Enhancing Pereskia aculeata Mill. Cultivation with LED Technology: A Sustainable Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Sample Preparation
2.3. Biometric and Color Characteristics
2.4. Physicochemical Characterization
2.5. Proximal and Mineral Composition
2.6. Bioactive Compounds and Antioxidant Activity
2.7. Thermal Evaluation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of in Natura Leaves
3.2. Physicochemical Characteristics of P. aculeata Dry Leaves
3.3. Proximal and Mineral Composition
3.4. Photosynthetic Pigments, Bioactive Compounds, and Antioxidant Activity Compositions
Thermal Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hogewoning, S.W.; Wientjes, E.; Douwstra, P.; Trouwborst, G.; Van Ieperen, W.; Croce, R.; Harbinson, J. Photosynthetic quantum yield dynamics: From photosystems to leaves. Plant Cell 2012, 24, 1921–1935. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Lang, T.; Cai, M.; Han, T. Light keys open locks of plant photoresponses: A review of phosphors for plant cultivation LEDs. J. Alloys Compd. 2022, 902, 163825. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Sena, S.; Kumari, S.; Kumar, V.; Husen, A. Light Emitting Diode (LED) lights for the improvement of plant performance and production: A comprehensive review. Curr. Res. Biotechnol. 2024, 7, 100184. [Google Scholar] [CrossRef]
- Pattaro, M.C.; Falcioni, R.; Moriwaki, T.; Alves, D.C.; Antunes, W.C. Blue light strongly promotes de-etiolation over green, moderate over red, but have limited action over far-red lights in lettuce plants. Sci. Hortic. 2024, 328, 112863. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red: Blue ratio provided by LED lighting. Sci. Rep. 2019, 9, 14127. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.; Niu, G.; Gu, M. Photosynthesis, morphology, yield, and phytochemical accumulation in basil plants influenced by substituting green light for partial red and/or blue light. HortScience 2019, 54, 1769–1776. [Google Scholar] [CrossRef]
- Paradiso, R.; Arena, C.; Rouphael, Y.; d’Aquino, L.; Makris, K.; Vitaglione, P.; De Pascale, S. Growth, photosynthetic activity and tuber quality of two potato cultivars in controlled environment as affected by light source. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2019, 153, 725–735. [Google Scholar] [CrossRef]
- Driesen, E.; Saeys, W.; De Proft, M.; Lauwers, A.; Van den Ende, W. Far-Red Light Mediated Carbohydrate Concentration Changes in Leaves of Sweet Basil, a Stachyose Translocating Plant. Int. J. Mol. Sci. 2023, 24, 8378. [Google Scholar] [CrossRef]
- Trivellini, A.; Toscano, S.; Romano, D.; Ferrante, A. The role of blue and red light in the orchestration of secondary metabolites, nutrient transport and plant quality. Plants 2023, 12, 2026. [Google Scholar] [CrossRef]
- Egea, M.B.; Oliveira Filho, J.G.d. Plantas Alimentícias Não Convencionais: Aplicação na Tecnologia de Alimentos e Potencial Benéfico na Saúde Humana; IF Goiano: Goiânia, Brazil, 2023. [Google Scholar]
- Lira, M.M.; de Oliveira Filho, J.G.; de Sousa, T.L.; da Costa, N.M.; Lemes, A.C.; Fernandes, S.S.; Egea, M.B. Selected plants producing mucilage: Overview, composition, and their potential as functional ingredients in the development of plant-based foods. Food Res. Int. 2023, 169, 112822. [Google Scholar] [CrossRef] [PubMed]
- Egea, M.; Pierce, G. Bioactive Compounds of Barbados Gooseberry (Pereskia aculeata Mill.). In Bioactive Compounds in Underutilized Vegetables and Legumes; Murthy, H.N., Paek, K.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–14. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Lira, M.M.; de Sousa, T.L.; Campos, S.B.; Lemes, A.C.; Egea, M.B. Plant-based mucilage with healing and anti-inflammatory actions for topical application: A review. Food Hydrocoll. Health 2021, 1, 100012. [Google Scholar] [CrossRef]
- Garcia, J.A.; Corrêa, R.C.; Barros, L.; Pereira, C.; Abreu, R.M.; Alves, M.J.; Calhelha, R.C.; Bracht, A.; Peralta, R.M.; Ferreira, I.C. Phytochemical profile and biological activities of Ora-pro-nobis’ leaves (Pereskia aculeata Miller), an underexploited superfood from the Brazilian Atlantic Forest. Food Chem. 2019, 294, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Lemes, A.C.; Araújo, J.C.d.; Rodrigues, D.S.; Freitas, G.S.d.; Egea, M.B. Histórico e Importância das PANCs na Alimentação Brasileira In Plantas Alimentícias Não Convencionais: Aplicação na Tecnologia de Alimentos e Potencial Benéfico na Saúde Humana [Unconventional Food Plants: Application in Food Technology and Potential Benefits for Human Health]; Egea, M.B., Oliveira Filho, J.G.d., Eds.; IF Goiano: Goiânia, Brazil, 2023; p. 97. [Google Scholar]
- Lira, M.M.; Cabassa, I.d.C.C.; Fernandes, S.S.; Egea, M.B. Spread developed with peanuts, baru almonds, and ora-pro-nóbis mucilage: Chemical, technological, and bioactive characteristics. Food Sci. Technol. 2024, 44, e00343. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Zou, M.L.; Moughan, P.J.; Awati, A.; Livesey, G. Accuracy of the Atwater factors and related food energy conversion factors with low-fat, high-fiber diets when energy intake is reduced spontaneously. Am. J. Clin. Nutr. 2007, 86, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Park, J.; Kim, H. Determination of NH4+ in environmental water with interfering substances using the modified Nessler method. J. Chem. 2013, 2013, 359217. [Google Scholar] [CrossRef]
- Oliveira, D.d.C.d.S.; Wobeto, C.; Zanuzo, M.R.; Severgnini, C. Mineral composition and ascorbic acid content in four non-conventional leafy vegetables species. Hortic. Bras. 2013, 31, 472–475. [Google Scholar] [CrossRef]
- Bruuinsma, J. The quantitative analysis of chlorophylls a and b in plant extracts. Photochem. Photobiol. 1963, 2, 241–249. [Google Scholar] [CrossRef]
- CETESB. Determinação de Clorofila ae Feofitina a: Método Espectrofotométrico. Diário Oficial do Estado de São Paulo–Caderno Executivo I, v. 124 (71) de 15/04/14, Poder Executivo, Seção I; CETESB: São Paulo, Brazil, 2014; pp. 53–55.
- Talcott, S.; Howard, L. Phenolic autoxidation is responsible for color degradation in processed carrot puree. J. Agric. Food Chem. 1999, 47, 2109–2115. [Google Scholar] [CrossRef]
- Gross, J. Pigment in Vegetables: Chlorophyll and Carotenoids; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Rufino, M.d.S.M.; Alves, R.E.; de Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Westlake, D. Comparisons of plant productivity. Biol. Rev. 1963, 38, 385–425. [Google Scholar] [CrossRef]
- Spann, T.M.; Heerema, R.J. A simple method for non-destructive estimation of total shoot leaf area in tree fruit crops. Sci. Hortic. 2010, 125, 528–533. [Google Scholar] [CrossRef]
- Jishi, T.; Ishii, T.; Shoji, K. Cultivation of cos lettuce using blue LED and quantum dot wavelength conversion sheets. Sci. Hortic. 2022, 295, 110772. [Google Scholar] [CrossRef]
- Kim, S.-H.; Park, J.-H.; Kim, E.-J.; Lee, J.-M.; Park, J.-W.; Kim, Y.-S.; Kim, G.-R.; Lee, J.-S.; Lee, E.-P.; You, Y.-H. White LED lighting increases the root productivity of Panax ginseng CA Meyer in a hydroponic cultivation system of a plant factory. Biology 2023, 12, 1052. [Google Scholar] [CrossRef]
- Soltani, S.; Arouiee, H.; Salehi, R.; Nemati, S.H.; Moosavi-Nezhad, M.; Gruda, N.S.; Aliniaeifard, S. Morphological, phytochemical, and photosynthetic performance of grafted tomato seedlings in response to different LED light qualities under protected cultivation. Horticulturae 2023, 9, 471. [Google Scholar] [CrossRef]
- Young, A.J. The photoprotective role of carotenoids in higher plants. Physiol. Plant. 1991, 83, 702–708. [Google Scholar] [CrossRef]
- Judd, D.B. Hue saturation and lightness of surface colors with chromatic illumination. JOSA 1940, 30, 2–32. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, H.; Mujumdar, A.S.; Tang, J.; Miao, S.; Wang, Y. Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Crit. Rev. Food Sci. Nutr. 2017, 57, 1239–1255. [Google Scholar] [CrossRef] [PubMed]
- Peña-Fernández, A.; Colón-Reynoso, M.A.; Mazuela, P. Geometric analysis of greenhouse roofs for energy efficiency optimization and condensation drip reduction. Agriculture 2024, 14, 216. [Google Scholar] [CrossRef]
- Ciríaco, A.C.d.A.; Mendes, R.d.M.; Carvalho, V.S. Antioxidant activity and bioactive compounds in ora-pro-nóbis flour (Pereskia aculeata Miller). Braz. J. Food Technol. 2023, 26, e2022054. [Google Scholar] [CrossRef]
- Mioni, R.; Mioni, G. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water. Scand. J. Clin. Lab. Investig. 2015, 75, 452–469. [Google Scholar] [CrossRef]
- Borges-Machado, A.L.; Ribeiro-Sanches, M.A.; Neves-Martins, M.J.; dos Santos, P.A.; Luna-Solano, G.; Telis-Romero, J. Water desorption isotherms and thermodynamic properties of Ora-pro-nóbis (Pereskia aculeata Miller). LWT 2024, 193, 115749. [Google Scholar] [CrossRef]
- Rahman, M.S. Food preservation: An overview. In Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2020; pp. 7–18. [Google Scholar]
- Brasil Agência Nacional da Vigilância Sanitária. Regulamento Técnico para Produtos de Cereais, Amidos, Farinhas e Farelos; RESOLUÇÃO-RDC No 263, DE 22 DE SETEMBRO DE 2005; Saúde, M.d., Ed.; DOU: Brasília, Brazil, 2005.
- Mendes, J.F.; de Lima Fontes, M.; Barbosa, T.V.; Paschoalin, R.T.; Mattoso, L.H.C. Membranes composed of poly (lactic acid)/poly (ethylene glycol) and Ora-pro-nóbis (Pereskia aculeata Miller) extract for dressing applications. Int. J. Biol. Macromol. 2024, 268, 131365. [Google Scholar] [CrossRef]
- Torres, T.M.S.; Mendiola, J.A.; Álvarez-Rivera, G.; Mazzutti, S.; Ibáñez, E.; Cifuentes, A.; Ferreira, S.R.S. Protein valorization from ora-pro-nobis leaves by compressed fluids biorefinery extractions. Innov. Food Sci. Emerg. Technol. 2022, 76, 102926. [Google Scholar] [CrossRef]
- López-Bote, C. Chemical and biochemical constitution of muscle. In Lawrie’s Meat Science; Elsevier: Amsterdam, The Netherlands, 2017; pp. 99–158. [Google Scholar]
- Hoff, R.; Daguer, H.; Deolindo, C.T.P.; de Melo, A.P.Z.; Durigon, J. Phenolic compounds profile and main nutrients parameters of two underestimated non-conventional edible plants: Pereskia aculeata Mill. (ora-pro-nóbis) and Vitex megapotamica (Spreng.) Moldenke (tarumã) fruits. Food Res. Int. 2022, 162, 112042. [Google Scholar] [CrossRef]
- Maciel, V.B.; Yoshida, C.M.; Boesch, C.; Goycoolea, F.M.; Carvalho, R.A. Iron-rich chitosan-pectin colloidal microparticles laden with ora-pro-nobis (Pereskia aculeata Miller) extract. Food Hydrocoll. 2020, 98, 105313. [Google Scholar] [CrossRef]
- Silva, A.R.A.d.; Santelli, R.E.; Braz, B.F.; Silva, M.M.N.; Melo, L.; Lemes, A.C.; Ribeiro, B.D. A Comparative Study of Dairy and Non-Dairy Milk Types: Development and Characterization of Customized Plant-Based Milk Options. Foods 2024, 13, 2169. [Google Scholar] [CrossRef] [PubMed]
- Chaicharoenaudomrung, N.; Posridee, K.; Oonsivilai, A.; Oonsivilai, R. Golden Barrel Cactus: Unveiling Its Potential as a Functional Food and Nutraceutical Source. Foods 2024, 13, 1137. [Google Scholar] [CrossRef] [PubMed]
- Sato, R.; Cilli, L.P.d.L.; Oliveira, B.E.d.; Maciel, V.B.V.; Venturini, A.C.; Yoshida, C.M.P. Nutritional improvement of pasta with Pereskia aculeata Miller: A non-conventional edible vegetable. Food Sci. Technol. 2019, 39, 28–34. [Google Scholar] [CrossRef]
- Pinto, N.; Scio, E. The biological activities and chemical composition of Pereskia species (Cactaceae)—A review. Plant Foods Hum. Nutr. 2014, 69, 189–195. [Google Scholar] [CrossRef]
- Pinto, N.d.C.C.; Machado, D.C.; da Silva, J.M.; Conegundes, J.L.M.; Gualberto, A.C.M.; Gameiro, J.; Chedier, L.M.; Castañon, M.C.M.N.; Scio, E. Pereskia aculeata Miller leaves present in vivo topical anti-inflammatory activity in models of acute and chronic dermatitis. J. Ethnopharmacol. 2015, 173, 330–337. [Google Scholar] [CrossRef]
- Lemes, A.C.; Egea, M.B.; de Oliveira Filho, J.G.; Gautério, G.V.; Ribeiro, B.D.; Coelho, M.A.Z. Biological Approaches for Extraction of Bioactive Compounds from Agro-industrial By-products: A Review. Front. Bioeng. Biotechnol. 2021, 9, 802543. [Google Scholar] [CrossRef]
- Naznin, M.T.; Lefsrud, M.; Gravel, V.; Azad, M.O.K. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef]
- Torres, T.M.S.; Guedes, J.A.C.; de Brito, E.S.; Mazzutti, S.; Ferreira, S.R.S. High-pressure biorefining of ora-pro-nobis (Pereskia aculeata). J. Supercrit. Fluids 2022, 181, 105514. [Google Scholar] [CrossRef]
- Li, K.; Zhong, W.; Li, P.; Ren, J.; Jiang, K.; Wu, W. Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. Int. J. Biol. Macromol. 2023, 251, 125992. [Google Scholar] [CrossRef]
- Fernandez-Panchon, M.; Villano, D.; Troncoso, A.; Garcia-Parrilla, M. Antioxidant activity of phenolic compounds: From in vitro results to in vivo evidence. Crit. Rev. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef]
- Egea, M.B.; Pereira-Netto, A.B. Bioactive compound-rich, virtually unknown, edible fruits from the Atlantic Rainforest: Changes in antioxidant activity and related bioactive compounds during ripening. Eur. Food Res. Technol. 2019, 245, 1081–1093. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Bernardino, J.C.C.; Owen, P.Q.; Prentice, C.; Salas-Mellado, M.d.l.M.; Segura-Campos, M.R. Effect of the use of ethanol and chia mucilage on the obtainment and techno-functional properties of chia oil nanoemulsions. J. Food Process. Preserv. 2021, 45, e15181. [Google Scholar] [CrossRef]
Treatments | Mass (g) | Length (mm) | Width (mm) | Thickness (mm) | Leaf Area (mm2) |
---|---|---|---|---|---|
C-out | 1.37 ± 0.39 c | 95.66 ± 12.78 c | 37.13 ± 14.78 d | 0.31 ± 0.14 c | 2648.97 c |
C-ins | 1.70 ± 0.50 a | 99.28 ± 10.42 b | 38.12 ± 1.05 d | 0.39 ± 0.04 b | 2822.52 c |
Red | 1.72 ± 0.32 a | 105.46 ± 10.22 a | 50.39 ± 12.38 a | 0.34 ± 0.12 c | 3963.28 a |
Blue | 1.21 ± 0.19 c | 105.41 ± 6.61 a | 41.66 ± 3.82 c | 0.37 ± 0.11 b | 3275.09 b |
White | 1.53 ± 0.32 b | 99.34 ± 8.40 b | 47.84 ± 10.39 b | 0.50 ± 0.12 a | 3544.36 a |
Red–Blue | 1.51 ± 0.30 b | 107.39 ± 8.65 a | 42.11 ± 4.13 c | 0.36 ± 0.07 b | 3372.65 b |
Treatments | L* | a* | b* | h | C |
---|---|---|---|---|---|
C-out | 42.46 ± 3.14 a | −12.79 ± 1.39 a | 23.79 ± 3.76 a | 113.03 ± 2.22 c | 27.08 ± 4.04 a |
C-ins | 36.54 ± 2.25 b | −12.08 ±1.52 a | 18.99 ± 3.29 d | 166.94 ±1.64 a | 22.60 ± 3.58 c |
Red | 40.02 ± 3.15 a | −11.62 ± 1.56 b | 22.59 ± 4.76 b | 112.66 ± 4.62 d | 25.52 ± 4.20 b |
Blue | 36.99 ± 2.66 b | −10.50 ± 1.82 c | 19.24 ± 3.22 c | 113.31 ±3.45 c | 22.14 ± 3.19 b |
White | 39.98 ± 3.00 b | −10.91 ± 3.67 c | 22.88 ± 3.42 b | 113.28 ± 2.28 c | 26.20 ± 4.02 b |
Red–Blue | 34.46 ± 3.76 c | −7.86 ± 5.07 d | 18.15 ± 5.20 d | 115.62 ± 5.00 b | 18.15 ± 5.20 d |
Treatments | Total Soluble Solids (°Brix) | pH | Titratable Acidity (%) | Aw |
---|---|---|---|---|
C-out | 0.77 ± 0.25 b | 4.96 ± 0.01 b | 2.10 ± 0.10 a | 0.560 ± 0.002 b |
C-ins | 0.65 ± 0.05 b | 4.95 ± 0.02 b | 1.98 ± 0.07 b | 0.490 ± 0.008 c |
Red | 0.60 ± 0.00 c | 5.03 ± 0.02 a | 1.80 ± 0.10 c | 0.660 ± 0.001 a |
Blue | 0.60 ± 0.17 c | 5.03 ± 0.04 a | 1.80 ± 0.10 c | 0.580 ± 0.002 b |
White | 0.70 ± 0.00 b | 4.97 ± 0.03 b | 1.27 ± 0.06 d | 0.620 ± 0.001 a |
Red–Blue | 0.87 ± 0.15 a | 5.09 ± 0.01 a | 2.23 ± 0.06 a | 0.590 ± 0.020 b |
C-Out | C-Ins | Red | Blue | White | Red–Blue | |
---|---|---|---|---|---|---|
Moisture * | 4.20 ± 0.00 b | 3.77 ±0.00 c | 4.49 ± 0.00 b | 5.00 ± 0.00 a | 4.51 ± 0,00 b | 4.48 ± 0,00 b |
Ash | 19.51 ± 0.03 b | 18.68 ± 0.05 c | 20.28 ± 0.03 a | 19.42 ± 0.01 b | 19.32 ± 0.01 b | 20.05 ± 0.10 a |
Lipids | 2.85 ± 0.02 c | 3.20 ± 0.10 b | 3.44 ± 0.10 a | 3.33 ± 0.01 a | 3.31 ± 0.01 a | 2.99 ± 0.08 c |
Proteins | 23.16 ± 0.02 d | 26.96 ± 0.10 b | 29.68 ± 0.03 a | 24.18 ± 0.01 c | 24.06 ± 0.01 c | 22.53 ± 0.05 d |
Crude fiber | 31.90 ± 0.06 b | 30.09 ± 0.10 c | 34.44 ± 0.10 a | 31.25 ± 0.05 c | 31.09 ± 0.05 c | 30.12 ± 0.04 c |
Carbohydrates | 22.58 | 21.07 | 12.16 | 21.82 | 22.22 | 24.31 |
Calorie value | 208.61 | 220.92 | 198.32 | 213.97 | 214.91 | 214.27 |
Treatments | N | P | K | Ca | Mg | S | Fe | Mn | Cu | Zn | B |
---|---|---|---|---|---|---|---|---|---|---|---|
C-out | 2.19 c | 0.32 c | 5.20 c | 13.95 b | 4.12 c | 0.32 c | 0.03 b | 0.01 d | 0.012 c | 0.018 c | 0.015 b |
C-ins | 2.01 c | 0.32 c | 1.36 d | 10.25 c | 4.43 c | 0.35 c | 0.04 a | 0.01 d | 0.014 b | 0.025 a | 0.016 b |
Red | 2.48 a | 0.42 b | 7.94 b | 14.33 b | 4.67 c | 0.53 a | 0.02 c | 0.06 a | 0.013 c | 0.027 a | 0.012 c |
Blue | 1.15 d | 0.65 a | 10.13 a | 27.25 a | 9.79 a | 0.49 b | 0.04 a | 0.01 d | 0.016 a | 0.022 b | 0.023 a |
White | 2.10 c | 0.37 c | 5.88 c | 14.15 b | 5.64 b | 0.31 c | 0.03 b | 0.07 a | 0.012 c | 0.015 c | 0.014 b |
Red–Blue | 2.39 b | 0.41 b | 5.50 c | 10.93 c | 4.21 c | 0.38 b | 0.02 c | 0.05 b | 0.011 d | 0.023 b | 0.010 d |
Chlorophyll a (µg/L) | Pheophytin a (µg/L) | Carotenoids (µg/g) | |
---|---|---|---|
C-out | 27.49 ± 0.01 b | 24.54 ± 0.01 c | 0.18 ± 0.06 c |
C-ins | 28.74 ± 0.06 a | 27.76 ± 0.03 b | 3.95 ± 0.04 b |
Red | 28.27 ± 0.05 a | 26.85 ± 0.02 b | 5.88 ± 0.02 a |
Blue | 26.96 ± 0.01 c | 32.81 ± 0.01 a | 2.05 ± 0.01 d |
White | 29.75 ± 0.02 a | 23.01 ± 0.03 c | 3.88 ± 0.07 b |
Red–Blue | 27.64 ± 0.03 b | 17.21 ± 0.03 d | 3.78 ± 0.05 b |
Total Phenolic Compounds | Antioxidant Activity | ||||
---|---|---|---|---|---|
Hydroethanolic Extract (mg GAE/g) | Aqueous Extract (mg GAE/g) | DPPH (IC50 μg/mL) | ABTS (μM trolox/g) | FRAP (mmol Fe2+/g) | |
C-Out | 4.15 ± 0.03 a | 3.80 ± 0.01 b | 181.31 ± 0.12 a | 4.48 ± 0.21 b d | 0.07 ± 0.02 a |
C-Ins | 4.19 ± 0.02 a | 4.13 ± 0.08 a | 36.60 ± 0.11 d | 46.58 ± 0.17 a | 0.04 ± 0.23 b |
Red | 1.01 ± 0.03 c | 0.59 ± 0.02 d | 34.76 ± 0.09 d | 33.18 ± 0.19 a | 0.06 ± 0.21 a |
Blue | 1.50 ± 0.01 b | 0.89 ± 0.02 c | 133.79 ± 0.14 c | 10.48 ± 0.22 b | 0.07 ± 0.03 a |
White | 0.98 ± 0.01 d | 0.17 ± 0.09 d | 157.18 ± 0.11 b | 35.12 ± 0.15 c | 0.06 ± 0.19 a |
Red–Blue | 4.19 ± 0.01 a | 0.36 ± 0.13 b | 122.10 ± 0.21 c | 33.69 ± 0.16 c | 0.01 ± 0.04 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, N.V.; Lemes, A.C.; Silva, F.G.; Dário, B.M.M.; Jesus, J.R.d.; Sousa, T.L.d.; Fernandes, S.S.; Egea, M.B. Enhancing Pereskia aculeata Mill. Cultivation with LED Technology: A Sustainable Approach. Processes 2024, 12, 2695. https://doi.org/10.3390/pr12122695
Silva NV, Lemes AC, Silva FG, Dário BMM, Jesus JRd, Sousa TLd, Fernandes SS, Egea MB. Enhancing Pereskia aculeata Mill. Cultivation with LED Technology: A Sustainable Approach. Processes. 2024; 12(12):2695. https://doi.org/10.3390/pr12122695
Chicago/Turabian StyleSilva, Nayara Vieira, Ailton Cesar Lemes, Fabiano Guimarães Silva, Bruno Matheus Mendes Dário, Jenifer Ribeiro de Jesus, Tainara Leal de Sousa, Sibele Santos Fernandes, and Mariana Buranelo Egea. 2024. "Enhancing Pereskia aculeata Mill. Cultivation with LED Technology: A Sustainable Approach" Processes 12, no. 12: 2695. https://doi.org/10.3390/pr12122695
APA StyleSilva, N. V., Lemes, A. C., Silva, F. G., Dário, B. M. M., Jesus, J. R. d., Sousa, T. L. d., Fernandes, S. S., & Egea, M. B. (2024). Enhancing Pereskia aculeata Mill. Cultivation with LED Technology: A Sustainable Approach. Processes, 12(12), 2695. https://doi.org/10.3390/pr12122695