual SVM-PWM Inverters and MVT-Based Observer
by Omar Allag, Abdellah Kouzou, Meriem Allag, Ahmed Hafaifa, Jose Rodriguez and Mohamed Abdelrahem
Machines 2025, 13(6), 520; https://doi.org/10.3390/machines13060520 - 14 Jun 2025
Viewed by 330
Abstract
This paper introduces a novel field-oriented control (FOC) strategy for an open-end stator three-phase winding induction motor (OEW-TP-IM) using dual space vector modulation-pulse width modulation (SVM-PWM) inverters. This configuration reduces common mode voltage at the motor’s terminals, enhancing efficiency and reliability. The study [...] Read more.
This paper introduces a novel field-oriented control (FOC) strategy for an open-end stator three-phase winding induction motor (OEW-TP-IM) using dual space vector modulation-pulse width modulation (SVM-PWM) inverters. This configuration reduces common mode voltage at the motor’s terminals, enhancing efficiency and reliability. The study presents a backstepping control approach combined with a mean value theorem (MVT)-based observer to improve control accuracy and stability. Stability analysis of the backstepping controller for key control loops, including flux, speed, and currents, is conducted, achieving asymptotic stability as confirmed through Lyapunov’s methods. An advanced observer using sector nonlinearity (SNL) and time-varying parameters from convex theory is developed to manage state observer error dynamics effectively. Stability conditions, defined as linear matrix inequalities (LMIs), are solved using MATLAB R2016b to optimize the observer’s estimator gains. This approach simplifies system complexity by measuring only two line currents, enhancing responsiveness. Comprehensive simulations validate the system’s performance under various conditions, confirming its robustness and effectiveness. This strategy improves the operational dynamics of OEW-TP-IM machine and offers potential for broad industrial applications requiring precise and reliable motor control. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

15 pages, 1153 KiB  
Article
Avoiding Lyapunov-Krasovskii Functionals: Simple Nonlinear Sampled–Data Control of a Semi-Active Suspension with Magnetorheological Dampers
by Fernando Viadero-Monasterio, Miguel Meléndez-Useros, Manuel Jiménez-Salas and María Jesús López Boada
Machines 2025, 13(6), 512; https://doi.org/10.3390/machines13060512 - 12 Jun 2025
Viewed by 538
Abstract
This paper presents a novel control design methodology for a magnetorheological (MR) damper-based semi-active suspension system operating under communication-induced time delays, which introduce nonlinear sampled-data dynamics. To address these challenges, a linear matrix inequality (LMI) framework is developed for synthesizing the current controller, [...] Read more.
This paper presents a novel control design methodology for a magnetorheological (MR) damper-based semi-active suspension system operating under communication-induced time delays, which introduce nonlinear sampled-data dynamics. To address these challenges, a linear matrix inequality (LMI) framework is developed for synthesizing the current controller, with the dual goals of enhancing ride comfort and safety while ensuring system stability and robustness against road disturbances. The proposed approach deliberately avoids the use of Lyapunov-Krasovskii functionals, offering a more practical and computationally efficient alternative. Experimental results confirm that the proposed MR damper model outperforms traditional Lyapunov-Krasovskii-based methods. Additionally, two simulated road profiles are used to evaluate the suspension system’s behavior, further demonstrating the effectiveness of the proposed control strategy. Full article
(This article belongs to the Special Issue Adaptive Control Using Magnetorheological Technology)
Show Figures

Figure 1

20 pages, 2636 KiB  
Article
Event-Triggered Secure Control Design Against False Data Injection Attacks via Lyapunov-Based Neural Networks
by Neslihan Karas Kutlucan, Levent Ucun and Janset Dasdemir
Sensors 2025, 25(12), 3634; https://doi.org/10.3390/s25123634 - 10 Jun 2025
Viewed by 412
Abstract
This paper presents a secure control framework enhanced with an event-triggered mechanism to ensure resilient and resource-efficient operation under false data injection (FDI) attacks on sensor measurements. The proposed method integrates a Kalman filter and a neural network (NN) to construct a hybrid [...] Read more.
This paper presents a secure control framework enhanced with an event-triggered mechanism to ensure resilient and resource-efficient operation under false data injection (FDI) attacks on sensor measurements. The proposed method integrates a Kalman filter and a neural network (NN) to construct a hybrid observer capable of detecting and compensating for malicious anomalies in sensor measurements in real time. Lyapunov-based update laws are developed for the neural network weights to ensure closed-loop system stability. To efficiently manage system resources and minimize unnecessary control actions, an event-triggered control (ETC) strategy is incorporated, updating the control input only when a predefined triggering condition is violated. A Lyapunov-based stability analysis is conducted, and linear matrix inequality (LMI) conditions are formulated to guarantee the boundedness of estimation and system errors, as well as to determine the triggering threshold used in the event-triggered mechanism. Simulation studies on a two-degree-of-freedom (2-DOF) robot manipulator validate the effectiveness of the proposed scheme in mitigating various FDI attack scenarios while reducing control redundancy and computational overhead. The results demonstrate the framework’s suitability for secure and resource-aware control in safety-critical applications. Full article
(This article belongs to the Special Issue Anomaly Detection and Fault Diagnosis in Sensor Networks)
Show Figures

Figure 1

21 pages, 1525 KiB  
Article
Fuzzy-Based Composite Nonlinear Feedback Cruise Control for Heavy-Haul Trains
by Qian Zhang, Jia Wang, Zhiqiang Chen, Yougen Xu, Zhiguo Zhou and Zhiwen Liu
Electronics 2025, 14(12), 2317; https://doi.org/10.3390/electronics14122317 - 6 Jun 2025
Viewed by 266
Abstract
To improve the transient performance of speed tracking control while ensuring stability and considering actuator constraints in heavy-haul train systems, this paper proposes a novel cruise control method based on a nonparallel distributed compensation (non-PDC) fuzzy-based composite nonlinear feedback (CNF) technique. First, a [...] Read more.
To improve the transient performance of speed tracking control while ensuring stability and considering actuator constraints in heavy-haul train systems, this paper proposes a novel cruise control method based on a nonparallel distributed compensation (non-PDC) fuzzy-based composite nonlinear feedback (CNF) technique. First, a low-dimensional nonlinear multi-particle error dynamics model is established based on the fencing concept, simplifying the model significantly. To facilitate controller design, a Takagi–Sugeno (T-S) fuzzy model is derived from the nonlinear model. Subsequently, sufficient conditions for the non-PDC fuzzy-based CNF controller are provided in terms of linear matrix inequalities (LMIs), with the controller design addressing asymmetric constraints on control inputs due to differing maximums of traction and braking forces. Simulations based on MATLAB/Simulink are conducted under different maneuvers to validate the effectiveness and superiority of the proposed method. The simulation results demonstrate a notable enhancement in transient performance (over 22.3% improvement in settling time) and steady-state cruise control performance for heavy-haul trains using the proposed strategy. Full article
Show Figures

Figure 1

25 pages, 1198 KiB  
Article
State Estimation Based State Augmentation and Fractional Order Proportional Integral Unknown Input Observers
by Abdelghani Djeddi, Abdelaziz Aouiche, Chaima Aouiche and Yazeed Alkhrijah
Mathematics 2025, 13(11), 1786; https://doi.org/10.3390/math13111786 - 27 May 2025
Viewed by 300
Abstract
This paper presents a new method for the simultaneous estimation of system states and unknown inputs in fractional-order Takagi–Sugeno (FO-TS) systems with unmeasurable premise variables (UPVs), by introducing a fractional-order proportional-integral unknown input observer (FO-PIUIO) based on partial state augmentation. This approach permits [...] Read more.
This paper presents a new method for the simultaneous estimation of system states and unknown inputs in fractional-order Takagi–Sugeno (FO-TS) systems with unmeasurable premise variables (UPVs), by introducing a fractional-order proportional-integral unknown input observer (FO-PIUIO) based on partial state augmentation. This approach permits the estimation of both states and unknown inputs, which are essential for system monitoring and control. Partial state augmentation allows the integration of unknown inputs into a partially augmented model, ensuring accurate estimates of both states and unknown inputs. The state estimation error is formulated as a perturbed system. The convergence conditions for the state estimation errors between the system and the observer are derived using the second Lyapunov method and the L2 approach. Compared to traditional integer-order unknown input observers or fuzzy observers with measurable premise variables, in our method, fractional-order dynamics are combined with partial state augmentation uniquely for the persistent estimation of states along with unknown inputs in unmeasurable premise variable systems. Such a combination allows for robust estimation even under uncertainties in systems and long memory phenomena and is a significant step forward from traditional methods. Finally, a numerical example is provided to illustrate the performance of the proposed observer. Full article
Show Figures

Figure 1

Back to TopTop