Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,347)

Search Parameters:
Keywords = light responsive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 887 KB  
Review
Advances in Photocatalytic Degradation of Crystal Violet Using ZnO-Based Nanomaterials and Optimization Possibilities: A Review
by Vladan Nedelkovski, Milan Radovanović and Milan Antonijević
ChemEngineering 2025, 9(6), 120; https://doi.org/10.3390/chemengineering9060120 (registering DOI) - 1 Nov 2025
Abstract
The photocatalytic degradation of Crystal Violet (CV) using ZnO-based nanomaterials presents a promising solution for addressing water pollution caused by synthetic dyes. This review highlights the exceptional efficiency of ZnO and its modified forms—such as doped, composite, and heterostructured variants—in degrading CV under [...] Read more.
The photocatalytic degradation of Crystal Violet (CV) using ZnO-based nanomaterials presents a promising solution for addressing water pollution caused by synthetic dyes. This review highlights the exceptional efficiency of ZnO and its modified forms—such as doped, composite, and heterostructured variants—in degrading CV under both ultraviolet (UV) and solar irradiation. Key advancements include strategic bandgap engineering through doping (e.g., Cd, Mn, Co), innovative heterojunction designs (e.g., n-ZnO/p-Cu2O, g-C3N4/ZnO), and composite formations with graphene oxide, which collectively enhance visible-light absorption and minimize charge recombination. The degradation mechanism, primarily driven by hydroxyl and superoxide radicals, leads to the complete mineralization of CV into non-toxic byproducts. Furthermore, this review emphasizes the emerging role of Artificial Neural Networks (ANNs) as superior tools for optimizing degradation parameters, demonstrating higher predictive accuracy and scalability compared to traditional methods like Response Surface Methodology (RSM). Potential operational challenges and future directions—including machine learning-driven optimization, real-effluent testing potential, and the development of solar-active catalysts—are further discussed. This work not only consolidates recent breakthroughs in ZnO-based photocatalysis but also provides a forward-looking perspective on sustainable wastewater treatment strategies. Full article
Show Figures

Figure 1

19 pages, 1033 KB  
Article
Molecular Implications of ADIPOQ, GAS5, GATA4, and YAP1 Methylation in Triple-Negative Breast Cancer Prognosis
by Mateusz Wichtowski, Agnieszka Kołacińska-Wow, Katarzyna Skrzypek, Ewa Jabłońska, Katarzyna Płoszka, Damian Kołat, Sylwia Paszek, Izabela Zawlik, Elżbieta Płuciennik, Natalia Potocka, Wojciech Fendler, Paweł Kurzawa, Paweł Bigos, Łukasz Urbański, Paulina Gibowska-Maruniak and Thomas Wow
Int. J. Mol. Sci. 2025, 26(21), 10652; https://doi.org/10.3390/ijms262110652 (registering DOI) - 1 Nov 2025
Abstract
The aim of this study was to investigate the prognostic and predictive properties of four specific genes in triple-negative breast cancer (TNBC). We focused on ADIPOQ, GAS5, GATA4, and YAP1, which are known for their roles in key molecular pathways related [...] Read more.
The aim of this study was to investigate the prognostic and predictive properties of four specific genes in triple-negative breast cancer (TNBC). We focused on ADIPOQ, GAS5, GATA4, and YAP1, which are known for their roles in key molecular pathways related to tumorigenesis, such as adipokine signaling, lncRNA regulation, transcriptional control, and Hippo signaling, but have not been sufficiently explored in the context of epigenetic regulation in breast cancer. Using the methylospecific PCR (MSP) method, we analyzed the methylation of the four genes in the tumor tissues collected from 57 TNBC patients. We evaluated their association with response to neoadjuvant treatment and clinicopathological characteristics. Additionally, we performed a bioinformatic analysis of methylation and expression data from The Cancer Genome Atlas (TCGA) TNBC cohort to explore their relationships with overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), progression-free interval (PFI), and relapse-free survival (RFS). No significant associations were observed between methylation patterns and clinicopathological characteristics in the patients. However, in silico analysis of the TNBC cohort identified ADIPOQ methylation as having the most significant associations, correlating with all five survival endpoints, including OS, DSS, DFI, PFI, and RFS. GAS5 methylation was significantly associated with OS, DSS, and RFS, and GATA4 methylation showed significant associations with PFI, whereas YAP1 methylation was significantly associated with OS and RFS. In addition, GAS5 expression was linked to DSS, DFI and RFS. This study highlights the potential prognostic significance of the epigenetic regulation of ADIPOQ in TNBC. The in silico findings shed light on the molecular pathways associated with TNBC progression and warrant further investigation to validate their role in clinical outcomes and underlying biological mechanisms. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

36 pages, 2184 KB  
Review
Probing Supernova Diversity Through High-Cadence Optical Observations
by Kuntal Misra, Bhavya Ailawadhi, Raya Dastidar, Monalisa Dubey, Naveen Dukiya, Anjasha Gangopadhyay, Divyanshu Janghel, Kumar Pranshu and Mridweeka Singh
Universe 2025, 11(11), 361; https://doi.org/10.3390/universe11110361 (registering DOI) - 31 Oct 2025
Abstract
Supernovae (SNe) are among the most energetic and transient events in the universe, offering crucial insights into stellar evolution, nucleosynthesis, and cosmic expansion. Optical observations have historically played a central role in the discovery, classification, and physical interpretation of SNe. In this review, [...] Read more.
Supernovae (SNe) are among the most energetic and transient events in the universe, offering crucial insights into stellar evolution, nucleosynthesis, and cosmic expansion. Optical observations have historically played a central role in the discovery, classification, and physical interpretation of SNe. In this review, we summarize recent progress in the optical study of SNe, with a focus on advancements in time-domain surveys and photometric and spectroscopic follow-up strategies. High-cadence optical monitoring is pivotal in capturing the diverse behaviors of SNe, from early-time emission to late-phase decline. Leveraging data from ARIES telescopes and national/international collaborations, we systematically investigate various SN types, including Type Iax, IIP/L, IIb, IIn/Ibn and Ib/c events. Our analysis includes light curve evolution and spectral diagnostics, providing insights into early emission signatures (e.g., shock breakout), progenitor systems, explosion mechanisms, and circumstellar medium (CSM) interactions. Through detailed case studies, we demonstrate the importance of both early-time and nebular-phase observations in constraining progenitor and CSM properties. This comprehensive approach underscores the importance of coordinated global efforts in time-domain astronomy to deepen our understanding of SN diversity. We conclude by discussing the challenges and opportunities for future optical studies in the era of wide-field observatories such as the Vera C. Rubin Observatory (hereafter Rubin), with an emphasis on detection strategies, automation, and rapid-response capabilities. Full article
(This article belongs to the Special Issue A Multiwavelength View of Supernovae)
19 pages, 2267 KB  
Article
Silicon Addition Alleviates Light Stress on Seedlings: Evidence from Plantation of Liquidambar formosana
by Siying Cai, Minqian Zheng, Tingting Li, Youlu Hong, Yifei Chen, Zhihui Li, Junyi Lin, Xiaoli Liao, Shaofei Jin and Dexiang Zheng
Plants 2025, 14(21), 3346; https://doi.org/10.3390/plants14213346 (registering DOI) - 31 Oct 2025
Abstract
Excessive light intensity, often resulting from anthropogenic disturbances, poses a threat to light-sensitive Liquidambar formosana seedlings. This study examined the effects of five light intensity levels and three silicon (Si) application rates on photosynthetic performance, oxidative stress responses, and seedling growth. Results indicated [...] Read more.
Excessive light intensity, often resulting from anthropogenic disturbances, poses a threat to light-sensitive Liquidambar formosana seedlings. This study examined the effects of five light intensity levels and three silicon (Si) application rates on photosynthetic performance, oxidative stress responses, and seedling growth. Results indicated that full sunlight significantly reduced ground diameter, chlorophyll content, specific leaf area, and stomatal conductance. Meanwhile, it increased the activities of superoxide dismutase and peroxidase, and led to higher accumulation of malondialdehyde (MDA). Application of Si enhanced seedling height, biomass accumulation, and antioxidant enzyme activity under high-light conditions, while reducing MDA content, stomatal CO2 conductance, and transpiration rate, and maintaining a stable net photosynthetic rate. However, excessive Si (3000 mg·kg−1) led to decreased catalase activity, chlorophyll content, and leaf area under intense light. These findings suggest that L. formosana seedlings perform best under moderate shade (11,000–46,000 lx) and moderate Si application (1000–2000 mg·kg−1), which together mitigate photoinhibition damage. Optimal physiological responses thus require balanced Si concentrations. Further investigation is warranted to elucidate the mechanisms underlying the interactive effects of shading and Si application for improved seedling resilience. Full article
(This article belongs to the Special Issue Effect of Light on Plant Growth and Development)
56 pages, 1087 KB  
Review
Energy Efficiency and Decarbonization Strategies in Buildings: A Review of Technologies, Policies, and Future Directions
by Bo Nørregaard Jørgensen and Zheng Ma
Appl. Sci. 2025, 15(21), 11660; https://doi.org/10.3390/app152111660 (registering DOI) - 31 Oct 2025
Abstract
The building sector represents a major frontier in the global response to climate change, accounting for approximately one-third of global energy consumption and a comparable share of energy-related carbon dioxide emissions. This review conducts a PRISMA-ScR–based scoping synthesis of technological, behavioural, and policy [...] Read more.
The building sector represents a major frontier in the global response to climate change, accounting for approximately one-third of global energy consumption and a comparable share of energy-related carbon dioxide emissions. This review conducts a PRISMA-ScR–based scoping synthesis of technological, behavioural, and policy pathways to achieve energy efficiency and deep decarbonization in buildings. It systematically examines passive design principles, high-performance envelopes, efficient HVAC and lighting systems, renewable energy integration, building energy modelling, and retrofit strategies. The study also addresses the role of regulatory instruments, energy codes, and certification schemes in accelerating sectoral transformation. The synthesis identifies three cross-cutting drivers of decarbonization: integrated design across building systems, digitalization enabling predictive and adaptive operation, and robust policy frameworks ensuring large-scale implementation. The review concludes that while most technologies required to reach zero-emission buildings are already available, their potential remains underutilized due to fragmented policies, limited retrofit rates, and behavioural barriers. Coordinated implementation across technology, governance, and user engagement is essential to realise a net-zero building sector. Full article
(This article belongs to the Special Issue Advances in the Sustainability and Energy Efficiency of Buildings)
12 pages, 635 KB  
Article
Differential Photosynthetic Response of Tomato Plants—Ailsa Craig and Carotenoid Mutant tangerine—To Low Light Intensity and Low Temperature Treatment
by Antoaneta V. Popova, Martin Stefanov, Tsonko Tsonev, Violeta Velikova and Maya Velitchkova
Crops 2025, 5(6), 77; https://doi.org/10.3390/crops5060077 (registering DOI) - 31 Oct 2025
Abstract
The response of tomato plants, Ailsa Craig and the carotenoid mutant tangerine, to five days of treatment by low light intensity at normal and low temperature with respect to the photosynthetic performance as well as their capacity to recover after three days [...] Read more.
The response of tomato plants, Ailsa Craig and the carotenoid mutant tangerine, to five days of treatment by low light intensity at normal and low temperature with respect to the photosynthetic performance as well as their capacity to recover after three days under normal conditions was evaluated. Tangerine plants are characterized by defective prolycopene isomerase (CRTISO) and accumulate tetra-cis lycopene instead of all-trans lycopene. The gas exchange parameters were evaluated on intact plants and the pigment content in leaves was estimated. The photosynthetic competence of photosystem II (PSII) and photosystem I (PSI) and the effectiveness of the energy dissipation were assessed by pulse-amplitude-modulated (PAM) fluorometry. The abundance of reaction center proteins of PSII and PSI was estimated by immunoblotting. The application of low light alone or low light and low temperature reduced the chlorophyll content in both types of plants, which was more strongly expressed in Ailsa Craig. The net photosynthetic rate and photochemical activities of PSII and PSI were negatively affected by low light and much more strongly decreased when low light was applied at low temperature. The low-light-induced increase in excitation pressure on PSII and the effectiveness of non-photochemical quenching were not temperature-dependent. The negative effect of the combined treatment in tangerine was more strongly expressed in comparison with Ailsa Craig with respect to the abundance of reaction center proteins of both photosystems. Most probably, the differential photosynthetic response of the carotenoid mutant tangerine and Ailsa Craig to the combined treatment by low light and low temperature is related to the accumulation of tetra-cis-lycopene instead of all-trans-lycopene. Full article
Show Figures

Figure 1

22 pages, 2777 KB  
Article
Efficient Dual-Domain Collaborative Enhancement Method for Low-Light Images in Architectural Scenes
by Jing Pu, Wei Shi, Dong Luo, Guofei Zhang, Zhixun Xie, Wanying Liu and Bincan Liu
Infrastructures 2025, 10(11), 289; https://doi.org/10.3390/infrastructures10110289 (registering DOI) - 31 Oct 2025
Abstract
Low-light image enhancement in architectural scenes presents a considerable challenge for computer vision applications in construction engineering. Images captured in architectural settings during nighttime or under inadequate illumination often suffer from noise interference, low-light blurring, and obscured structural features. Although low-light image enhancement [...] Read more.
Low-light image enhancement in architectural scenes presents a considerable challenge for computer vision applications in construction engineering. Images captured in architectural settings during nighttime or under inadequate illumination often suffer from noise interference, low-light blurring, and obscured structural features. Although low-light image enhancement and deblurring are intrinsically linked when emphasizing architectural defects, conventional image restoration methods generally treat these tasks as separate entities. This paper introduces an efficient and robust Frequency-Space Recovery Network (FSRNet), specifically designed for low-light image enhancement in architectural contexts, tailored to the unique characteristics of such scenes. The encoder utilizes a Feature Refinement Feedforward Network (FRFN) to achieve precise enhancement of defect features while dynamically mitigating background redundancy. Coupled with a Frequency Response Module, it modifies the amplitude spectrum to amplify high-frequency components of defects and ensure balanced global illumination. The decoder utilizes InceptionDWConv2d modules to capture multi-directional and multi-scale features of cracks. When combined with a gating mechanism, it dynamically suppresses noise, restores the spatial continuity of defects, and eliminates blurring. This method also reduces computational costs in terms of parameters and MAC operations. To assess the effectiveness of the proposed approach in architectural contexts, this paper conducts a comprehensive study using low-light defect images from indoor concrete walls as a representative case. Experimental results indicate that FSRNet not only achieves state-of-the-art PSNR performance of 27.58 dB but also enhances the mAP of the downstream YOLOv8 detection model by 7.1%, while utilizing only 3.75 M parameters and 8.8 GMACs. These findings fully validate the superiority and practicality of the proposed method for low-light image enhancement tasks in architectural settings. Full article
17 pages, 3545 KB  
Article
Altered Functional Traits in Larix principis-rupprechtii Mayr Seedlings: Responses and Divergence Across Altitudes
by Jiayi Deng, Jiangkai Xie, Tairui Liu, Jinping Guo, Yunxiang Zhang and Meng Yang
Forests 2025, 16(11), 1665; https://doi.org/10.3390/f16111665 - 31 Oct 2025
Abstract
To elucidate the adaptive strategies of leaf functional traits of Larix principis-rupprechtii in the context of climate change, this study chose 2 and 3 year-old seedlings of Larix principis-rupprechtii as the focal research objects. The experiment entailed transplanting seedlings obtained from different sources [...] Read more.
To elucidate the adaptive strategies of leaf functional traits of Larix principis-rupprechtii in the context of climate change, this study chose 2 and 3 year-old seedlings of Larix principis-rupprechtii as the focal research objects. The experiment entailed transplanting seedlings obtained from different sources into high and low altitudes: 1600 m, 1900 m, 2100 m, and 2400 m, respectively. With changes in transplant elevation, seedlings showed variable responses in photosynthesis, water-use efficiency, and leaf morphology, depending on the altitude. High-altitude seedlings transplanted to low altitudes increased SLA and branch extension, enhancing photosynthesis and C-N metabolism. Conversely, low-altitude seedlings transplanted to high altitudes improved cold resistance primarily via leaf thickening, adjusting the chlorophyll a/b ratio, and enhancing the redistribution of soluble proteins. For high-altitude sources, water-use efficiency and transpiration rate were strongly linked to leaf nitrogen and the carbon-to-nitrogen ratio, respectively, indicating the optimisation of photosynthetic and water-use efficiency through modulation of chlorophyll-a content and branch extension. Low-altitude seedlings chiefly adjusted the chla/b ratio, leaf morphological traits, and soluble protein to cope with altitudinal change. In summary, variation in leaf functional traits among seedlings of Larix principis-rupprechtii across elevational gradients did not reflect isolated changes in individual traits but rather arose from integrated adjustments of photosynthetic capacity, resource allocation, and metabolic coupling, thereby optimising the balance between light capture, water usage, and stress tolerance. These results, therefore, offer insights into adaptive strategies under climate change. Full article
(This article belongs to the Special Issue Drought Tolerance in ​Trees: Growth and Physiology)
Show Figures

Figure 1

19 pages, 355 KB  
Article
Perceptions Towards Online Learning Among Female Ultra-Orthodox Teacher Education Students
by Rivka Gadot and Alona Forkosh-Baruch
Educ. Sci. 2025, 15(11), 1447; https://doi.org/10.3390/educsci15111447 - 31 Oct 2025
Abstract
Israeli higher education institutes are challenged by the growing number of ultra-orthodox students. This requires coping with novel aspects unfamiliar to participants, as students and as teachers in the education system, utilizing online learning as a lever for empowering this marginalized population. The [...] Read more.
Israeli higher education institutes are challenged by the growing number of ultra-orthodox students. This requires coping with novel aspects unfamiliar to participants, as students and as teachers in the education system, utilizing online learning as a lever for empowering this marginalized population. The aim of the proposed research was to explore perceptions of ultra-orthodox students studying in B.Ed. programs within a secular college of education towards online courses. Data included transcriptions from 68 narratives of interviews, which were analyzed using a mixed-methods approach, which helped us achieve an in-depth understanding of the difficulties and challenges of these higher education students. Altogether, five themes were identified, namely: technical challenges, ethical/religious challenges, academic challenges, engagement challenges, and aspects of availability. Statements referring to academic challenges and engagement challenges were the most frequent. The number of positive and negative statements was balanced. Also, distinct patterns of responses were identified for married vs. single ultra-orthodox women. Findings demonstrate the complexity of utilizing online learning among ultra-orthodox B.Ed. students, in a twofold manner: personally and community-wise. The study may shed light on online learning in additional marginal communities worldwide that are traditional in nature, and that may benefit from online courses. Full article
(This article belongs to the Section Technology Enhanced Education)
Show Figures

Figure 1

16 pages, 2525 KB  
Article
Study on Multi-Parameter Physical Processes and Flashover Threshold of Silicone Rubber Plate During AC Discharge in Salt Fog
by Xiaoxiang Wu, Yanpeng Hao, Haixin Wu, Jikai Bi, Zijian Wu and Lei Huang
Micromachines 2025, 16(11), 1241; https://doi.org/10.3390/mi16111241 - 31 Oct 2025
Abstract
External insulation of coastal power grids transmitting offshore wind power faces significant threats from salt fog flashovers. Current arc monitoring and early warning technologies for flashover are severely inadequate. Research on salt fog discharge processes and determining the threshold at the flashover brink [...] Read more.
External insulation of coastal power grids transmitting offshore wind power faces significant threats from salt fog flashovers. Current arc monitoring and early warning technologies for flashover are severely inadequate. Research on salt fog discharge processes and determining the threshold at the flashover brink for transmission equipment external insulation is crucial for ensuring the safe operation of coastal grids delivering offshore wind power. Fiber Bragg Grating (FBG), with its advantages of compact size, excellent insulation, and fast response, enables effective discharge monitoring and identification of the critical flashover state on external insulation surfaces. In this study, FBGs were embedded at the interfaces of typical external insulation specimens, including silicone rubber plates and epoxy resin plates, to conduct contaminated AC salt fog discharge tests. Synchronized measurements of visible light images, infrared thermal images, and FBG interface temperature were conducted to investigate the discharge physical processes on silicone rubber insulating surfaces and the flashover threshold based on FBG temperature rise rate. The results indicate that discharge process can be divided into three phases: arc initiation, extension, and flashover based on the characteristics of arc visible light images. By comparing arc locations in infrared and visible light images with the corresponding FBG interface temperature rise, the arc phase criterion of FBG interface temperature rise rate and position were proposed. Furthermore, through multiple experiments, it has been found that flashover occurs when both interface temperatures reached above 4.6 × 10−2 °C/s. This study provides a novel research methodology for physical process of external insulation discharge and flashover warning in coastal salt fog environments. Full article
Show Figures

Figure 1

59 pages, 10568 KB  
Review
Application of TiO2 in Photocatalytic Bacterial Inactivation: Review
by Vesna Lazić, Valentina Nikšić and Jovan M. Nedeljković
Int. J. Mol. Sci. 2025, 26(21), 10593; https://doi.org/10.3390/ijms262110593 - 30 Oct 2025
Abstract
Photocatalytic pathogen inactivation is gaining increasing importance due to the rising number of microbial species resistant to conventional antibacterial agents. Titanium dioxide (TiO2)-based photocatalysts have emerged as a promising solution, being not only potent antibacterial agents but also environmentally friendly and [...] Read more.
Photocatalytic pathogen inactivation is gaining increasing importance due to the rising number of microbial species resistant to conventional antibacterial agents. Titanium dioxide (TiO2)-based photocatalysts have emerged as a promising solution, being not only potent antibacterial agents but also environmentally friendly and capable of simultaneously degrading organic pollutants. This review summarizes recent advances in the antibacterial performance of different TiO2 modifications, including commercial nanopowders, nanoparticles with various morphologies, thin films, composites, and polymer-supported nanostructures, all primarily activated under UV light. Given the limited ability of pristine TiO2 to harvest solar radiation, we also highlight the most recent strategies for designing visible-light-responsive TiO2, such as doping, incorporation of plasmonic metal nanoparticles, formation of heterostructures, and interfacial charge transfer complexes. In addition, we discuss the fundamental structural features of TiO2, the mechanisms of reactive oxygen species (ROS) generation involved in bacterial inactivation, and kinetic models describing antibacterial efficiency. These insights aim to advance the understanding and development of eco-friendly, cost-effective, and sustainable photocatalytic disinfection technologies. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

16 pages, 1096 KB  
Article
The Effect of Cognitive Load on Information Retention in Working Memory: Are Item Order and Serial Position Different Processes?
by Davide Baggini and Paola Ricciardelli
Brain Sci. 2025, 15(11), 1179; https://doi.org/10.3390/brainsci15111179 - 30 Oct 2025
Abstract
Background/Objectives: A central question in cognitive neuroscience is how information is transferred from working memory to long-term memory, and what factors influence this process. This study aimed to explore the role of cognitive load in the consolidation of information into long-term memory within [...] Read more.
Background/Objectives: A central question in cognitive neuroscience is how information is transferred from working memory to long-term memory, and what factors influence this process. This study aimed to explore the role of cognitive load in the consolidation of information into long-term memory within the framework of the Time-Based Resource Sharing model of working memory. Methods: An exploratory study was conducted using a reading digit span task with delayed response, in which cognitive load was manipulated through Hebb repetition learning. Results: An improvement in the ability to remember the order of the elements was found with the decrease in cognitive load, consistent with the hypothesis that the transfer of information to long-term memory occurs during the maintenance process and involves cognitive load. However, no improvement in the recall of the total number of elements emerged, suggesting that different mechanisms and factors are at play in the process of information transfer. Conclusions: These findings shed new light on the complexity of interactions between working memory and long-term memory, paving the way for further systematic investigations into the nature of mechanisms responsible for transferring information from the former toward the latter. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

37 pages, 5698 KB  
Article
Design and Optimization of Self-Powered Photodetector Using Lead-Free Halide Perovskite Ba3SbI3: Insights from DFT and SCAPS-1D
by Salah Abdo, Ambali Alade Odebowale, Amer Abdulghani, Khalil As’ham, Yacine Djalab, Nicholas Kanizaj and Andrey E. Miroshnichenko
Nanomaterials 2025, 15(21), 1656; https://doi.org/10.3390/nano15211656 - 30 Oct 2025
Abstract
All-inorganic halide perovskites have attracted significant interest in photodetector applications due to their remarkable photoresponse properties. However, the toxicity and instability of lead-based perovskites hinder their commercialization. In this work, we propose cubic Ba3SbI3 as a promising, environmentally friendly, lead-free [...] Read more.
All-inorganic halide perovskites have attracted significant interest in photodetector applications due to their remarkable photoresponse properties. However, the toxicity and instability of lead-based perovskites hinder their commercialization. In this work, we propose cubic Ba3SbI3 as a promising, environmentally friendly, lead-free material for next-generation photodetector applications. Ba3SbI3 shows good light absorption, low effective masses, and favorable elemental abundance and cost, making it a promising candidate compound for device applications. Its structural, mechanical, electronic, and optical properties were systematically investigated using density functional theory (DFT) with the Perdew–Burke–Ernzerhof (PBE) and hybrid HSE06 functionals. The material was found to be dynamically and mechanically stable, with a direct bandgap of 0.78 eV (PBE) and 1.602 eV (HSE06). Photodetector performance was then simulated in an Al/FTO/In2S3/Ba3SbI3/Sb2S3/Ni configuration using SCAPS-1D. To optimize device efficiency, the width, dopant level, and bulk concentration for each layer of the gadgets were systematically modified, while the effects of interface defects, operating temperature, and series and shunt resistances were also evaluated. The optimized device achieved an open-circuit voltage (Voc) of 1.047 V, short-circuit current density (Jsc) of 31.65 mA/cm2, responsivity of 0.605 A W−1, and detectivity of 1.05 × 1017 Jones. In contrast, in the absence of the Sb2S3 layer, the performance was reduced to a Voc of 0.83 V, Jsc of 26.8 mA/cm2, responsivity of 0.51 A W−1, and detectivity of 1.5 × 1015 Jones. These results highlight Ba3SbI3 as a promising platform for high-performance, cost-effective, and environmentally benign photodetectors. Full article
Show Figures

Figure 1

35 pages, 2000 KB  
Review
Epistaxis Prevention, Treatment, and Future Perspectives for Hereditary Hemorrhagic Telangiectasia
by Anthony Ficany, Marta Del Alamo, Carmelo Bernabeu, Claire L. Shovlin and Elisa Rossi
J. Clin. Med. 2025, 14(21), 7724; https://doi.org/10.3390/jcm14217724 (registering DOI) - 30 Oct 2025
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT), also known as Osler-Weber-Rendu syndrome, is a vascular disorder with a global prevalence ranging from 1:5000 to 1:8000. It most commonly manifests through nosebleeds, which can be frequent and severe, exposing patients to major iron losses, anemia, and considerable [...] Read more.
Hereditary Hemorrhagic Telangiectasia (HHT), also known as Osler-Weber-Rendu syndrome, is a vascular disorder with a global prevalence ranging from 1:5000 to 1:8000. It most commonly manifests through nosebleeds, which can be frequent and severe, exposing patients to major iron losses, anemia, and considerable physical and emotional distress. To date, no drug has received the FDA or EMA approval for preventing or treating HHT associated epistaxis, limiting access to therapies and intensifying the burden on patients and clinicians. Based on peer-reviewed evidence, the Second International HHT Guidelines provided a stepwise approach to help physicians manage HHT-related epistaxis highlighting the role of anti-fibrinolytic and systemic antiangiogenic drugs. However, experience from clinical practice and trials indicates marked variability in patient responses, and none of the recommended approaches has demonstrated sufficient placebo-controlled efficacy to gain regulatory approval. Striking insights in HHT physiopathology shed light on complex dysregulated signaling pathways with a triggering role not only by angiogenesis as widely recognized, but also by inflammation, injury and other stimuli, pointing to novel therapeutic targets. This review outlines current recommendations for preventing and managing nosebleeds in HHT patients, highlights the latest insights into the development of telangiectasic lesions, and discusses potential therapeutic treatments currently under clinical investigation. Full article
Show Figures

Graphical abstract

45 pages, 2725 KB  
Review
Injectable Hydrogel Systems for Targeted Drug Delivery: From Site-Specific Application to Design Strategy
by Yeji Lee, Minji Kim, Nurihan Kim, Seonyeong Byun, Soonmin Seo and Jung Y. Han
Appl. Sci. 2025, 15(21), 11599; https://doi.org/10.3390/app152111599 - 30 Oct 2025
Abstract
Injectable hydrogels are adaptable drug delivery systems capable of forming localized depots that align with the anatomical and physiological constraints of administration sites. Their performance depends on both the injection environment and the properties of the therapeutic cargo. Applications span ocular, intra-articular, subcutaneous, [...] Read more.
Injectable hydrogels are adaptable drug delivery systems capable of forming localized depots that align with the anatomical and physiological constraints of administration sites. Their performance depends on both the injection environment and the properties of the therapeutic cargo. Applications span ocular, intra-articular, subcutaneous, intramuscular, tumoral, central nervous system, and mucosal delivery, where hydrogels address challenges of clearance, retention, and compatibility. Beyond bulk depots, particulate hydrogel formats such as microgels and nanogels improve syringeability, modularity, and integration with nanoparticle carriers. Functional versatility arises from stimuli responsiveness, including pH, enzymatic, thermal, redox, and light triggers, and from hybrid designs that integrate multiple cues for precision control. Loading strategies range from passive encapsulation to affinity binding and covalent conjugation, with release governed by diffusion, degradation, and stimuli-modulated kinetics. Translational progress depends on reproducible fabrication, scalable manufacturing, and device integration, while site-dependent constraints and regulatory hurdles remain significant challenges. Full article
(This article belongs to the Special Issue Anticancer Drugs: New Developments and Discoveries)
Show Figures

Figure 1

Back to TopTop