3DVT: Hyperspectral Image Classification Using 3D Dilated Convolution and Mean Transformer
Abstract
:1. Introduction
- (1)
- The proposed model integrates 2D convolutional neural networks with 3D dilated convolutions to capture comprehensive multi-scale spatial–spectral features from hyperspectral images. The 2D CNN was employed to extract local spatial features, while the 3D dilated convolution expanded the receptive field without increasing the number of convolutional kernel parameters. This approach effectively enhances the model’s capacity to capture detailed features, contributing to more refined feature extraction.
- (2)
- The model combines the advantages of CNN for local feature extraction and ViT for capturing global features and long-range dependencies. By utilizing 2D convolutional embeddings followed by ViT encoders, the architecture capitalizes on both local spatial details and global contextual information. This combination is particularly advantageous for managing the complexities of hyperspectral data.
- (3)
- In the ViT module, the model adopts an average pooling projection in place of the conventional linear projection. This adjustment enhances the model’s ability to extract local features, reduces computational complexity, and improves robustness in feature extraction by smoothing activation maps. Experimental results across multiple hyperspectral image datasets demonstrate that this design significantly improves classification accuracy.
2. Proposed Method
2.1. PCA for Dimensionality Reduction
2.2. The 3D Dilated Convolution Layer
2.3. The 2D Convolution Layer
2.4. The Embedding Layer
2.5. The Transformer Encoder Layer
3. Experiments
3.1. Ablation Study
3.2. Contributions of PCA, Class Token, and Mean Pooling to the 3DVT
3.3. Comparative Analysis of Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, C.; Zhu, Y.; Song, M.; Wang, Y.; Zhang, Q. Unseen feature extraction: Spatial mapping expansion with spectral compression network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- He, X.; Tang, C.; Liu, X.; Zhang, W.; Sun, K.; Xu, J. Object detection in hyperspectral image via unified spectral-spatial feature aggregation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [Google Scholar] [CrossRef]
- Guo, T.; He, L.; Luo, F.; Gong, X.; Li, Y.; Zhang, L. Anomaly detection of hyperspectral image with hierarchical antinoise mutual-incoherence-induced low-rank representation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [Google Scholar] [CrossRef]
- Akewar, M.; Chandak, M. Hyperspectral Imaging Algorithms and Applications: A Review. Authorea Preprints 2023. [Google Scholar] [CrossRef]
- Datta, D.; Mallick, P.K.; Bhoi, A.K.; Ijaz, M.F.; Shafi, J.; Choi, J. Hyperspectral image classification: Potentials, challenges, and future directions. Comput. Intell. Neurosci. 2022, 2022, 3854635. [Google Scholar] [CrossRef]
- Zhao, C.; Qin, B.; Feng, S.; Zhu, W.; Sun, W.; Li, W.; Jia, X. Hyperspectral image classification with multi-attention transformer and adaptive superpixel segmentation-based active learning. IEEE Trans. Image Process. 2023, 32, 3606–3621. [Google Scholar] [CrossRef] [PubMed]
- Guerri, M.F.; Distante, C.; Spagnolo, P.; Bougourzi, F.; Taleb-Ahmed, A. Deep learning techniques for hyperspectral image analysis in agriculture: A review. ISPRS Open J. Photogramm. Remote Sens. 2024, 12, 100062. [Google Scholar] [CrossRef]
- Rajabi, R.; Zehtabian, A.; Singh, K.D.; Tabatabaeenejad, A.; Ghamisi, P.; Homayouni, S. Hyperspectral imaging in environmental monitoring and analysis. Front. Environ. Sci. 2024, 11, 1353447. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Yoon, J. Hyperspectral imaging for clinical applications. BioChip J. 2022, 16, 1–12. [Google Scholar] [CrossRef]
- Karim, S.; Qadir, A.; Farooq, U.; Shakir, M.; Laghari, A.A. Hyperspectral imaging: A review and trends towards medical imaging. Curr. Med. Imaging 2023, 19, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Nisha, A.; Anitha, A. Current advances in hyperspectral remote sensing in urban planning. In Proceedings of the 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India, 11–12 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 94–98. [Google Scholar]
- Sawant, S.S.; Prabukumar, M. A survey of band selection techniques for hyperspectral image classification. J. Spectr. Imaging 2020, 9, 1–18. [Google Scholar] [CrossRef]
- Ahmad, M.; Shabbir, S.; Roy, S.K.; Hong, D.; Wu, X.; Yao, J.; Khan, A.M.; Mazzara, M.; Distefano, S.; Chanussot, J. Hyperspectral image classification—Traditional to deep models: A survey for future prospects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 968–999. [Google Scholar] [CrossRef]
- Wambugu, N.; Chen, Y.; Xiao, Z.; Tan, K.; Wei, M.; Liu, X.; Li, J. Hyperspectral image classification on insufficient-sample and feature learning using deep neural networks: A review. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102603. [Google Scholar] [CrossRef]
- Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [Google Scholar] [CrossRef]
- Ma, L.; Crawford, M.M.; Tian, J. Local manifold learning-based k-nearest-neighbor for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4099–4109. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, G.; Li, X.; Wang, B. Cascaded random forest for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1082–1094. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, G.; Li, X. Multiview-based random rotation ensemble pruning for hyperspectral image classification. IEEE Trans. Instrum. Meas. 2020, 70, 1–14. [Google Scholar] [CrossRef]
- Poulinakis, K.; Drikakis, D.; Kokkinakis, I.W.; Spottswood, S.M. Machine-learning methods on noisy and sparse data. Mathematics 2023, 11, 236. [Google Scholar] [CrossRef]
- Imani, M.; Ghassemian, H. An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges. Inf. Fusion 2020, 59, 59–83. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Kumbharkar, P.; Vanam, S.; Sharma, S. Medical images classification using deep learning: A survey. Multimed. Tools Appl. 2024, 83, 19683–19728. [Google Scholar] [CrossRef]
- Sajitha, P.; Andrushia, A.D.; Anand, N.; Naser, M. A review on machine learning and deep learning image-based plant disease classification for industrial farming systems. J. Ind. Inf. Integr. 2024, 38, 100572. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Jogin, M.; Madhulika, M.S.; Divya, G.D.; Meghana, R.K.; Apoorva, S. Feature extraction using convolution neural networks (CNN) and deep learning. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bengaluru, India, 18–19 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2319–2323. [Google Scholar]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Contextual deep CNN based hyperspectral classification. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3322–3325. [Google Scholar]
- Liu, X.; Sun, Q.; Meng, Y.; Wang, C.; Fu, M. Feature extraction and classification of hyperspectral image based on 3D-convolution neural network. In Proceedings of the 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS), Enshi, China, 25–27 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 918–922. [Google Scholar]
- Zhang, X.; Shang, S.; Tang, X.; Feng, J.; Jiao, L. Spectral partitioning residual network with spatial attention mechanism for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 277–281. [Google Scholar] [CrossRef]
- Zhu, J.; Fang, L.; Ghamisi, P. Deformable convolutional neural networks for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1254–1258. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, W.; Feng, S. Hyperspectral image classification based on kernel-guided deformable convolution and double-window joint bilateral filter. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the Computer Vision—ECCV 2014, 13th European Conference, Proceedings, Part I 13, Zurich, Switzerland, 6–12 September 2014; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 818–833. [Google Scholar]
- Bejani, M.M.; Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev. 2021, 54, 6391–6438. [Google Scholar] [CrossRef]
- Afjal, M.I.; Mondal, M.N.I.; Mamun, M.A. Effective hyperspectral image classification based on segmented PCA and 3D-2D CNN leveraging multibranch feature fusion. J. Spat. Sci. 2024, 1–28. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Dubey, S.R.; Singh, S.K. Transformer-based generative adversarial networks in computer vision: A comprehensive survey. IEEE Trans. Artif. Intell. 2024, 5, 4851–4867. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11. [Google Scholar] [CrossRef]
- Li, X.; Ding, H.; Yuan, H.; Zhang, W.; Pang, J.; Cheng, G.; Chen, K.; Liu, Z.; Loy, C.C. Transformer-based visual segmentation: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10138–10163. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef]
- Khan, A.; Rauf, Z.; Sohail, A.; Khan, A.R.; Asif, H.; Asif, A.; Farooq, U. A survey of the vision transformers and their CNN-transformer based variants. Artif. Intell. Rev. 2023, 56 (Suppl. S3), 2917–2970. [Google Scholar] [CrossRef]
- Arshad, T.; Zhang, J. Hierarchical attention transformer for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- He, J.; Zhao, L.; Yang, H.; Zhang, M.; Li, W. HSI-BERT: Hyperspectral image classification using the bidirectional encoder representation from transformers. IEEE Trans. Geosci. Remote Sens. 2019, 58, 165–178. [Google Scholar] [CrossRef]
- Wu, Q.; He, M.; Huang, W.; Zhu, F. Dilated Deep MPFormer Network for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Mei, S.; Song, C.; Ma, M.; Xu, F. Hyperspectral image classification using group-aware hierarchical transformer. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Zhang, W. Dilated spectral–spatial Gaussian Transformer net for hyperspectral image classification. Remote Sens. 2024, 16, 287. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral–spatial feature tokenization transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Yang, J.; Li, A.; Qian, J.; Qin, J.; Wang, L. A Hyperspectral Image Classification Method Based on Pyramid Feature Extraction with Deformable-Dilated Convolution. IEEE Geosci. Remote Sens. Lett. 2023, 21, 1–5. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, J.; Guo, Q.; Wang, L. Hyperspectral Image Classification Based on Global Spectral Projection and Space Aggregation. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Roy, S.K.; Deria, A.; Shah, C.; Haut, J.M.; Du, Q.; Plaza, A. Spectral–spatial morphological attention transformer for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, X.; Li, S.; Plaza, A. Hyperspectral Image Classification Using Groupwise Separable Convolutional Vision Transformer Network. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–17. [Google Scholar] [CrossRef]
- Soudy, A.H.; Sayed, O.; Tag-Elser, H.; Ragab, R.; Mohsen, S.; Mostafa, T.; Abohany, A.A.; Slim, S.O. Deepfake detection using convolutional vision transformers and convolutional neural networks. Neural Comput. Appl. 2024, 36, 19759–19775. [Google Scholar] [CrossRef]
- Gewers, F.L.; Ferreira, G.R.; Arruda, H.F.; Silva, F.N.; Comin, C.H.; Amancio, D.R.; Costa, L.D. Principal component analysis: A natural approach to data exploration. ACM Comput. Surv. (CSUR) 2021, 54, 1–34. [Google Scholar] [CrossRef]
- Schmidt, C.; Athar, A.; Mahadevan, S.; Leibe, B. D2conv3d: Dynamic dilated convolutions for object segmentation in videos. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022. [Google Scholar]
- Burkholz, R. Batch Normalization is Sufficient for Universal Function Approximation in CNNs. 2024. Available online: https://openreview.net/forum?id=wOSYMHfENq (accessed on 1 January 2025).
- Xu, Y.; Zhang, H. Convergence of deep ReLU networks. Neurocomputing 2024, 571, 127174. [Google Scholar] [CrossRef]
- Li, H.; Rajbahadur, G.K.; Lin, D.; Bezemer, C.-P.; Jiang, Z.M. Keeping Deep Learning Models in Check: A History-Based Approach to Mitigate Overfitting. IEEE Access 2024, 12, 1. [Google Scholar] [CrossRef]
- Gholamalinezhad, H.; Khosravi, H. Pooling methods in deep neural networks, a review. arXiv 2020, arXiv:2009.07485. [Google Scholar]
- Mao, A.; Mohri, M.; Zhong, Y. Cross-entropy loss functions: Theoretical analysis and applications. In Proceedings of the International Conference on Machine Learning, PMLR, Honolulu, HI, USA, 23–29 July 2023. [Google Scholar]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
Dataset | Data Size | Class | Samples | Percentage of Training Samples |
---|---|---|---|---|
IP | 145 145 200 | 16 | 10,249 | 10% |
SV | 512 217 224 | 16 | 54,129 | 1% |
PU | 610 340 103 | 9 | 42,776 | 3% |
Case | CNN Segment | Conv Embedding | AvgPool Projection | Metric | IP | SV | PU |
---|---|---|---|---|---|---|---|
1 | × | OA AA Kappa | 98.77 ± 0.06 98.11 ± 0.22 98.33 ± 0.21 | 99.06 ± 0.99 99.20 ± 0.34 98.46 ± 0.30 | 98.99 ± 0.03 98.30 ± 0.07 98.66 ± 0.12 | ||
2 | × | OA AA Kappa | 98.88 ± 0.13 97.98 ± 0.10 98.50 ± 0.02 | 99.01 ± 0.17 98.88 ± 0.29 98.99 ± 0.14 | 99.20 ± 0.11 98.65 ± 0.22 99.03 ± 0.07 | ||
3 | × | OA AA Kappa | 98.49 ± 0.05 98.02 ± 0.24 97.88 ± 0.35 | 99.10 ± 0.99 98.77 ± 0.63 99.20 ± 0.17 | 99.11 ± 0.06 99.01 ± 0.09 99.05 ± 0.10 | ||
4 | OA AA Kappa | 99.36 ± 0.05 98.77 ± 0.41 99.26 ± 0.06 | 99.64 ± 0.10 99.70 ± 0.05 99.60 ± 0.11 | 99.27 ± 0.12 98.53 ± 0.19 99.04 ± 0.16 |
Case | PCA | Class Token | Mean Pooling | OA | AA | Kappa |
---|---|---|---|---|---|---|
1 | × | 99.280.06 | 98.950.36 | 99.210.09 | ||
2 | × | × | 98.400.23 | 97.030.76 | 98.000.12 | |
3 | × | × | 96.980.68 | 95.100.99 | 97.070.50 | |
4 | × | 98.800.09 | 97.030.76 | 98.800.12 |
Indian Pines | University of Pavia | Salinas Valleys | ||||||
---|---|---|---|---|---|---|---|---|
(OA: 99.41) | (OA: 99.41) | (OA: 99.77) | ||||||
Color | Land-cover type | Samples | Color | Land-cover type | Samples | Color | Land-cover type | Samples |
Alfalfa | 46 | Asphalt | 6631 | Brocoli green weeds 1 | 2009 | |||
Corn notill | 1428 | Meadows | 18,649 | Brocoli green weeds 2 | 3726 | |||
Corn mintill | 830 | Gravel | 2099 | Fallow | 1976 | |||
Corn | 237 | Trees | 3064 | Fallow rough plow | 1394 | |||
Grass pasture | 483 | Painted metal sheet | 1345 | Fallow smooth | 2678 | |||
Grass trees | 730 | Bare Soil | 5029 | Stubble | 3959 | |||
Grass pasture mowed | 28 | Bitumen | 1330 | Celery | 3579 | |||
Hay windrowed | 478 | Self Blocking Bricks | 3682 | Grapes untrained | 11,271 | |||
Oats | 20 | Shadows | 947 | Soil vineyard develop | 6203 | |||
Soybean notill | 972 | Corn senescedgreen weeds | 3278 | |||||
Soybean mintill | 2455 | Lettuce romaine 4wk | 1068 | |||||
Soybean clean | 593 | Lettuce romaine 5wk | 1927 | |||||
Wheat | 205 | Lettuce romaine 6wk | 916 | |||||
Woods | 1265 | Lettuce romaine 7wk | 1070 | |||||
Buildings Grass Trees Drives | 386 | Vinyard untrained | 7268 | |||||
Stone Steel Towers | 93 | Vinyard vertical trellis | 1807 | |||||
Total samples | 21,025 | Total samples | 207,400 | Total samples | 11,104 |
Class | CNN-Based | Transformer-Based | |||||
---|---|---|---|---|---|---|---|
SPRN (2021) | HybridSN (2019) | GAHT (2022) | MorphFormer (2023) | GSPFormer (2023) | GSC-Vit (2024) | 3DVT | |
OA (%) | 95.55 ± 0.50 | 97.90 ± 0.17 | 97.16 ± 0.16 | 97.84 ± 0.61 | 98.45 ± 0.48 | 98.73 ± 0.18 | 99.35 ± 0.04 |
AA (%) | 94.04 ± 1.26 | 97.98 ± 0.49 | 96.33 ± 0.72 | 94.12 ± 2.17 | 97.92 ± 0.32 | 98.09 ± 0.44 | 98.76 ± 0.51 |
k × 100 | 94.95 ± 0.57 | 97.61 ± 0.20 | 96.76 ± 0.11 | 97.49 ± 0.62 | 98.19 ± 0.47 | 98.63 ± 0.24 | 99.27 ± 0.06 |
Class | CNN-Based | Transformer-Based | |||||
---|---|---|---|---|---|---|---|
SPRN (2021) | HybridSN (2019) | GAHT (2022) | MorphFormer (2023) | GSPFormer (2023) | GSC-Vit (2024) | 3DVT (2022) | |
OA (%) | 95.46 ± 0.70 | 97.40 ± 0.48 | 97.13 ± 2.24 | 98.31 ± 0.40 | 96.91 ± 0.39 | 98.91 ± 0.65 | 99.31 ± 0.07 |
AA (%) | 92.47 ± 0.83 | 95.97 ± 0.77 | 95.90 ± 2.26 | 98.25 ± 0.49 | 96.79 ± 0.42 | 98.59 ± 0.92 | 98.61 ± 0.11 |
k × 100 | 93.90 ± 0.97 | 96.51 ± 0.61 | 96.17 ± 2.82 | 97.80 ± 0.56 | 95.88 ± 0.43 | 98.57 ± 0.80 | 99.09 ± 0.10 |
Class | CNN-Based | Transformer-Based | |||||
---|---|---|---|---|---|---|---|
SPRN (2021) | HybridSN (2019) | GAHT (2022) | MorphFormer (2023) | GSPFormer (2023) | GSC-Vit (2024) | 3DVT | |
OA (%) | 93.57 ± 1.80 | 94.92 ± 1.13 | 96.83 ± 0.25 | 95.92 ± 0.47 | 95.82 ± 0.48 | 96.13 ± 1.15 | 99.66 ± 0.09 |
AA (%) | 94.12 ± 1.65 | 97.91 ± 0.72 | 98.33 ± 0.15 | 98.01 ± 0.31 | 97.54 ± 0.40 | 97.42 ± 0.90 | 99.73 ± 0.04 |
k × 100 | 92.81 ± 2.09 | 94.31 ± 1.21 | 96.50 ± 0.28 | 95.41 ± 0.52 | 95.34 ± 0.56 | 95.70 ± 1.31 | 99.62 ± 0.10 |
Dataset | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
IP | 99.17 ± 0.06 | 99.20 ± 0.08 | 99.23 ± 0.04 | 99.30 ± 0.07 | 99.36 ± 0.05 | 99.35 ± 0.06 | 99.35 ± 0.03 | 99.30 ± 0.05 | 99.32 ± 0.07 |
PU | 99.19 ± 0.03 | 99.20 ± 0.06 | 99.21 ± 0.10 | 99.20 ± 0.05 | 99.25 ± 0.07 | 99.27 ± 0.12 | 99.26 ± 0.06 | 99.23 ± 0.06 | 99.24 ± 0.08 |
SV | 99.49 ± 0.04 | 99.52 ± 0.07 | 99.64 ± 0.10 | 99.62 ± 0.09 | 99.58 ± 0.02 | 99.59 ± 0.07 | 99.50 ± 0.06 | 99.40 ± 0.02 | 99.46 ± 0.03 |
Dataset | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|
IP | 37.42 | 39.96 | 42.88 | 45.10 | 50.73 | 51.55 | 52.26 | 54.28 | 55.38 |
PU | 50.28 | 56.62 | 62.88 | 67.42 | 69.88 | 78.27 | 84.09 | 99.20 | 102.58 |
SV | 40.06 | 44.19 | 52.31 | 53.02 | 53.78 | 54.39 | 56.57 | 59.48 | 62.60 |
Patch Size | 9 × 9 | 11 × 11 | 13 × 13 | 15 × 15 | 17 × 17 | 19 × 19 |
---|---|---|---|---|---|---|
IP | 99.16 ± 0.07 | 99.36 ± 0.05 | 99.30 ± 0.05 | 99.31 ± 0.06 | 99.29 ± 0.03 | 99.22 ± 0.05 |
PU | 99.09 ± 0.03 | 99.15 ± 0.02 | 99.27 ± 0.12 | 99.25 ± 0.07 | 99.22 ± 0.05 | 99.16 ± 0.08 |
SV | 97.63 ± 0.08 | 98.38 ± 0.04 | 98.93 ± 0.05 | 99.39 ± 0.04 | 99.64 ± 0.10 | 99.60 ± 0.05 |
Patch Size | 9 × 9 | 11 × 11 | 13 × 13 | 15 × 15 | 17 × 17 | 19 × 19 |
---|---|---|---|---|---|---|
IP | 38.36 | 50.73 | 70.78 | 102.65 | 127.38 | 165.97 |
PU | 35.29 | 52.20 | 78.27 | 102.58 | 140.26 | 186.59 |
SV | 22.56 | 31.11 | 39.55 | 47.08 | 52.31 | 84.30 |
SPRN | HybridSN | GAHT | MorphFormer | GSPFormer | GSC-Vit | 3DVT | ||
---|---|---|---|---|---|---|---|---|
IP | Training Times (s) | 26.78 | 95.88 | 66.48 | 18.44 | 41.27 | 29.54 | 50.78 |
PU | Training Times (s) | 31.56 | 82.11 | 54.77 | 17.66 | 32.46 | 16.21 | 78.30 |
SV | Training Times (s) | 22.59 | 79.64 | 51.66 | 15.24 | 30.11 | 14.22 | 52.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Shao, J. 3DVT: Hyperspectral Image Classification Using 3D Dilated Convolution and Mean Transformer. Photonics 2025, 12, 146. https://doi.org/10.3390/photonics12020146
Su X, Shao J. 3DVT: Hyperspectral Image Classification Using 3D Dilated Convolution and Mean Transformer. Photonics. 2025; 12(2):146. https://doi.org/10.3390/photonics12020146
Chicago/Turabian StyleSu, Xinling, and Jingbo Shao. 2025. "3DVT: Hyperspectral Image Classification Using 3D Dilated Convolution and Mean Transformer" Photonics 12, no. 2: 146. https://doi.org/10.3390/photonics12020146
APA StyleSu, X., & Shao, J. (2025). 3DVT: Hyperspectral Image Classification Using 3D Dilated Convolution and Mean Transformer. Photonics, 12(2), 146. https://doi.org/10.3390/photonics12020146