Species-Specific Responses of Baikal Amphipods to Artificial Lighting of Varying Intensity and Spectral Composition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LED | Light-emitting diode |
DVM | Daily vertical migration |
HPS | High-pressure sodium |
References
- Navarro-Barranco, C.; Hughes, L.E. Effects of Light Pollution on the Emergent Fauna of Shallow Marine Ecosystems: Amphipods as a Case Study. Mar. Pollut. Bull. 2015, 94, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsen, M.; Berge, J.; Geoffroy, M.; Cohen, J.H.; De La Torre, P.R.; Nornes, S.M.; Singh, H.; Sørensen, A.J.; Daase, M.; Johnsen, G. Use of an Autonomous Surface Vehicle Reveals Small-Scale Diel Vertical Migrations of Zooplankton and Susceptibility to Light Pollution under Low Solar Irradiance. Sci. Adv. 2018, 4, eaap9887. [Google Scholar] [CrossRef] [PubMed]
- Falcón, J.; Torriglia, A.; Attia, D.; Viénot, F.; Gronfier, C.; Behar-Cohen, F.; Martinsons, C.; Hicks, D. Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems. Front. Neurosci. 2020, 14, 602796. [Google Scholar] [CrossRef]
- Lao, S.; Robertson, B.A.; Anderson, A.W.; Blair, R.B.; Eckles, J.W.; Turner, R.J.; Loss, S.R. The Influence of Artificial Light at Night and Polarized Light on Bird-Building Collisions. Biol. Conserv. 2020, 241, 108358. [Google Scholar] [CrossRef]
- Marangoni, L.F.B.; Davies, T.; Smyth, T.; Rodríguez, A.; Hamann, M.; Duarte, C.; Pendoley, K.; Berge, J.; Maggi, E.; Levy, O. Impacts of Artificial Light at Night in Marine Ecosystems—A Review. Glob. Change Biol. 2022, 28, 5346–5367. [Google Scholar] [CrossRef]
- Colman, L.P.; Lara, P.H.; Bennie, J.; Broderick, A.C.; De Freitas, J.R.; Marcondes, A.; Witt, M.J.; Godley, B.J. Assessing Coastal Artificial Light and Potential Exposure of Wildlife at a National Scale: The Case of Marine Turtles in Brazil. Biodivers. Conserv. 2020, 29, 1135–1152. [Google Scholar] [CrossRef]
- Kamei, M.; Jikumaru, S.; Hoshino, S.; Ishikura, S.; Wada, M. Effects of Replacing Outdoor Lighting with White LEDs with Different Correlated Color Temperatures on the Attraction of Nocturnal Insects. Appl. Entomol. Zool. 2021, 56, 225–233. [Google Scholar] [CrossRef]
- Fabian, S.T.; Sondhi, Y.; Allen, P.E.; Theobald, J.C.; Lin, H.-T. Why Flying Insects Gather at Artificial Light. Nat. Commun. 2024, 15, 689. [Google Scholar] [CrossRef]
- Hölker, F.; Jechow, A.; Schroer, S.; Tockner, K.; Gessner, M.O. Light Pollution of Freshwater Ecosystems: Principles, Ecological Impacts and Remedies. Phil. Trans. R. Soc. B 2023, 378, 20220360. [Google Scholar] [CrossRef]
- Berge, J.; Geoffroy, M.; Daase, M.; Cottier, F.; Priou, P.; Cohen, J.H.; Johnsen, G.; McKee, D.; Kostakis, I.; Renaud, P.E.; et al. Artificial Light during the Polar Night Disrupts Arctic Fish and Zooplankton Behaviour down to 200 m Depth. Commun. Biol. 2020, 3, 102. [Google Scholar] [CrossRef]
- Bolton, D.; Mayer-Pinto, M.; Clark, G.F.; Dafforn, K.A.; Brassil, W.A.; Becker, A.; Johnston, E.L. Coastal Urban Lighting Has Ecological Consequences for Multiple Trophic Levels under the Sea. Sci. Total Environ. 2017, 576, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kupprat, F.; Kloas, W.; Krüger, A.; Schmalsch, C.; Hölker, F. Misbalance of Thyroid Hormones after Two Weeks of Exposure to Artificial Light at Night in Eurasian Perch Perca fluviatilis. Conserv. Physiol. 2021, 9, coaa124. [Google Scholar] [CrossRef]
- Brüning, A.; Hölker, F.; Franke, S.; Kleiner, W.; Kloas, W. Impact of Different Colours of Artificial Light at Night on Melatonin Rhythm and Gene Expression of Gonadotropins in European Perch. Sci. Total Environ. 2016, 543, 214–222. [Google Scholar] [CrossRef]
- Migaud, H.; Cowan, M.; Taylor, J.; Ferguson, H.W. The Effect of Spectral Composition and Light Intensity on Melatonin, Stress and Retinal Damage in Post-Smolt Atlantic Salmon, Salmo Salar. Aquaculture 2007, 270, 390–404. [Google Scholar] [CrossRef]
- Duarte, C.; Quintanilla-Ahumada, D.; Anguita, C.; Manríquez, P.H.; Widdicombe, S.; Pulgar, J.; Silva-Rodríguez, E.A.; Miranda, C.; Manríquez, K.; Quijón, P.A. Artificial Light Pollution at Night (ALAN) Disrupts the Distribution and Circadian Rhythm of a Sandy Beach Isopod. Environ. Pollut. 2019, 248, 565–573. [Google Scholar] [CrossRef]
- Foster, J.G.; Algera, D.A.; Brownscombe, J.W.; Zolderdo, A.J.; Cooke, S.J. Consequences of Different Types of Littoral Zone Light Pollution on the Parental Care Behaviour of a Freshwater Teleost Fish. Water Air Soil. Pollut. 2016, 227, 404. [Google Scholar] [CrossRef]
- Moore, M.V.; Pierce, S.M.; Walsh, H.M.; Kvalvik, S.K.; Lim, J.D. Urban Light Pollution Alters the Diel Vertical Migration of Daphnia. SIL Proc. 2000, 27, 779–782. [Google Scholar] [CrossRef]
- Harrison, S.E.; Gray, S.M. Effects of Light Pollution on Bluegill Foraging Behavior. Trans. Am. Fish. Soc. 2024, 153, 152–162. [Google Scholar] [CrossRef]
- Brüning, A.; Hölker, F.; Wolter, C. Artificial Light at Night: Implications for Early Life Stages Development in Four Temperate Freshwater Fish Species. Aquat. Sci. 2011, 73, 143–152. [Google Scholar] [CrossRef]
- Davies, T.W.; Bennie, J.; Gaston, K.J. Street Lighting Changes the Composition of Invertebrate Communities. Biol. Lett. 2012, 8, 764–767. [Google Scholar] [CrossRef]
- Luarte, T.; Bonta, C.C.; Silva-Rodriguez, E.A.; Quijón, P.A.; Miranda, C.; Farias, A.A.; Duarte, C. Light Pollution Reduces Activity, Food Consumption and Growth Rates in a Sandy Beach Invertebrate. Environ. Pollut. 2016, 218, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Ciofini, A.; Mercatelli, L.; Hariyama, T.; Ugolini, A. Sky Radiance and Spectral Gradient Are Orienting Cues for the Sandhopper Talitrus Saltator (Crustacea, Amphipoda). J. Exp. Biol. 2020, 224, jeb.239574. [Google Scholar] [CrossRef]
- García-Sanz, S.; Navarro, P.G.; Png-Gonzalez, L.; Tuya, F. Contrasting Patterns of Amphipod Dispersion in a Seagrass Meadow between Day and Night: Consistency through a Lunar Cycle. Mar. Biol. Res. 2016, 12, 56–65. [Google Scholar] [CrossRef]
- Anokhina, L.L. Influence of Moonlight on the Vertical Migrations of Benthopelagic Organisms in the Near-Shore Area of the Black Sea. Oceanology 2006, 46, 385–395. [Google Scholar] [CrossRef]
- Fernandez-Gonzalez, V.; Fernandez-Jover, D.; Toledo-Guedes, K.; Valero-Rodriguez, J.M.; Sanchez-Jerez, P. Nocturnal Planktonic Assemblages of Amphipods Vary Due to the Presence of Coastal Aquaculture Cages. Mar. Environ. Res. 2014, 101, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. The Nature, Extent, and Ecological Implications of Marine Light Pollution. Front. Ecol. Environ. 2014, 12, 347–355. [Google Scholar] [CrossRef]
- Lynn, K.D.; Quintanilla-Ahumada, D.; Anguita, C.; Widdicombe, S.; Pulgar, J.; Manríquez, P.H.; Quijón, P.A.; Duarte, C. Artificial Light at Night Alters the Activity and Feeding Behaviour of Sandy Beach Amphipods and Pose a Threat to Their Ecological Role in Atlantic Canada. Sci. Total Environ. 2021, 780, 146568. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, M.; Kobak, J.; Grubisic, M.; Kakareko, T. Disruptive Effect of Artificial Light at Night on Leaf Litter Consumption, Growth and Activity of Freshwater Shredders. Sci. Total Environ. 2021, 786, 147407. [Google Scholar] [CrossRef]
- Czarnecka, M.; Jermacz, Ł.; Glazińska, P.; Kulasek, M.; Kobak, J. Artificial Light at Night (ALAN) Affects Behaviour, but Does Not Change Oxidative Status in Freshwater Shredders. Environ. Pollut. 2022, 306, 119476. [Google Scholar] [CrossRef]
- Quintanilla-Ahumada, D.; Quijón, P.A.; Jahnsen-Guzmán, N.; Lynn, K.D.; Pulgar, J.; Palma, J.; Manríquez, P.H.; Duarte, C. Splitting Light Pollution: Wavelength Effects on the Activity of Two Sandy Beach Species. Environ. Pollut. 2024, 356, 124317. [Google Scholar] [CrossRef]
- Drozdova, P.; Kizenko, A.; Saranchina, A.; Gurkov, A.; Firulyova, M.; Govorukhina, E.; Timofeyev, M. The Diversity of Opsins in Lake Baikal Amphipods (Amphipoda: Gammaridae). BMC Ecol. Evo. 2021, 21, 81. [Google Scholar] [CrossRef]
- Drozdova, P.; Saranchina, A.; Timofeyev, M. Spectral Sensitivity of the Visual System of Endemic Baikal Amphipods. LFWB 2020, 4, 781–782. [Google Scholar] [CrossRef]
- Kohler, S.A.; Parker, M.O.; Ford, A.T. Species-Specific Behaviours in Amphipods Highlight the Need for Understanding Baseline Behaviours in Ecotoxicology. Aquat. Toxicol. 2018, 202, 173–180. [Google Scholar] [CrossRef]
- Takhteev, V.V.; Berezina, N.A.; Sidorov, D.A. Checklist of the Amphipoda (Crustacea) from continental waters of Russia, with data on alien species. Arthropoda Sel. 2015, 24, 335–370. [Google Scholar] [CrossRef]
- Rudstam, L.G.; Melnik, N.G.; Timoshkin, O.A.; Hansson, S.; Pushkin, S.V.; Nemov, V. Diel Dynamics of an Aggregation of Macrohectopus Branickii (DYB.) (Amphipoda, Gammaridae) in the Barguzin Bay, Lake Baikal, Russia. J. Great Lakes Res. 1992, 18, 286–297. [Google Scholar] [CrossRef]
- Karnaukhov, D.; Dolinskaya, E.; Biritskaya, S.; Teplykh, M.; Khomich, A.; Silow, E. Effect of artificial light on the migratory activity of the pelagic amphipod Macrohectopus branickii during daily vertical migration in Lake Baikal. Ecol. Environ. Conserv. 2019, 25, 208–210. [Google Scholar]
- Bessolitsina, I.A.; Stom, D.I. Study of some behavioral reactions of Baikal amphipods under experimental conditions. Biodivers. Baikal Reg. Proc. Biol. Soil Fac. ISU 2001, 4, 30–37. (In Russian) [Google Scholar]
- Takhteev, V.V.; Karnaukhov, D.Y.; Govorukhina, E.B.; Misharin, A.S. Diel Vertical Migrations of Hydrobionts in the Coastal Area of Lake Baikal. Inland Water Biol. 2019, 12, 178–189. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes: Text with EEA Relevance. Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj (accessed on 27 March 2025).
- Bazikalova, A.Y. Amphipods of Lake Baikal. In Proceedings of the Baikal Limnological Station; Publishing House of the USSR Academy of Sciences: Leningrad, Russia, 1945; 440p. (In Russian) [Google Scholar]
- Saranchina, A.; Drozdova, P.; Mutin, A.; Timofeyev, M. Diet Affects Body Color and Energy Metabolism in the Baikal Endemic Amphipod Eulimnogammarus Cyaneus Maintained in Laboratory Conditions. BioComm 2021, 66, 245–255. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Oh, S.-T.; Ga, D.-H.; Lim, J.-H. A Method of Generating Real-Time Natural Light Color Temperature Cycle for Circadian Lighting Service. Sensors 2023, 23, 883. [Google Scholar] [CrossRef]
- Mekhanikova, I.V.; Vorobyeva, S.S. Diet of the Symbiotic Amphipod, Brandtia Parasitica Parasitica (Crustacea, Amphipoda), Living on Diseased Baikal Sponges of the Family Lubomirskiidae in Southern Lake Baikal. Biol. Bull. Russ. Acad. Sci. 2018, 45, 789–793. [Google Scholar] [CrossRef]
- Yoon, H.S.; Park, C.W.; Soh, H.Y.; Park, I.W.; Choi, S.D. Comparative Stomach Contents and Growth of the Juvenile Black Seabream, Acanthopagrus schlegeli, Reared in Illuminated and Unilluminated Cages. Aquac. Res. 2009, 40, 242–245. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Park, C.-W.; Moon, S.-Y.; Han, K.-H.; Suh, H.-L.; An, Y.-K.; Choi, S.-D. Comparative Stomach Contents and Growth of the Juvenile Black Rockfish Sebastes Inermis Reared in Illuminated and Unilluminated Cages. Fish. Sci. 2008, 74, 657–661. [Google Scholar] [CrossRef]
- Macneil, C.; Dick, J.T.A.; Elwood, R.W. The Dynamics of Predation on Gammarus Spp. (Crustacea: Amphipoda). Biol. Rev. 1999, 74, 375–395. [Google Scholar] [CrossRef]
- Karnaukhov, D.; Teplykh, M.; Dolinskaya, E.; Biritskaya, S.; Ermolaeva, Y.; Pushnica, V.; Kuznetsova, I.; Okholina, A.; Bukhaeva, L.; Silow, E. Light Pollution Affects the Coastal Zone of Lake Baikal. Limnol. Rev. 2021, 21, 165–168. [Google Scholar] [CrossRef]
- Hunt, D.M.; Fitzgibbon, J.; Slobodyanyuk, S.J.; Bowmakers, J.K. Spectral Tuning and Molecular Evolution of Rod Visual Pigments in the Species Flock of Cottoid Fish in Lake Baikal. Vis. Res. 1996, 36, 1217–1224. [Google Scholar] [CrossRef]
- Grubisic, M. Waters under Artificial Lights: Does Light Pollution Matter for Aquatic Primary Producers? Limnol. Ocean. Bull. 2018, 27, 76–81. [Google Scholar] [CrossRef]
- Van Den Berg, S.J.P.; Rodríguez-Sánchez, P.; Zhao, J.; Olusoiji, O.D.; Peeters, E.T.H.M.; Schuijt, L.M. Among-Individual Variation in the Swimming Behaviour of the Amphipod Gammarus Pulex under Dark and Light Conditions. Sci. Total Environ. 2023, 872, 162177. [Google Scholar] [CrossRef]
- Cherry, T.-R.; Kohler, S.A.; Ford, A.T. Sex Specific Differences Recorded in the Behavior of an Amphipod: Implications for Behavioral Toxicology. Front. Mar. Sci. 2020, 7, 370. [Google Scholar] [CrossRef]
- Dominoni, D.M.; Quetting, M.; Partecke, J. Long-Term Effects of Chronic Light Pollution on Seasonal Functions of European Blackbirds (Turdus Merula). PLoS ONE 2013, 8, e85069. [Google Scholar] [CrossRef]
- Altermatt, F.; Ebert, D. Reduced Flight-to-Light Behaviour of Moth Populations Exposed to Long-Term Urban Light Pollution. Biol. Lett. 2016, 12, 20160111. [Google Scholar] [CrossRef]
- Keinath, S.; Hölker, F.; Müller, J.; Rödel, M.-O. Impact of Light Pollution on Moth Morphology–A 137-Year Study in Germany. Basic Appl. Ecol. 2021, 56, 1–10. [Google Scholar] [CrossRef]
- Georgiou, D.; Reeves, S.E.; Burke Da Silva, K.; Fobert, E.K. Artificial Light at Night Impacts Night-Time Activity but Not Day-Time Behaviour in a Diurnal Coral Reef Fish. Basic Appl. Ecol. 2024, 74, 74–82. [Google Scholar] [CrossRef]
- Oyabu, A.; Wu, L.; Matsumoto, T.; Kihara, N.; Yamanaka, H.; Minamoto, T. The Effect of Artificial Light at Night on Wild Fish Community: Manipulative Field Experiment and Species Composition Analysis Using Environmental DNA. Environ. Adv. 2024, 15, 100457. [Google Scholar] [CrossRef]
- Schligler, J.; Cortese, D.; Beldade, R.; Swearer, S.E.; Mills, S.C. Long-Term Exposure to Artificial Light at Night in the Wild Decreases Survival and Growth of a Coral Reef Fish. Proc. R. Soc. B. 2021, 288, 20210454. [Google Scholar] [CrossRef]
- Li, D.; Huang, J.; Zhou, Q.; Gu, L.; Sun, Y.; Zhang, L.; Yang, Z. Artificial Light Pollution with Different Wavelengths at Night Interferes with Development, Reproduction, and Antipredator Defenses of Daphnia magna. Environ. Sci. Technol. 2022, 56, 1702–1712. [Google Scholar] [CrossRef]
- Guler, Y.; Ford, A.T. Anti-Depressants Make Amphipods See the Light. Aquat. Toxicol. 2010, 99, 397–404. [Google Scholar] [CrossRef]
Species | Habitat | Depth | Soil Type | Movement Ecology |
---|---|---|---|---|
A. godlewskii | All of Baikal, except for the Selenginsk shallows. The species is most often found in the northern part of the lake. | 2–180 m, more often 10–60 m | Sandy and silty-sandy soil | Sublittoral, no migration activity was noted. |
B. parasitica | All of Baikal, except for the Selenginsk shallows. | 1–60 m | Large and medium pebbles | Littoral, sublittoral, lives on sponges, migratory activity was noted for the genus. |
E. cyaneus | All of Baikal and the Lower Angara River to the village of Kamenka. | 0–5 m | Large pebbles | Littoral, migratory activity was noted, immature individuals actively migrate. |
E.verrucosus | All of Baikal, except for the Selenginsk shallows. In the Angara River from its source to the village of Budakovskaya (432 km from Baikal); the mouth of the Barguzin River; the Turka River. | 0–10 m | Large pebbles | Littoral, migratory activity was noted. |
G. fasciatus | All of Baikal. | 0–5 m | Large pebbles and sand | Littoral, actively migrate. |
P. cancelloides | All of Baikal. In the Lower Angara River to Marituy Island (about 220 km from Baikal). | 0.3–178 m, usually 1–10 m | Sand and, less often, stones and silt | Littoral, sublittoral, migratory activity was noted for the genus. |
Type of Experiment | Species | Value of the Fisher Criterion | p-Value |
---|---|---|---|
White light 5–15 lx | E. cyaneus | 0 | 0.03 |
P. cancelloides | 0 | 0.03 | |
White light 20–35 lx | A. godlevskii | 0 | 0.009 |
E. cyaneus | 0 | 0.009 | |
G. fasciatus | 0.05 | 0.03 |
Type of Experiment | Species 1 | Species 2 | p-Value |
---|---|---|---|
Blue/red | B. parasitica | E. verrucosus | 0.004 * |
Warm light 5–15 lx | E. verrucosus | G. fasciatus | 0.01 * |
Warm light 20–35 lx | A. godlevskii | E. verrucosus | 0.002 * |
B. parasitica | E. verrucosus | 0.002 * | |
B. parasitica | G. fasciatus | 0.003 * | |
E. verrucosus | G. fasciatus | 0.002 * | |
E. verrucosus | P. cancelloides | 0.004 * | |
White light 20–35 lx | A. godlevskii | B. parasitica | 0.05 |
A. godlevskii | E. cyaneus | 0.05 | |
A. godlevskii | E. verrucosus | 0.001 * | |
B. parasitica | E. verrucosus | 0.05 | |
B. parasitica | G. fasciatus | 0.006 * | |
E. cyaneus | G. fasciatus | 0.009 * | |
E. verrucosus | G. fasciatus | 0.0007 * | |
E. verrucosus | P. cancelloides | 0.007 * | |
White light 80–100 lx | A. godlevskii | E. verrucosus | 0.01 * |
B. parasitica | E. verrucosus | 0.01 * | |
B. parasitica | G. fasciatus | 0.05 | |
E. cyaneus | G. fasciatus | 0.01 * | |
E. verrucosus | G. fasciatus | 0.001 * | |
E. verrucosus | P. cancelloides | 0.01 * | |
G. fasciatus | P. cancelloides | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karnaukhov, D.; Ermolaeva, Y.; Maslennikova, M.; Osadchy, B.; Biritskaya, S.; Lavnikova, A.; Kulbachnaya, N.; Solodkova, A.; Guliguev, A.; Kodatenko, I.; et al. Species-Specific Responses of Baikal Amphipods to Artificial Lighting of Varying Intensity and Spectral Composition. Limnol. Rev. 2025, 25, 11. https://doi.org/10.3390/limnolrev25020011
Karnaukhov D, Ermolaeva Y, Maslennikova M, Osadchy B, Biritskaya S, Lavnikova A, Kulbachnaya N, Solodkova A, Guliguev A, Kodatenko I, et al. Species-Specific Responses of Baikal Amphipods to Artificial Lighting of Varying Intensity and Spectral Composition. Limnological Review. 2025; 25(2):11. https://doi.org/10.3390/limnolrev25020011
Chicago/Turabian StyleKarnaukhov, Dmitry, Yana Ermolaeva, Maria Maslennikova, Bogdan Osadchy, Sofya Biritskaya, Arina Lavnikova, Natalia Kulbachnaya, Anastasia Solodkova, Artem Guliguev, Ivan Kodatenko, and et al. 2025. "Species-Specific Responses of Baikal Amphipods to Artificial Lighting of Varying Intensity and Spectral Composition" Limnological Review 25, no. 2: 11. https://doi.org/10.3390/limnolrev25020011
APA StyleKarnaukhov, D., Ermolaeva, Y., Maslennikova, M., Osadchy, B., Biritskaya, S., Lavnikova, A., Kulbachnaya, N., Solodkova, A., Guliguev, A., Kodatenko, I., Rechile, D., Ruban, K., Kondratieva, D., Bashkirtsev, A., Slepchenko, A., Solomka, A., Nazarova, S., & Silow, E. (2025). Species-Specific Responses of Baikal Amphipods to Artificial Lighting of Varying Intensity and Spectral Composition. Limnological Review, 25(2), 11. https://doi.org/10.3390/limnolrev25020011