Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (137)

Search Parameters:
Keywords = light of different spectral compositions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1834 KB  
Article
Tunable Luminescence in Sb3+-Doped Cs3LnCl6 Perovskites for Wide-Coverage Emission and Anti-Counterfeiting Applications
by Lianao Zhang, Le Chen, Sai Xu, Yongze Cao, Xizhen Zhang, Hongquan Yu, Yuefeng Gao and Baojiu Chen
Nanomaterials 2025, 15(23), 1790; https://doi.org/10.3390/nano15231790 - 27 Nov 2025
Viewed by 518
Abstract
Zero-dimensional (0D) rare-earth-based metal halides show great potential in photonic and optoelectronic applications owing to their high stability, strong exciton confinement, and tunable energy levels. However, the weak absorption and narrow 4f-4f transitions of rare-earth ions limit their performance. To address this, a [...] Read more.
Zero-dimensional (0D) rare-earth-based metal halides show great potential in photonic and optoelectronic applications owing to their high stability, strong exciton confinement, and tunable energy levels. However, the weak absorption and narrow 4f-4f transitions of rare-earth ions limit their performance. To address this, a series of Sb3+-doped Cs3LnCl6 (Ln: Yb, La, Eu, Ho, Ce, Er, Tb, Sm, Y) nanocrystals were synthesized via a hot-injection method to study the role of Sb3+ doping. Sb3+ incorporation induces strong broadband self-trapped exciton (STE) emission from Jahn–Teller-distorted [SbCl6]3− units and enables efficient energy transfer from STEs to rare-earth ions. As a result, the photoluminescence intensity and spectral tunability are improved, accompanied by bandgap narrowing and enhanced light absorption. Different lanthanide hosts exhibit distinct luminescence behaviors: La-based materials show dominant STE emission, while Tb-, Er-, Yb-, Ho-, and Sm-based systems display STE-mediated energy transfer and enhanced f-f emission. In Eu- and Ce-based hosts, unique mechanisms involving Eu2+/Eu3+ conversion and Ce3+ → STE energy transfer are observed. Moreover, composition-dependent emissions in Sb3+-doped Cs3Tb/EuCl6 enable a dual-mode color and spectral encoding strategy for optical anti-counterfeiting. This study highlights the versatile role of Sb3+ in tuning electronic structures and energy transfer, offering new insights for designing high-performance rare-earth halide materials for advanced optoelectronic applications. Full article
Show Figures

Figure 1

15 pages, 5128 KB  
Article
Effect of Drought and High-Light Stress on Volatile Compounds and Quality of Welsh Onion (Allium fistulosum L.)
by Xuena Liu, Zijing Chen, Kun Xu and Kang Xu
Agronomy 2025, 15(10), 2349; https://doi.org/10.3390/agronomy15102349 - 6 Oct 2025
Viewed by 1126
Abstract
Welsh onion (Allium fistulosum L.) is a globally significant culinary vegetable with extensive cultivation and high application value. In China, Welsh onion is vulnerable to drought and strong-light stress in summer production, resulting in growth inhibition and quality decline. This study utilized [...] Read more.
Welsh onion (Allium fistulosum L.) is a globally significant culinary vegetable with extensive cultivation and high application value. In China, Welsh onion is vulnerable to drought and strong-light stress in summer production, resulting in growth inhibition and quality decline. This study utilized LED-intelligent spectral-customized lamps to simulate high-light stress and a 10% PEG-6000 Hoagland solution to simulate drought stress. The effects of different stress treatments on the nutritional quality, volatile compounds, and mineral element composition of the edible portions were systematically analyzed. The results demonstrated that drought stress significantly promoted the accumulation of alcoholic compounds in leaf tissues while reducing the content of sulfur-containing compounds. High-light stress markedly increased the levels of hydrocarbon compounds in leaves. Sulfur-containing compounds in leaf tissues were predominantly disulfides, but under combined drought and high-light stress, their content decreased, while the proportion of trisulfides significantly increased. Volatile compounds in pseudostems were primarily composed of sulfur-containing and aldehyde compounds, yet their levels markedly declined under combined stress. Additionally, combined stress led to reductions in pyruvic acid, soluble sugars, and soluble protein content in the edible portions, while the crude fiber content increased, thereby significantly impairing nutritional quality. This study provides a scientific basis for understanding the abiotic stress response mechanisms of Welsh onion and offers valuable insights for cultivation management and quality regulation. Full article
Show Figures

Figure 1

21 pages, 7579 KB  
Article
Mechanisms of Morphological Development and Physiological Responses Regulated by Light Spectrum in Changchuan No. 3 Pepper Seedlings
by Wanli Zhu, Zhi Huang, Shiting Zhao, Zhi Chen, Bo Xu, Qiang Huang, Yuna Wang, Yu Wu, Yuanzhen Guo, Hailing Chen and Lanping Shi
Horticulturae 2025, 11(10), 1161; https://doi.org/10.3390/horticulturae11101161 - 29 Sep 2025
Viewed by 874
Abstract
This study aimed to evaluate the effects of specific LED light spectra on the growth and physiology of Changchuan No. 3 Capsicum annuum L. seedlings. The experimental design involved exposing pepper seedlings to six different spectral light combinations for 7, 14, and 21 [...] Read more.
This study aimed to evaluate the effects of specific LED light spectra on the growth and physiology of Changchuan No. 3 Capsicum annuum L. seedlings. The experimental design involved exposing pepper seedlings to six different spectral light combinations for 7, 14, and 21 days, with the treatments consisting of 2R1B1Y (red/blue/yellow = 2:1:1), 2R1B1FR (red/blue/far-red = 2:1:1), 2R1B1P (red/blue/purple = 2:1:1), 4R2B1G (red/blue/green = 4:2:1), 2R1B1G (red/blue/green = 2:1:1), and 2R1B (red/blue = 2:1). The results demonstrated distinct spectral regulation of seedling development: compared to the white light (CK), the 2R1B1FR (far-red light supplementation) treatment progressively stimulated stem elongation, increasing plant height and stem diameter by 81.6% and 25.9%, respectively, at day 21, but resulted in a more slender stem architecture. The 2R1B1G (balanced green light) treatment consistently promoted balanced growth, culminating in the highest seedling vigor index at the final stage. The 2R1B1P (purple light supplementation) treatment exhibited a strong promotive effect on root development, which became most pronounced at day 21 (126% increase in root dry weight), while concurrently enhancing soluble sugar content and reducing oxidative stress. Conversely, the 2R1B1Y (yellow light supplementation) treatment increased MDA content by 70% and led to a reduction in chlorophyll accumulation, while 2R1B (basic red–blue) resulted in lower biomass accumulation compared to the superior spectral treatments. The 4R2B1G (low green ratio) treatment showed context-dependent outcomes. This study elucidates how targeted spectral compositions, particularly involving far-red and green light, can optimize pepper seedling quality by modulating photomorphogenesis, carbon allocation, and stress physiology. The findings provide a mechanistic basis for designing efficient LED lighting protocols in controlled-environment agriculture to enhance pepper nursery production. Full article
(This article belongs to the Special Issue Genomics and Genetic Diversity in Vegetable Crops)
Show Figures

Figure 1

20 pages, 2990 KB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Cited by 2 | Viewed by 1741
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

19 pages, 7139 KB  
Article
Multidimensional Human Responses Under Dynamic Spectra of Daylighting and Electric Lighting
by Yingjun Dong, Guiyi Wu, Jiaxin Shi, Qingxuan Liang, Zhipeng Cui and Peng Xue
Buildings 2025, 15(13), 2184; https://doi.org/10.3390/buildings15132184 - 23 Jun 2025
Cited by 1 | Viewed by 1065
Abstract
The luminous environment, shaped by daylight and electric light, significantly influences visual performance, physiological responses, and perceptual experiences. While these light sources are often perceived as distinct due to their differing effects on occupants’ cognition and well-being, the underlying mechanisms remain unclear. Nine [...] Read more.
The luminous environment, shaped by daylight and electric light, significantly influences visual performance, physiological responses, and perceptual experiences. While these light sources are often perceived as distinct due to their differing effects on occupants’ cognition and well-being, the underlying mechanisms remain unclear. Nine lighting conditions were evaluated, combining three spectral types—daylight (DL), conventional LED (CLED), and daylight LED (DLED)—with three horizontal illuminance levels (300 lx, 500 lx, and 1000 lx). Twelve healthy subjects completed visual performance tasks (2-back working memory test), physiological measurements (heart rate variability and critical flicker frequency), and subjective evaluations. The results revealed that 500 lx consistently yielded the most favorable outcomes: 2-back task response speed improved by 6.2% over 300 lx and 1000 lx, and the critical flicker frequency difference was smallest, indicating reduced fatigue. DLED lighting achieved cognitive and physiological levels comparable to daylight. Heart rate variability analyzes further confirmed higher alertness levels under 500 lx DLED lighting (LF/HF = 3.31). Subjective ratings corroborated these findings, with perceived alertness and comfort highest under DLED and 500 lx conditions. These results demonstrate that DLED, which offers a balanced spectral composition and improved uniformity, may serve as an effective lighting configuration for supporting both visual and non-visual performance in indoor settings lacking daylight. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 4519 KB  
Article
Effects of Low Green Light Combined with Different Red and Far-Red Light Ratios on the Growth and Secondary Metabolites of Cilantro (Coriandrum sativum L.)
by Manuel Mayam Miranda Sotelo, Yuan-Kai Tu, Pearl Pei-Chun Chang, Wei Fang and Hsing-Ying Chung
Agronomy 2025, 15(6), 1363; https://doi.org/10.3390/agronomy15061363 - 31 May 2025
Cited by 3 | Viewed by 1594
Abstract
Plant factories offer a promising opportunity for fresh food production due to their minimal land requirements. Among the adjustable factors in the production system of plant factories, light serves as a critical element, significantly influencing both crop yield and quality. Cilantro, a prevalent [...] Read more.
Plant factories offer a promising opportunity for fresh food production due to their minimal land requirements. Among the adjustable factors in the production system of plant factories, light serves as a critical element, significantly influencing both crop yield and quality. Cilantro, a prevalent culinary herb and a traditional flavoring agent, plays a crucial role in Taiwanese gastronomy. This research investigated cilantro plants grown under nine different light treatments with varying red to far-red ratios and green light percentages over a 49-day period. Results demonstrate that maximum fresh and dry biomass accumulation in both shoot and root tissues occurred under treatments with red to far-red ratios of approximately of 1.8 combined with medium green light intensity. Conversely, medium far-red ratios negatively affected lutein and carotenoid concentrations in foliar tissues. Carotenoid biosynthesis exhibited an inverse relationship with green light intensity, with lower green light percentages corresponding to significantly higher carotenoid concentrations. In terms of energy efficiency, a red to far-red ratio of approximately 1.8 yielded the highest energy yield (g kWh−1) and photon yield (g mol−1), indicating optimal energy conversion efficiency under this spectral composition. In conclusion, this study demonstrates that cilantro cultivation under R53G05B13FR29 spectral composition (53% red, 5% green, 13% blue, 29% far-red) with a 49-day production cycle maximizes biomass while optimizing energy utilization efficiency. Full article
Show Figures

Figure 1

18 pages, 6374 KB  
Article
Optimizing the LED Light Spectrum for Enhanced Seed Germination of Lettuce cv. ‘Lollo Bionda’ in Controlled-Environment Agriculture
by Hamid Reza Soufi, Hamid Reza Roosta, Nazim S. Gruda and Mahdiyeh Shojaee Khabisi
Agronomy 2025, 15(5), 1219; https://doi.org/10.3390/agronomy15051219 - 17 May 2025
Viewed by 4496
Abstract
Light is crucial in controlled-environment agriculture (CEA), affecting germination, growth, and overall plant quality. Here, we explored the optimization of various LED light spectra on the germination traits such as germination percentage, mean germination time, germination index, vigor index, and early seedling growth [...] Read more.
Light is crucial in controlled-environment agriculture (CEA), affecting germination, growth, and overall plant quality. Here, we explored the optimization of various LED light spectra on the germination traits such as germination percentage, mean germination time, germination index, vigor index, and early seedling growth of ‘Lollo Bionda’ lettuce seedlings in a plant factory. A completely randomized design was implemented, involving three replications. LED lamps with different spectral compositions—red (R, peak at 656 nm), red/blue (3:1 ratio, R:B, peak at 656 nm), blue (B, peak at 450 nm), and white (400–700 nm)—were utilized in this study. The combination of red and blue LED lights, along with monochromatic red and blue treatments, significantly enhanced germination traits and early seedling growth compared to white and ambient lighting. The combined spectrum resulted in the highest seedling emergence, the longest shoot and root lengths, and the highest fresh weight. These findings underscore the potential of the LED technology to improve germination efficiency and enhance seedling quality in CEA. Future studies should refine multispectral LED strategies by examining factors such as light intensity and photoperiod, while also elucidating the molecular pathways involved in light-driven germination and early development in lettuce. Full article
Show Figures

Figure 1

20 pages, 2766 KB  
Article
Evaluation of the Effect of Light Color on Albumins and Globulins Content During Bean Germination
by Victor Manuel Rivera Aguilar, José Pedraza-Chaverri, David Julian Arias-Chávez, Ruth Jaimez, Edgar Flores-Soto, Isaías E. Garduño, Fernando S. Chiwo, Celia Sánchez Pérez and Ana del Carmen Susunaga Notario
Foods 2025, 14(10), 1750; https://doi.org/10.3390/foods14101750 - 14 May 2025
Cited by 3 | Viewed by 2371
Abstract
The effect of different light colors on the concentration of albumins and globulins during black bean (Phaseolus vulgaris L.) germination was evaluated with an RGB LED lighting system. This study aimed to determine how light of different spectral composition influences protein content [...] Read more.
The effect of different light colors on the concentration of albumins and globulins during black bean (Phaseolus vulgaris L.) germination was evaluated with an RGB LED lighting system. This study aimed to determine how light of different spectral composition influences protein content across different germination stages. Black bean seeds were germinated under six different LED light sources (red, green, blue, white, violet, and cyan), and protein fractions were quantified by Bradford’s method. The results showed that blue and cyan light increased the concentration of albumins. Blue, white, and cyan light for globulins increased the concentration compared to germination under solar conditions for both fractions. The positive correlation between these protein fractions under specific wavelengths suggests a metabolic adaptation to light exposure. These findings highlight the potential of controlled lighting conditions to enhance the nutritional quality of germinated beans, supporting their application as functional food ingredients. Additionally, this study underscores the importance of photobiological modulation in seed germination, opening new possibilities for optimizing plant-based protein sources. Future research could explore the mechanisms behind these protein variations and their implications for food production and nutrition. Full article
Show Figures

Graphical abstract

18 pages, 4254 KB  
Article
Species-Specific Responses of Baikal Amphipods to Artificial Lighting of Varying Intensity and Spectral Composition
by Dmitry Karnaukhov, Yana Ermolaeva, Maria Maslennikova, Bogdan Osadchy, Sofya Biritskaya, Arina Lavnikova, Natalia Kulbachnaya, Anastasia Solodkova, Artem Guliguev, Ivan Kodatenko, Diana Rechile, Kristina Ruban, Darya Kondratieva, Alexandr Bashkirtsev, Alyona Slepchenko, Anna Solomka, Sophia Nazarova and Eugene Silow
Limnol. Rev. 2025, 25(2), 11; https://doi.org/10.3390/limnolrev25020011 - 1 Apr 2025
Cited by 3 | Viewed by 1156
Abstract
Light pollution can have a variety of effects on aquatic organisms. Despite the fact that amphipods are one of the model organisms for studying the effects of light among macroinvertebrates, data on the reaction of Baikal amphipods to artificial lighting are limited and [...] Read more.
Light pollution can have a variety of effects on aquatic organisms. Despite the fact that amphipods are one of the model organisms for studying the effects of light among macroinvertebrates, data on the reaction of Baikal amphipods to artificial lighting are limited and contradictory. In this study, we examine the response of Baikal littoral and sublittoral amphipod species to artificial lighting of varying intensity and spectral composition. In the experiments, amphipods were exposed to warm and white light at three different intensity ranges (5–15, 20–35, and 80–100 lx), as well as blue and red light. As a result, it was found that the reaction of Baikal amphipods to different lighting conditions was species-specific and dependent on the spectral composition of the light more so than the intensity of the light. In particular, white LED light generally repulsed E. cyaneus, but tended to attract A. godlevskii. P. cancelloides, and G. fasciatus, suggesting that white LED light may have a greater negative impact on wildlife than warm LED light. Generally, artificial light influences the behavior of Baikal amphipods, and an increase in light pollution on Lake Baikal may lead to changes in the littoral community in certain areas of the lake subject to pollution. Full article
Show Figures

Figure 1

15 pages, 7261 KB  
Article
Design of Ultra-Wide-Band Fourier Transform Infrared Spectrometer
by Liangjie Zhi, Wei Han, Shuai Yuan, Fengkun Luo, Han Gao, Zixuan Zhang and Min Huang
Optics 2025, 6(1), 7; https://doi.org/10.3390/opt6010007 - 5 Mar 2025
Viewed by 2407
Abstract
A wide band range can cover more of the characteristic spectral lines of substances, and thus analyze the structure and composition of substances more accurately. In order to broaden the band range of spectral instruments, an ultra-wide-band Fourier transform infrared spectrometer is designed. [...] Read more.
A wide band range can cover more of the characteristic spectral lines of substances, and thus analyze the structure and composition of substances more accurately. In order to broaden the band range of spectral instruments, an ultra-wide-band Fourier transform infrared spectrometer is designed. The incident light of the spectrometer is constrained by a secondary imaging scheme, and switchable light sources and detectors are set to achieve an ultra-wide band coverage. A compact and highly stable double-moving mirror swing interferometer is adopted to generate optical path difference, and a controller is used to stabilize the swing of the moving mirrors. A distributed design of digital system integration and analog system integration is adopted to achieve a lightweight and low-power-consumption spectrometer. High-speed data acquisition and a transmission interface are applied to improve the real-time performance. Further, a series of experiments are performed to test the performance of the spectrometer. Finally, the experimental results show that the spectral range of the ultra-wide-band Fourier transform infrared spectrometer covers 0.770–200 μm, with an accurate wave number, a spectral resolution of 0.25 cm−1, and a signal-to-noise ratio better than 50,000:1. Full article
(This article belongs to the Section Engineering Optics)
Show Figures

Figure 1

19 pages, 5544 KB  
Article
Effect of LED Irradiation with Different Red-to-Blue Light Ratios on Growth and Functional Compound Accumulations in Spinach (Spinacia oleracea L.) Accessions and Wild Relatives
by Tri Manh Le, Yuki Sago, Yasuomi Ibaraki, Kazuhiro Harada, Kenta Arai, Yuichi Ishizaki, Hitoshi Aoki, Mostafa Abdelrahman, Chris Kik, Rob van Treuren, Theo van Hintum and Masayoshi Shigyo
Plants 2025, 14(5), 700; https://doi.org/10.3390/plants14050700 - 24 Feb 2025
Cited by 4 | Viewed by 2561
Abstract
The utilization of red and blue light-emitting diode (LED) lights for cultivating leafy vegetables in closed plant factories has increased in recent years. This study examined the growth and biosynthesis of functional compounds in twelve Spinacia accessions, including cultivars and wild relatives, under [...] Read more.
The utilization of red and blue light-emitting diode (LED) lights for cultivating leafy vegetables in closed plant factories has increased in recent years. This study examined the growth and biosynthesis of functional compounds in twelve Spinacia accessions, including cultivars and wild relatives, under the irradiation of fluorescent light and three different red-to-blue LED light combinations (red:blue = 1:1, 1:3, and 3:1). Results showed that, except for the three examined Japanese cultivars, the fresh weight of most spinach accessions increased when red light comprised 50–75% of the light’s spectral composition. This indicated the vital role of the red-light photoreceptor phytochrome in inducing plant growth. The contribution of blue-light photoreceptors was also notable. Significant variations in the accumulation of amino acids and sugars were observed in specific accessions. The effects of spectral photons on the primary metabolite pathways were probably the leading causes of these variations. Some critical enzymes in the Gamma-aminobutyric acid (GABA) shunt cycle and the asparagine and glycolysis pathways were suggested as rate-limiting enzymes, which determined the biosynthesis of functional compounds. Among the examined Spinacia accessions, ‘CGN09429’, ‘CGN09511’, and the wild S. turkestanica ‘CGN25013’ were identified as potential breeding materials, while red:blue = 1:1 was determined as the optimal red-to-blue ratio for spinach growth in a closed-cultivation system. Full article
(This article belongs to the Special Issue Advances in Plant Photobiology)
Show Figures

Graphical abstract

18 pages, 1807 KB  
Article
3DVT: Hyperspectral Image Classification Using 3D Dilated Convolution and Mean Transformer
by Xinling Su and Jingbo Shao
Photonics 2025, 12(2), 146; https://doi.org/10.3390/photonics12020146 - 11 Feb 2025
Cited by 1 | Viewed by 1400
Abstract
Hyperspectral imaging and laser technology both rely on different wavelengths of light to analyze the characteristics of materials, revealing their composition, state, or structure through precise spectral data. In hyperspectral image (HSI) classification tasks, the limited number of labeled samples and the lack [...] Read more.
Hyperspectral imaging and laser technology both rely on different wavelengths of light to analyze the characteristics of materials, revealing their composition, state, or structure through precise spectral data. In hyperspectral image (HSI) classification tasks, the limited number of labeled samples and the lack of feature extraction diversity often lead to suboptimal classification performance. Furthermore, traditional convolutional neural networks (CNNs) primarily focus on local features in hyperspectral data, neglecting long-range dependencies and global context. To address these challenges, this paper proposes a novel model that combines CNNs with an average pooling Vision Transformer (ViT) for hyperspectral image classification. The model utilizes three-dimensional dilated convolution and two-dimensional convolution to extract multi-scale spatial–spectral features, while ViT was employed to capture global features and long-range dependencies in the hyperspectral data. Unlike the traditional ViT encoder, which uses linear projection, our model replaces it with average pooling projection. This change enhances the extraction of local features and compensates for the ViT encoder’s limitations in local feature extraction. This hybrid approach effectively combines the local feature extraction strengths of CNNs with the long-range dependency handling capabilities of Transformers, significantly improving overall performance in hyperspectral image classification tasks. Additionally, the proposed method holds promise for the classification of fiber laser spectra, where high precision and spectral analysis are crucial for distinguishing between different fiber laser characteristics. Experimental results demonstrate that the CNN-Transformer model substantially improves classification accuracy on three benchmark hyperspectral datasets. The overall accuracies achieved on the three public datasets—IP, PU, and SV—were 99.35%, 99.31%, and 99.66%, respectively. These advancements offer potential benefits for a wide range of applications, including high-performance optical fiber sensing, laser medicine, and environmental monitoring, where accurate spectral classification is essential for the development of advanced systems in fields such as laser medicine and optical fiber technology. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application)
Show Figures

Figure 1

16 pages, 864 KB  
Article
Impact of LED Combinations and Light Intensity on Growth and Yields of Wasabi
by Soraya Ruamrungsri, Yanika Utrapen, Suriya Tateing, Kanokwan Panjama and Chaiartid Inkham
Horticulturae 2025, 11(1), 3; https://doi.org/10.3390/horticulturae11010003 - 24 Dec 2024
Cited by 5 | Viewed by 4877
Abstract
This study examines the effects of different LED light spectra and intensities on the growth, photosynthetic performance, and biochemical composition of the ‘Daruma’ cultivar of wasabi (Eutrema japonicum). The primary objective is to enhance the efficiency of indoor cultivation techniques for [...] Read more.
This study examines the effects of different LED light spectra and intensities on the growth, photosynthetic performance, and biochemical composition of the ‘Daruma’ cultivar of wasabi (Eutrema japonicum). The primary objective is to enhance the efficiency of indoor cultivation techniques for this economically significant crop. Wasabi seedlings were cultivated under LED lighting with four light intensities (35, 60, 90, and 140 µmol m⁻2 s⁻1) and three spectral combinations: red and white (1:1); red, white, and blue (1:1:1); and white. Growth parameters, including plant height, petiole length, leaf number, and yield metrics such as fresh weight and leaf area, were measured alongside photosynthetic activity and chemical analysis of glucosinolate levels. The results indicate that higher light intensities (particularly 140 µmol m⁻2 s⁻1) greatly enhance overall plant biomass, with red-dominant spectra promoting more significant growth and glucosinolate accumulation, a key secondary metabolite in wasabi. Lower intensities increased chlorophyll content and produced darker green foliage but decreased growth performance. Additionally, the interaction of red and blue light spectra with increased light intensity suggests that specific red light conditions are optimal for maximizing wasabi biomass and biochemical yield. These findings contribute valuable insights for optimizing light regimes for wasabi and similar shade-adapted crops in controlled indoor farming systems, potentially improving yield and quality in plant factories and supporting the future of indoor farming. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

18 pages, 4405 KB  
Article
The Improvement in the Growth and Biosynthesis of Polyphenols in Ocimum basilicum L. Plants Through Simultaneous Modulation of Light Conditions and Soil Supplementation
by Galina N. Veremeichik, Valeria P. Grigorchuk, Evgenii P. Subbotin, Sergei O. Kozhanov, Olga A. Tikhonova, Evgenia V. Brodovskaya, Slavena A. Silantieva, Natalia I. Subbotina, Yulia L. Yaroshenko, Yurii N. Kulchin and Victor P. Bulgakov
Horticulturae 2024, 10(12), 1295; https://doi.org/10.3390/horticulturae10121295 - 4 Dec 2024
Cited by 1 | Viewed by 1706
Abstract
The sweet basil Ocimum basilicum L. is the subject of numerous studies and is cultivated as a food and ornamental plant. Moreover, O. basilicum could be useful in the prevention of stroke ischemia, and its anticancer properties were recently shown. Caffeic acid derivatives, such [...] Read more.
The sweet basil Ocimum basilicum L. is the subject of numerous studies and is cultivated as a food and ornamental plant. Moreover, O. basilicum could be useful in the prevention of stroke ischemia, and its anticancer properties were recently shown. Caffeic acid derivatives, such as rosmarinic acid (RA), chicoric acid, salvianolic acids, and anthocyanins, provide the medicinal properties of basil. Therefore, investigations of the optimal growth conditions that can provide cost-effective cultivation of highly productive basil plants are relevant and important. The aim of the present work was to study the effects of a combination of soil composition and light conditions on the morphological and biochemical characteristics of O. basilicum. In totally artificial (indoor) environments, light-emitting diodes (LEDs) may provide a broad range of narrowband wavelengths with different intensities. This technology can lower operating costs. In addition to the spectral composition, light intensity (PPFD, µmol m−2s−1) is an important parameter for the optimal growth of plants. In the experiment, we used different spectra of LED lamps with intensities of 300 µmol m−2s−1: warm white, monochromatic (green and red), and a combination of blue and red. Plants were grown under various lighting conditions in soil supplemented with fertilizer, Z-ion, and Crystallon. The results showed that supplementation of soil with Crystallon had a greater effect on the growth of both above- and below-ground parts of O. basilicum plants. Interestingly, growing O. basilicum plants under R and RB light led to a 2-fold increase in the biosynthesis of both the key caffeic acid derivative RA and anthocyanin. However, given that under RB light, there is no positive effect of Crystallon on growth, the productivity of RA and anthocyanin reached a maximum when O. basilicum plants were grown under R light and Crystallon. Under these conditions, the productivity of anthocyanins and caffeic acid derivatives in O. basilicum was more than eight times greater than that in untreated O. basilicum plants. Full article
Show Figures

Figure 1

17 pages, 618 KB  
Article
Enhancing Pereskia aculeata Mill. Cultivation with LED Technology: A Sustainable Approach
by Nayara Vieira Silva, Ailton Cesar Lemes, Fabiano Guimarães Silva, Bruno Matheus Mendes Dário, Jenifer Ribeiro de Jesus, Tainara Leal de Sousa, Sibele Santos Fernandes and Mariana Buranelo Egea
Processes 2024, 12(12), 2695; https://doi.org/10.3390/pr12122695 - 29 Nov 2024
Cited by 3 | Viewed by 1840
Abstract
Using light-emitting diode (LED) in plant production optimizes growth with higher energy efficiency, reduces carbon footprint and resource consumption, and promotes more sustainable agriculture. However, the plants’ growth characteristics and biochemical composition may vary depending on the light’s wavelength, spectrum, and intensity. Therefore, [...] Read more.
Using light-emitting diode (LED) in plant production optimizes growth with higher energy efficiency, reduces carbon footprint and resource consumption, and promotes more sustainable agriculture. However, the plants’ growth characteristics and biochemical composition may vary depending on the light’s wavelength, spectrum, and intensity. Therefore, LEDs as a light source have become a promising choice for improving cultivation efficiency, as they can modulate the spectrum to meet the needs of plants. Pereskia aculeata is a plant species from the cactus family with high protein, vitamins, minerals, and fiber. The objective of this study was to evaluate the effect of LED lighting on the cultivation of P. aculeata and its influence on biometric color and physicochemical aspects. Two treatments were carried out without the addition of artificial light: one inside the greenhouse (C-ins) and the other outside the greenhouse (C-out), and four treatments with LEDs in different spectral bands: monochromatic red (600–700 nm) (Red), monochromatic blue (400–490 nm) (Blue), white (400–700 nm) (White), and blue–red (1:1) (Blue–Red). The biometric characteristics and the color of the leaves collected from the different treatments were evaluated. After this, the leaves were dried, ground, and evaluated. The physicochemical and thermal characteristics, bioactive compounds, and antioxidant activity of the leaves from each treatment were described. The biometric characteristics were intensified with red LED, and the color of the leaves tended toward green. The dried yield was around 50%, except for C-out treatment. Regarding nutritional characteristics, the highest protein (29.68 g/100 g), fiber (34.44 g/100 g), ash (20.28 g/100 g), and lipid (3.44 g/100 g) contents were obtained in the treatment with red light. The red treatment also intensified the content of chlorophyll a (28.27 µg/L) and total carotenoids (5.88 µg/g). The blue treatment intensified the concentration of minerals and provided greater thermal stability. Regarding bioactive properties, the cultivation of P. aculeata inside the greenhouse favored the concentration of phenolic compounds and a greater antioxidant capacity. Therefore, the quality of light for P. aculeata demonstrates that the length of red and blue light corroborates the development of the plant through the wavelength absorbed by the leaves, favoring its characteristics and planting in closed environments. Full article
(This article belongs to the Special Issue Circular Economy and Efficient Use of Resources (Volume II))
Show Figures

Figure 1

Back to TopTop