Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (529)

Search Parameters:
Keywords = light waveguiding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1290 KiB  
Communication
Direct Nanoparticle Sensing in Liquids with Free-Space Excited Optical Whispering-Gallery-Mode Microresonators
by Davide D’Ambrosio, Saverio Avino and Gianluca Gagliardi
Sensors 2025, 25(16), 5111; https://doi.org/10.3390/s25165111 - 18 Aug 2025
Viewed by 227
Abstract
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality [...] Read more.
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality factor and ultra-small volume of WGMs. Actually, regardless of the sensitivity enhancement, their practical sensing operation may be hampered by the complexity of coupling devices as well as the signalprocessing required to extract the WGM response. Here, we use a silica microsphere immersed in an aqueous environment and efficiently excite optical WGMs with a free-space visible laser, thus collecting the relevant information from the transmitted and back-scattered light without any optical coupler, fiber, or waveguide. We show that a 640-nm diode laser, actively frequency-locked on resonance, provides real-time, fast sensing of dielectric nanoparticles approaching the surface with direct analog readout. Thanks to our illumination scheme, the sensor can be kept in water and operate for days without degradation or loss of sensitivity. Diverse noise contributions are carefully considered and quantified in our system, showing a minimum detectable particle size below 1 nm essentially limited by the residual laser microcavity jitter. Further analysis reveals that the inherent laserfrequency instability in the short, -mid-term operation regime sets an ultimate bound of 0.3 nm. Based on this work, we envisage the possibility to extend our method in view of developing new viable approaches for detection of nanoplastics in natural water without resorting to complex chemical laboratory methods. Full article
(This article belongs to the Section Communications)
Show Figures

Graphical abstract

14 pages, 1721 KiB  
Article
Figure of Merit for Gas Overtone Spectroscopy on a Chip in Near-Infrared (NIR)
by Uzziel Sheintop and Alina Karabchevsky
Sensors 2025, 25(16), 5092; https://doi.org/10.3390/s25165092 - 16 Aug 2025
Viewed by 289
Abstract
The development of compact, CMOS-compatible gas sensors is critical for advancing real-time environmental monitoring and industrial diagnostics. In this study, we present a detailed numerical investigation of integrated photonic waveguide designs—such as ridge and slot—optimized for overtone-based gas spectroscopy in the near-infrared range. [...] Read more.
The development of compact, CMOS-compatible gas sensors is critical for advancing real-time environmental monitoring and industrial diagnostics. In this study, we present a detailed numerical investigation of integrated photonic waveguide designs—such as ridge and slot—optimized for overtone-based gas spectroscopy in the near-infrared range. By evaluating both the evanescent-field confinement and curvature-induced losses across multiple silicon-on-insulator platforms, we identify optimal geometries that maximize light–analyte interactions while minimizing bending attenuation. Our findings provide essential design guidelines for high-performance, low-footprint gas sensors. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

13 pages, 1888 KiB  
Article
Femtosecond-Laser Direct Writing of Double-Line and Tubular Depressed-Cladding Waveguides in Ultra-Low-Expansion Glass
by Yuhao Wu, Sixuan Guo, Guanghua Cheng, Feiran Wang, Xu Wang and Yunjie Zhang
Photonics 2025, 12(8), 797; https://doi.org/10.3390/photonics12080797 - 8 Aug 2025
Viewed by 346
Abstract
Addressing the stability requirements of photonic integrated devices operating over wide temperature ranges, this work achieves controlled fabrication of femtosecond-laser direct-written Type II double-line waveguides and Type III depressed-cladding tubular waveguides within ultra-low-expansion LAS glass-ceramics. The light-guiding mechanisms were elucidated through finite element [...] Read more.
Addressing the stability requirements of photonic integrated devices operating over wide temperature ranges, this work achieves controlled fabrication of femtosecond-laser direct-written Type II double-line waveguides and Type III depressed-cladding tubular waveguides within ultra-low-expansion LAS glass-ceramics. The light-guiding mechanisms were elucidated through finite element modeling. The influences of laser writing parameters and waveguide geometric structures on guiding performance were systematically investigated. Experimental results demonstrate that the double-line waveguides exhibit optimal single-mode guiding performance at 30 μm spacing and 120 mW writing power. For the tubular depressed-cladding waveguides, both single-mode and multi-mode fields are attainable across a broad processing parameter window. Large-mode-area characteristics manifested in the 50 μm core waveguide, exhibiting an edge-shifted intensity profile for higher-order modes that generated a hollow beam, enabling applications in atom guidance and particle trapping. Full article
(This article belongs to the Special Issue Direct Ultrafast Laser Writing in Photonics and Optoelectronics)
Show Figures

Figure 1

12 pages, 2575 KiB  
Article
Simulation of Propagation Characteristics and Field Distribution in Cylindrical Photonic Crystals Composed of Near-Zero Materials and Metal
by Zhihao Xu, Dan Zhang, Rongkang Xuan, Shenxiang Yang and Na Wang
J. Low Power Electron. Appl. 2025, 15(3), 44; https://doi.org/10.3390/jlpea15030044 - 31 Jul 2025
Viewed by 175
Abstract
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of [...] Read more.
This study investigates the propagation characteristics and field distribution of photonic crystals composed of epsilon-near-zero (ENZ) materials and metal cylinders. The research reveals that the cutoff frequency of the photonic crystal formed by combining metal cylinders with an ENZ background is independent of the volume fraction of the metal cylinders and exhibits a stop-band profile within the measured frequency range. This unique behavior is attributed to the scattering of long-wavelength light when the wavelength approaches the effective wavelength range of the ENZ material. Taking advantage of this feature, the study selectively filters specific wavelength ranges from the mid-frequency band by varying the ratio of cylinder radius to lattice constant (R/a). Decreasing the R/a ratio enables the design of waveguide devices that operate over a broader guided wavelength range within the intermediate-frequency band. The findings emphasize the importance of the interaction between light and ENZ materials in shaping the transmission characteristics of photonic crystal structures. Full article
Show Figures

Figure 1

10 pages, 2570 KiB  
Article
Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001)
by Shuaicheng Liu, Hao Liu, Jihong Ye, Hao Zhai, Weihong Xiong, Yisu Yang, Jun Wang, Qi Wang, Yongqing Huang and Xiaomin Ren
Micromachines 2025, 16(8), 897; https://doi.org/10.3390/mi16080897 - 31 Jul 2025
Viewed by 576
Abstract
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip [...] Read more.
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip remains challenging due to material compatibility issues and mode field mismatch problems. In this work, we have demonstrated monolithic integration of an InAs quantum dot microdisk light emitter, waveguide, and photodetector on a silicon platform using a shared epitaxial structure. The photodetector successfully monitored variations in light emitter output power, experimentally proving the feasibility of this integrated scheme. This work represents a key step toward multifunctional integrated photonic systems. Future efforts will focus on enhancing the light emitter output power, improving waveguide efficiency, and scaling up the integration density for advanced applications in optical communication. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

23 pages, 14391 KiB  
Article
Design of All-Optical Ternary Inverter and Clocked SR Flip-Flop Based on Polarization Conversion and Rotation in Micro-Ring Resonator
by Madan Pal Singh, Jayanta Kumar Rakshit, Kyriakos E. Zoiros and Manjur Hossain
Photonics 2025, 12(8), 762; https://doi.org/10.3390/photonics12080762 - 29 Jul 2025
Viewed by 282
Abstract
In the present study, a polarization rotation switch (PRS)-based all-optical ternary inverter circuit and ternary clocked SR flip-flop (TCSR) are proposed and discussed. The present scheme is designed by the polarization rotation of light in a waveguide coupled with a micro-ring resonator (MRR). [...] Read more.
In the present study, a polarization rotation switch (PRS)-based all-optical ternary inverter circuit and ternary clocked SR flip-flop (TCSR) are proposed and discussed. The present scheme is designed by the polarization rotation of light in a waveguide coupled with a micro-ring resonator (MRR). The proposed scheme uses linear polarization-encoded light. Here, the ternary (radix = 3) logical states are expressed by the different polarized light. PRS-MRR explores the polarization-encoded methodology, which depends on polarization conversion from one state to another. All-optical ultrafast switching technology is employed to design the ternary NAND gate. We develop the ternary clocked SR flip-flop by employing the NAND gate; it produces a greater number of possible outputs as compared to the binary logic clocked SR flip-flop circuit. The performance of the proposed design is measured by the Jones parameter and Stokes parameter. The results of the polarization rotation-based ternary inverter and clocked SR flip-flop are realized using a pump–probe structure in the MRR. The numerical simulation results are confirmed by the well-known Jones vector (azimuth angle and ellipticity angle) and Stokes parameter (S1, S2, S3) using Ansys Lumerical Interconnect simulation software. Full article
(This article belongs to the Special Issue Advancements in Optical and Acoustic Signal Processing)
Show Figures

Figure 1

16 pages, 2223 KiB  
Article
Plasmonic Sensing Design for Measuring the Na+/K+ Concentration in an Electrolyte Solution Based on the Simulation of Optical Principles
by Hongfu Chen, Shubin Yan, Yi Sun, Youbo Hu, Taiquan Wu and Yuntang Li
Photonics 2025, 12(8), 758; https://doi.org/10.3390/photonics12080758 - 28 Jul 2025
Viewed by 269
Abstract
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations [...] Read more.
Based on the theory of optical sensing, we propose a high-precision plasmonic refractive index nanosensor, which consists of a symmetric rectangular waveguide and a circular ring containing a rectangular cavity. The designed novel tunable micro-resonant circular cavity filter based on surface plasmon excitations is able to confine light to sub-wavelength dimensions. The data show that different geometrical factors have different effects on sensing, with the geometry of the rectangular cavity and the radius of the circular ring being the key factors affecting the Fano resonance. Furthermore, the resonance bifurcation enables the structure to achieve a tunable dual Fano resonance system. The structure was tuned to obtain optimal sensitivity (S) and figure of merit values up to 3066 nm/RIU and 78. The designed structure has excellent sensing performance with sensitivities of 0.4767 nm·(mg/dL1) and 0.6 nm·(mg/dL1) in detecting Na+ and K+ concentrations in the electrolyte solution, respectively, and can be easily achieved by the spectrometer. The wavelength accuracy of 0.001 nm can be easily achieved by a spectrum analyzer, which has a broad application prospect in the field of optical integration. Full article
Show Figures

Figure 1

9 pages, 3392 KiB  
Article
Validating Pseudo-Free-Space Conditions in a Planar Waveguide Using Phase Retrieval from Fresnel Diffraction Patterns
by Varis Karitans, Mattias Hammar, Martins Zubkins, Edvins Letko, Maris Ozolinsh and Sergejs Fomins
Photonics 2025, 12(8), 740; https://doi.org/10.3390/photonics12080740 - 22 Jul 2025
Viewed by 275
Abstract
In this study, we address the question of whether a waveguide with absorbing sidewalls can be considered pseudo free space and if the free-space transfer function is valid in such a medium. We test this hypothesis by applying a phase retrieval algorithm based [...] Read more.
In this study, we address the question of whether a waveguide with absorbing sidewalls can be considered pseudo free space and if the free-space transfer function is valid in such a medium. We test this hypothesis by applying a phase retrieval algorithm based on the free-space transfer function. First, optical measurements are carried out to measure the optical properties of a stack of thin films and select the parameters of simulations. Next, the propagation of light in a waveguide was simulated in COMSOL, and the phase of a wave was retrieved in MATLAB. Analysis was performed both for free-space conditions, and for a waveguide with absorbing sidewalls. The cross-correlation between the distributions of intensity under both conditions was about 0.40. The RMS error of the wave retrieved under free-space conditions was 0.378 rad, while that in the case of absorbing sidewalls was 0.323 rad, indicating successful retrieval. The successfully recovered phase of the input wave suggests that a waveguide with absorbing sidewalls can be approximated as pseudo free space and the free-space transfer function may be valid. These results may be used in future studies on how to shorten the phase retrieval of two-dimensional objects. Full article
Show Figures

Figure 1

14 pages, 2402 KiB  
Article
On-Chip Mid-Infrared Dual-Band Wavelength Splitting with Integrated Metalens and Enhanced Bandwidth
by Deming Hu, Qi Zhang, Zhibin Ye, Xuan-Ming Duan and Yang Zhang
Photonics 2025, 12(7), 736; https://doi.org/10.3390/photonics12070736 - 19 Jul 2025
Viewed by 285
Abstract
On-chip spectral splitting structures with compact footprints hold tremendous potential for next-generation molecular sensing applications in the mid-infrared region. Here, we propose and theoretically investigate a carefully designed structure comprising a tilt grating and metalenses for dual-band spectral splitting with enhanced bandwidth. The [...] Read more.
On-chip spectral splitting structures with compact footprints hold tremendous potential for next-generation molecular sensing applications in the mid-infrared region. Here, we propose and theoretically investigate a carefully designed structure comprising a tilt grating and metalenses for dual-band spectral splitting with enhanced bandwidth. The tilt grating serves to separate the wavelength bands, and the metalenses following the grating guarantee a smooth transition of light into single-mode waveguides, giving rise to transmittances of 73.59% at 4 μm and 68.74% at 11 μm. The use of this tandem structure results in a significant footprint reduction and a remarkable 25.8% bandwidth enhancement over conventional approaches. The proposed spectral splitting scheme, with its broad wavelength range applicability, unlocks new pathways for on-chip simultaneous multi-target molecule detection. Full article
(This article belongs to the Special Issue Infrared Optoelectronic Materials and Devices)
Show Figures

Figure 1

15 pages, 2929 KiB  
Article
Graphene-Loaded LiNbO3 Directional Coupler: Characteristics and Potential Applications
by Yifan Liu, Fei Lu, Hui Hu, Haoyang Du, Yan Liu and Yao Wei
Nanomaterials 2025, 15(14), 1116; https://doi.org/10.3390/nano15141116 - 18 Jul 2025
Viewed by 373
Abstract
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode [...] Read more.
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode refractive index and enhances waveguide coupling, enabling precise control over light transmission and power distribution. The temperature-dependent behavior of graphene–LN structures demonstrates strong thermal sensitivity, with notable changes in output power ratios between cross and through ports under varying temperatures. These findings highlight the potential of graphene–LN hybrid devices for compact, high-performance photonic circuits and temperature sensing applications. This study provides valuable insights into the design of advanced integrated photonic systems, paving the way for innovations in optical communication, sensing, and quantum technologies. Full article
Show Figures

Figure 1

16 pages, 9618 KiB  
Article
Scattering of Radiation by a Periodic Structure of Circular and Elliptical Microcavities in a Multimode Optical Waveguide
by Alexandra Yu. Petukhova, Anatolii V. Perminov, Mikhail A. Naparin and Victor V. Krishtop
Photonics 2025, 12(7), 727; https://doi.org/10.3390/photonics12070727 - 17 Jul 2025
Viewed by 368
Abstract
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the [...] Read more.
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the intensity distribution of scattered light with a wavelength of 1310 nm along the periodic structure, i.e., along the side surface of the waveguide, as a function of the microcavity dimensions and their spatial arrangement within the waveguide core. The optimal geometrical parameters of the microstructure, ensuring the most uniform light scattering, were identified. The model is valid for multimode optical fibres containing strictly periodic structures of microcavities with spherical or elliptical cross-sections that scatter laser radiation in all directions. One potential application of such fibres is as light sources in medical probes for surgical procedures requiring additional illumination and uniform irradiation of affected tissues. Furthermore, the findings of this study offer significant potential for the development of sensing elements for fibre-optic sensors. The findings of this study will facilitate the design of scattering structures with microcavities that ensure a highly uniform scattering pattern. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

9 pages, 902 KiB  
Article
Flat Top Non-Polarizing Optical Bandpass Filtering in Form of Planar Optical Waveguide
by Jianhua Liu and Ping Jiang
Photonics 2025, 12(7), 724; https://doi.org/10.3390/photonics12070724 - 17 Jul 2025
Viewed by 282
Abstract
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top [...] Read more.
To obtain a flat top shaped passband in a conventional thin-film-based optical bandpass filter (OBF), it needs a large number of constitutional layers of thin films, which makes the film deposition systems more complicated and accumulates errors in film growth. A flat top and polarization-independent optical bandpass filter structure is proposed based on experimentally verified polarization independency in the form of a prism-pair coupled planar optical waveguide (POW). The POW is composed of two waveguide stacks, which consists of nine planar thin-film layers. Theoretical simulations show that the flat band top spans about 5 nm with transmittance over 97.8%. The passband is designed to be centered at 632.8 nm, the He-Ne laser wavelength, and the FWHM (full width at half maximum) bandwidth is about 35 nm. Within 0.5° tuning for the incident angle of the light, the passband could be shifted within 50 nm, while its transmittance fluctuates only less than 1% and the passband shape distorts only slightly. This type of OBF is potentially applicable in various fields of optical and laser spectroscopies. Full article
Show Figures

Figure 1

14 pages, 3314 KiB  
Article
High-Performance Guided Mode Resonance Optofluidic Sensor
by Liang Guo, Lei Xu and Liying Liu
Sensors 2025, 25(14), 4386; https://doi.org/10.3390/s25144386 - 14 Jul 2025
Viewed by 681
Abstract
This paper reports on the high performance of a thick-waveguide guided mode resonance (GMR) sensor. Theoretical calculations revealed that when light incidents on the grating and excites the negative first-order diffraction order, by increasing the waveguide thickness, both a high sensitivity and high [...] Read more.
This paper reports on the high performance of a thick-waveguide guided mode resonance (GMR) sensor. Theoretical calculations revealed that when light incidents on the grating and excites the negative first-order diffraction order, by increasing the waveguide thickness, both a high sensitivity and high figure of merit (FOM) can be obtained. Experimentally, we achieved a sensitivity of 1255.78 nm/RIU, a resonance linewidth of 0.59 nm at the resonance wavelength of 535 nm, an FOM as high as 2128 RIU−1, and a detection limit as low as 1.74 × 10−7 RIU. To our knowledge, this performance represents the highest comprehensive level for current GMR sensors. Additionally, the use of a microfluidic hemisphere and polymer materials effectively reduces the liquid consumption under oblique incidence and the fabrication cost in practical application. Overall, the proposed GMR sensor exhibits great potential in label-free biosensing. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 3288 KiB  
Article
Influence of Material Optical Properties in Direct ToF LiDAR Optical Tactile Sensing: Comprehensive Evaluation
by Ilze Aulika, Andrejs Ogurcovs, Meldra Kemere, Arturs Bundulis, Jelena Butikova, Karlis Kundzins, Emmanuel Bacher, Martin Laurenzis, Stephane Schertzer, Julija Stopar, Ales Zore and Roman Kamnik
Materials 2025, 18(14), 3287; https://doi.org/10.3390/ma18143287 - 11 Jul 2025
Viewed by 402
Abstract
Optical tactile sensing is gaining traction as a foundational technology in collaborative and human-interactive robotics, where reliable touch and pressure feedback are critical. Traditional systems based on total internal reflection (TIR) and frustrated TIR (FTIR) often require complex infrared setups and lack adaptability [...] Read more.
Optical tactile sensing is gaining traction as a foundational technology in collaborative and human-interactive robotics, where reliable touch and pressure feedback are critical. Traditional systems based on total internal reflection (TIR) and frustrated TIR (FTIR) often require complex infrared setups and lack adaptability to curved or flexible surfaces. To overcome these limitations, we developed OptoSkin—a novel tactile platform leveraging direct time-of-flight (ToF) LiDAR principles for robust contact and pressure detection. In this extended study, we systematically evaluate how key optical properties of waveguide materials affect ToF signal behavior and sensing fidelity. We examine a diverse set of materials, characterized by varying light transmission (82–92)%, scattering coefficients (0.02–1.1) cm−1, diffuse reflectance (0.17–7.40)%, and refractive indices 1.398–1.537 at the ToF emitter wavelength of 940 nm. Through systematic evaluation, we demonstrate that controlled light scattering within the material significantly enhances ToF signal quality for both direct touch and near-proximity sensing. These findings underscore the critical role of material selection in designing efficient, low-cost, and geometry-independent optical tactile systems. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

15 pages, 3836 KiB  
Article
Porous-Cladding Polydimethylsiloxane Optical Waveguide for Biomedical Pressure Sensing Applications
by Koffi Novignon Amouzou, Alberto Alonso Romero, Dipankar Sengupta, Camila Aparecida Zimmermann, Aashutosh Kumar, Normand Gravel, Jean-Marc Lina, Xavier Daxhelet and Bora Ung
Sensors 2025, 25(14), 4311; https://doi.org/10.3390/s25144311 - 10 Jul 2025
Viewed by 405
Abstract
We report a new concept of a pressure sensor fully made from polydimethylsiloxane with a solid core and porous cladding that operates through (frustrated) total internal reflection. A flexible and sensitive rectangular cross-section waveguide was fabricated via the casting and molding method. The [...] Read more.
We report a new concept of a pressure sensor fully made from polydimethylsiloxane with a solid core and porous cladding that operates through (frustrated) total internal reflection. A flexible and sensitive rectangular cross-section waveguide was fabricated via the casting and molding method. The waveguide’s optical losses can be temperature-controlled during the fabrication process by controlling the quantity of microbubbles incorporated (2% approximately for samples made at 70 °C). By controlling the precuring temperature, the microbubbles are incorporated into the waveguides during the simple and cost-effective fabrication process through the casting and molding method. For these samples, we measured good optical loss tradeoff of the order of 1.85 dB/cm, which means that it is possible to fabricate a solid-core/clad waveguide with porous cladding able to guide light properly. We demonstrated the microbubble concentration control in the waveguide, and we measured an average diameter of 239 ± 16 µm. A sensitivity to pressure of 0.1035 dB/kPa optical power loss was measured. The results show that in a biomedical dynamic pressure range (0 to 13.3 kPa), this new device indicates the critical pressure threshold level, which constitutes a crucial asset for potential applications such as pressure injury prevention. Full article
Show Figures

Graphical abstract

Back to TopTop