Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,635)

Search Parameters:
Keywords = life-time expectancy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4856 KiB  
Article
PREFACE: A Search for Long-Lived Particles at the Large Hadron Collider
by Burak Hacisahinoglu, Suat Ozkorucuklu, Maksym Ovchynnikov, Michael G. Albrow, Aldo Penzo and Orhan Aydilek
Physics 2025, 7(3), 33; https://doi.org/10.3390/physics7030033 (registering DOI) - 1 Aug 2025
Abstract
The Standard Model (SM) fails to explain many problems (neutrino masses, dark matter, and matter–antimatter asymmetry, among others) that may be resolved with new particles beyond the SM. No observation of such new particles may be explained either by their exceptionally high mass [...] Read more.
The Standard Model (SM) fails to explain many problems (neutrino masses, dark matter, and matter–antimatter asymmetry, among others) that may be resolved with new particles beyond the SM. No observation of such new particles may be explained either by their exceptionally high mass or by considerably small coupling to SM particles. The latter case implies relatively long lifetimes. Such long-lived particles (LLPs) then to have signatures different from those of SM particles. Searches in the “central region” are covered by the LHC general purpose experiments. The forward small angle region far from the interaction point (IP) is unexplored. Such particles are expected to have the energy as large as E = O(1 TeV) and Lorentz time dilation factor γ=E/m102103 (with m the particle mass) hence long enough decay distances. A new class of specialized LHC detectors dedicated to LLP searches has been proposed for the forward regions. Among these experiments, FASER is already operational, and FACET is under consideration at a location 100 m from the LHC IP5 (the CMS detector intersection). However, some features of FACET require a specially enlarged beam pipe, which cannot be implemented for LHC Run 4. In this study, we explore a simplified version of the proposed detector PREFACE compatible with the standard LHC beam pipe in the HL-LHC Run 4. Realistic Geant4 simulations are performed and the background is evaluated. An initial analysis of the physics potential with the PREFACE geometry indicates that several significant channels could be accessible with sensitivities comparable to FACET and other LLP searches. Full article
(This article belongs to the Section High Energy Physics)
Show Figures

Figure 1

24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 (registering DOI) - 1 Aug 2025
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

17 pages, 2622 KiB  
Article
A Method for Evaluating the Performance of Main Bearings of TBM Based on Entropy Weight–Grey Correlation Degree
by Zhihong Sun, Yuanke Wu, Hao Xiao, Panpan Hu, Zhenyong Weng, Shunhai Xu and Wei Sun
Sensors 2025, 25(15), 4715; https://doi.org/10.3390/s25154715 (registering DOI) - 31 Jul 2025
Abstract
The main bearing of a tunnel boring machine (TBM) is a critical component of the main driving system that enables continuous excavation, and its performance is crucial for ensuring the safe operation of the TBM. Currently, there are few testing technologies for TBM [...] Read more.
The main bearing of a tunnel boring machine (TBM) is a critical component of the main driving system that enables continuous excavation, and its performance is crucial for ensuring the safe operation of the TBM. Currently, there are few testing technologies for TBM main bearings, and a comprehensive testing and evaluation system has yet to be established. This study presents an experimental investigation using a self-developed, full-scale TBM main bearing test bench. Based on a representative load spectrum, both operational condition tests and life cycle tests are conducted alternately, during which the signals of the main bearing are collected. The observed vibration signals are weak, with significant vibration attenuation occurring in the large structural components. Compared with the test bearing, which reaches a vibration amplitude of 10 g in scale tests, the difference is several orders of magnitude smaller. To effectively utilize the selected evaluation indicators, the entropy weight method is employed to assign weights to the indicators, and a comprehensive analysis is conducted using grey relational analysis. This strategy results in the development of a comprehensive evaluation method based on entropy weighting and grey relational analysis. The main bearing performance is evaluated under various working conditions and the same working conditions in different time periods. The results show that the greater the bearing load, the lower the comprehensive evaluation coefficient of bearing performance. A multistage evaluation method is adopted to evaluate the performance and condition of the main bearing across multiple working scenarios. With the increase of the test duration, the bearing performance exhibits gradual degradation, aligning with the expected outcomes. The findings demonstrate that the proposed performance evaluation method can effectively and accurately evaluate the performance of TBM main bearings, providing theoretical and technical support for the safe operation of TBMs. Full article
Show Figures

Figure 1

23 pages, 2900 KiB  
Review
Type I Sourdough Preservation Strategies and the Contribution of Microbial Biological Resource Centers to Biodiversity Protection: A Narrative Review
by Roberta Coronas, Angela Bianco, Anna Maria Laura Sanna, Giacomo Zara and Marilena Budroni
Foods 2025, 14(15), 2624; https://doi.org/10.3390/foods14152624 - 26 Jul 2025
Viewed by 160
Abstract
Traditional type I sourdoughs are being rediscovered and increasingly used in artisanal and industrial bakeries due to the unique taste and texture, potential health benefits, and longer shelf life they confer on to baked products. These unique properties are attributed to the diverse [...] Read more.
Traditional type I sourdoughs are being rediscovered and increasingly used in artisanal and industrial bakeries due to the unique taste and texture, potential health benefits, and longer shelf life they confer on to baked products. These unique properties are attributed to the diverse microbial communities of sourdough, comprising both yeasts and bacteria. The traditional preservation method for type I sourdough (i.e., continuous backslopping) may lead, over time, to taxonomic and functional rearrangements of its microbial communities. Consequently, significant deviations in the characteristics of baked products can occur. In this context, this review aims to summarize the recent literature on the long-term preservation and maintenance strategies for type I sourdough and highlight the essential role that microbial biological resource centers (mBRCs) could play in the preservation and sharing of sourdough microbiomes. Specifically, the identification of appropriate preservation methods, implementation of well-defined access and benefit-sharing protocols, and development of microbiome-specific datasets, should be encouraged within the context of mBRCs. These infrastructures are expected to play a pivotal role in preserving the microbiota of fermented foods, serving as a crucial element for innovation and the safeguarding of traditional foods and culinary heritage. Full article
(This article belongs to the Special Issue Feature Reviews on Food Microbiology)
Show Figures

Figure 1

19 pages, 451 KiB  
Review
A Scoping Review on the Economic Impacts of Healthy Ageing Promotion and Disease Prevention in OECD Member Countries
by Ezgi Dilek Demirtas and Antoine Flahault
Int. J. Environ. Res. Public Health 2025, 22(8), 1161; https://doi.org/10.3390/ijerph22081161 - 22 Jul 2025
Viewed by 222
Abstract
The economic impact of health promotion and disease prevention interventions in ageing populations remains debated, as theories of morbidity compression and expansion offer contrasting views on the relationship between life expectancy and duration of morbidity. A MEDLINE search was conducted to identify studies [...] Read more.
The economic impact of health promotion and disease prevention interventions in ageing populations remains debated, as theories of morbidity compression and expansion offer contrasting views on the relationship between life expectancy and duration of morbidity. A MEDLINE search was conducted to identify studies evaluating the economic impact of health promotion or primary or secondary prevention interventions in OECD countries, over a lifetime time horizon. Among the 29 studies included, 16 reported cost-saving interventions (reducing costs while improving health outcomes), 11 reported cost-effective interventions (health gains at an acceptable additional cost based on an established threshold), and two presented cost-ineffective interventions (costs exceeding the threshold for the health benefits achieved). Interventions targeting diabetes and obesity prevention were cost-saving; cancer screening and fall prevention strategies were cost-effective; whereas interventions targeting rare diseases were cost-ineffective. Regulatory interventions were also cost-saving, while most programme-based interventions were cost-effective. Cost-saving or cost-effective interventions generally adopted broader analytical perspectives, while cost-ineffective ones employed narrower perspectives. The four studies that incorporated competing risks—despite using a narrower healthcare sector perspective—still found the interventions to be cost-saving or cost-effective interventions. None of the included studies assessed whether interventions led to morbidity compression or expansion. Only a few studies considered equity impact; those that did reported improved outcomes for disadvantaged groups, in regulatory and community-based interventions. Further research is needed to quantify morbidity outcomes and enhance methodological consistency, particularly with respect to analytical perspectives, the integration of competing risks, and the inclusion of equity analyses. Full article
(This article belongs to the Special Issue Risk Reduction for Health Prevention)
Show Figures

Figure 1

21 pages, 1665 KiB  
Review
Possible Crosstalk and Alterations in Gut Bacteriome and Virome in HIV-1 Infection and the Associated Comorbidities Related to Metabolic Disorder
by Komal Shrivastav, Hesham Nasser, Terumasa Ikeda and Vijay Nema
Viruses 2025, 17(7), 990; https://doi.org/10.3390/v17070990 - 16 Jul 2025
Viewed by 428
Abstract
Improved antiretroviral therapy (ART) has significantly increased the life expectancy of people living with HIV (PLWH). At the same time, other complications like metabolic syndrome (MetS) are coming up as new challenges to handle. This review aims to explore the emerging evidence of [...] Read more.
Improved antiretroviral therapy (ART) has significantly increased the life expectancy of people living with HIV (PLWH). At the same time, other complications like metabolic syndrome (MetS) are coming up as new challenges to handle. This review aims to explore the emerging evidence of gut microbiome and virome alterations in human immunodeficiency virus-1 (HIV-1) infection and associated metabolic disorders, such as type-2 diabetes (T2DM) and cardiovascular disease (CVD), with a focus on their interplay, contribution to immune dysfunction, and potential as therapeutic targets. We conducted a comprehensive review of the current literature on gut bacteriome and virome changes in HIV-1-infected individuals and those with metabolic comorbidities emphasizing their complex interplay and potential as biomarkers or therapeutic targets. HIV-1 infection disrupts gut microbial homeostasis, promoting bacterial translocation, systemic inflammation, and metabolic dysregulation. Similarly, metabolic disorders are marked by reduced beneficial short-chain fatty acid-producing bacteria and an increase in pro-inflammatory taxa. Alterations in the gut virome, particularly involving bacteriophages, may exacerbate bacterial dysbiosis and immune dysfunction. Conversely, some viral populations have been associated with immune restoration post-ART. These findings point toward a dynamic and bidirectional relationship between the gut virome, bacteriome, and host immunity. Targeted interventions such as microbiome modulation and fecal virome transplantation (FVT) offer promising avenues for restoring gut homeostasis and improving long-term outcomes in PLWH. Full article
(This article belongs to the Special Issue HIV and HTLV Infections and Coinfections)
Show Figures

Graphical abstract

25 pages, 3490 KiB  
Review
A Review of Stator Insulation State-of-Health Monitoring Methods
by Benjamin Sirizzotti, Daniel Addae, Emmanuel Agamloh, Annette von Jouanne and Alex Yokochi
Energies 2025, 18(14), 3758; https://doi.org/10.3390/en18143758 - 16 Jul 2025
Viewed by 306
Abstract
Tracking the state of the health of electrical insulation in high-power electric machines has always been a topic of great interest due to the high cost of downtime associated with unexpected failures. Over the years, there have been continuous efforts to develop and [...] Read more.
Tracking the state of the health of electrical insulation in high-power electric machines has always been a topic of great interest due to the high cost of downtime associated with unexpected failures. Over the years, there have been continuous efforts to develop and improve upon methods for testing and categorizing the health and expected lifetime of stator insulation. Methods such as partial discharge, surge, and dissipation factor testing are common examples. With the increasing use of high-specific-power electric machines in new applications such as traction and wind power generation, coupled with the increasing use of wide-bandgap semiconductor device-based inverters, some traditional methods for insulation health tracking may need adjustments or be combined with newer methods to remain accurate and useful. This paper outlines a review of the traditional insulation health tracking methods and newer methods and improvements that have been proposed to address the concerns and shortcomings of traditional methods. Full article
Show Figures

Figure 1

27 pages, 344 KiB  
Article
Biopsychosocial Profile of Chronic Alcohol Users: Insights from a Cross-Sectional Study
by Luciana Angela Ignat, Raluca Oana Tipa, Alina Roxana Cehan and Vladimir Constantin Bacârea
Brain Sci. 2025, 15(7), 741; https://doi.org/10.3390/brainsci15070741 - 10 Jul 2025
Viewed by 437
Abstract
Introduction: Chronic alcohol use is a complex condition influenced by psychological, behavioral, and socio-demographic factors. This study aimed to develop a comprehensive psychosocial profile of individuals with alcohol use disorder (AUD) by examining associations between psychometric variables and relapse risk including repeated psychiatric [...] Read more.
Introduction: Chronic alcohol use is a complex condition influenced by psychological, behavioral, and socio-demographic factors. This study aimed to develop a comprehensive psychosocial profile of individuals with alcohol use disorder (AUD) by examining associations between psychometric variables and relapse risk including repeated psychiatric hospitalizations. Methodology: A cross-sectional observational analytical study was conducted on a sample of 104 patients admitted for alcohol withdrawal management at the “Prof. Dr. Al. Obregia” Psychiatric Clinical Hospital in Bucharest between March 2023 and September 2024. Participants completed a set of validated psychometric tools: the Drinker Inventory of Consequences—Lifetime Version (DrInC), Readiness to Change Questionnaire—Treatment Version (RTCQ), Drinking Expectancy Questionnaire (DEQ), and Drinking Refusal Self-Efficacy Questionnaire (DRSEQ). Additional data were collected on the socio-demographic (education level, socio-professional category), genetic (family history of alcohol use), and behavioral factors (length of abstinence, tobacco use, co-occurring substance use disorders). Results: Higher alcohol-related consequence scores (DrInC) were significantly associated with lower education (p < 0.001, η2 = 0.483), disadvantaged socio-professional status (p < 0.001, η2 = 0.514), and family history of alcohol use (p < 0.001, η2 = 0.226). Self-efficacy (DRSEQ) was significantly lower among individuals with co-occurring substance use (p < 0.001) and nicotine dependence (p < 0.001). Logistic regression showed that the DrInC scores significantly predicted readmission within three months (OR = 1.09, p = 0.001). Conclusions: Psychometric tools are effective in identifying individuals at high risk. Personalized, evidence-based interventions tailored to both psychological and socio-professional profiles, combined with structured post-discharge support, are essential for improving long-term recovery and reducing the readmission rates. Full article
(This article belongs to the Section Neuropathology)
9 pages, 517 KiB  
Perspective
Cancer Immunotherapy: The Role of Nursing in Patient Education, Assessment, Monitoring, and Support
by Parmis Mirzadeh, Edith Pituskin, Ivan Au, Sheri Sneath and Catriona J. Buick
Curr. Oncol. 2025, 32(7), 392; https://doi.org/10.3390/curroncol32070392 - 9 Jul 2025
Viewed by 416
Abstract
The prevalence of cancer is rising both in Canada and across the world, with approximately 35 million new cases predicted by 2050. Cancer immunotherapy is a form of treatment that harnesses the body’s immune system to fight cancer cells, increasing life expectancy beyond [...] Read more.
The prevalence of cancer is rising both in Canada and across the world, with approximately 35 million new cases predicted by 2050. Cancer immunotherapy is a form of treatment that harnesses the body’s immune system to fight cancer cells, increasing life expectancy beyond what traditional treatments offer. Immunotherapy may cause immune-related adverse events that differ from the toxicities of traditional treatments. While these events can be detrimental to health, it is critical that they are caught early. This perspective paper examines the evolving role of oncology nurses within the cancer care continuum in caring for patients receiving cancer immunotherapy, specifically immune checkpoint inhibitors. Oncology nurses provide care in many areas, specifically in educating patients on the early detection of side effects to prevent negative outcomes, assessing and monitoring patient symptoms through a variety of means, including nurse-led clinics, and providing support to patients undergoing therapy. This work helps identify gaps in the literature. Future research is required for advancing cancer immunotherapies and better detecting early signs of side effects for nurses practicing in different settings, ensuring timely care. Full article
(This article belongs to the Special Issue Feature Reviews in Section "Oncology Nursing")
Show Figures

Figure 1

36 pages, 2504 KiB  
Article
Long-Term Durability of CFRP Strips Used in Infrastructure Rehabilitation
by Karunya Kanagavel and Vistasp M. Karbhari
Polymers 2025, 17(13), 1886; https://doi.org/10.3390/polym17131886 - 7 Jul 2025
Viewed by 463
Abstract
Prefabricated unidirectional carbon fiber reinforced polymer (CFRP) composite strips are extensively used as a means of infrastructure rehabilitation through adhesive bonding to the external surface of structural concrete elements. Most data to date are from laboratory tests ranging from a few months to [...] Read more.
Prefabricated unidirectional carbon fiber reinforced polymer (CFRP) composite strips are extensively used as a means of infrastructure rehabilitation through adhesive bonding to the external surface of structural concrete elements. Most data to date are from laboratory tests ranging from a few months to 1–2 years providing an insufficient dataset for prediction of long-term durability. This investigation focuses on the assessment of the response of three different prefabricated CFRP systems exposed to water, seawater, and alkaline solutions for 5 years of immersion in deionized water conducted at three temperatures of 23, 37.8 and 60 °C, all well below the glass transition temperature levels. Overall response is characterized through tensile and short beam shear (SBS) testing at periodic intervals. It is noted that while the three systems are similar, with the dominant mechanisms of deterioration being related to matrix plasticization followed by fiber–matrix debonding with levels of matrix and interface deterioration being accelerated at elevated temperatures, their baseline characteristics and distributions are different emphasizing the need for greater standardization. While tensile modulus does not degrade appreciably over the 5-year period of exposure with final levels of deterioration being between 7.3 and 11.9%, both tensile strength and SBS strength degrade substantially with increasing levels based on temperature and time of immersion. Levels of tensile strength retention can be as low as 61.8–66.6% when immersed in deionized water at 60 °C, those for SBS strength can be 38.4–48.7% at the same immersion condition for the three FRP systems. Differences due to solution type are wider in the short-term and start approaching asymptotic levels within FRP systems at longer periods of exposure. The very high levels of deterioration in SBS strength indicate the breakdown of the materials at the fiber–matrix bond and interfacial levels. It is shown that the level of deterioration exceeds that presumed through design thresholds set by specific codes/standards and that new safety factors are warranted in addition to expanding the set of characteristics studied to include SBS or similar interface-level tests. Alkali solutions are also shown to have the highest deteriorative effects with deionized water having the least. Simple equations are developed to enable extrapolation of test data to predict long term durability and to develop design thresholds based on expectations of service life with an environmental factor of between 0.56 and 0.69 for a 50-year expected service life. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

17 pages, 2430 KiB  
Article
Multimodal Navigation and Virtual Companion System: A Wearable Device Assisting Blind People in Independent Travel
by Jingjing Xu, Caiyi Wang, Yancheng Li, Xuantuo Huang, Meina Zhao, Zhuoqun Shen, Yiding Liu, Yuxin Wan, Fengrong Sun, Jianhua Zhang and Shengyong Xu
Sensors 2025, 25(13), 4223; https://doi.org/10.3390/s25134223 - 6 Jul 2025
Viewed by 412
Abstract
Visual impairment or even loss seriously affects quality of life. Benefited by the rapid development of sound/laser detection, Global Positioning System (GPS)/Beidou positioning, machine vision and other technologies, the quality of life of blind people is expected to be improved through visual substitution [...] Read more.
Visual impairment or even loss seriously affects quality of life. Benefited by the rapid development of sound/laser detection, Global Positioning System (GPS)/Beidou positioning, machine vision and other technologies, the quality of life of blind people is expected to be improved through visual substitution technology. The existing visual substitution devices still have limitations in terms of safety, robustness, and ease of operation. The remote companion system developed here fully utilizes multimodal navigation and remote communication technologies, and the positioning and interaction functions of commercial mobile phones. Together with the accumulated judgment of backend personnel, it can provide real-time, safe, and reliable navigation services for blind people, helping them complete daily activities such as independent travel, circulation, and shopping. The practical results show that the system not only has strong operability and is easy to use, but also can provide users with a strong sense of security and companionship, making it suitable for promotion. In the future, this system can also be promoted for other vulnerable groups such as the elderly. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

26 pages, 20735 KiB  
Article
The Study of the Effect of Blade Sharpening Conditions on the Lifetime of Planar Knives During Industrial Flatfish Skinning Operations
by Paweł Sutowski, Bartosz Zieliński and Krzysztof Nadolny
Materials 2025, 18(13), 3191; https://doi.org/10.3390/ma18133191 - 6 Jul 2025
Viewed by 371
Abstract
Users of technical blades expect new generations of tools to feature reduced power requirements for process and maximized tool life. The second aspect is reflected in the reduction in costs associated with the purchase of tools and in the reduction in process line [...] Read more.
Users of technical blades expect new generations of tools to feature reduced power requirements for process and maximized tool life. The second aspect is reflected in the reduction in costs associated with the purchase of tools and in the reduction in process line downtime due to tool replacement. Meeting these demands is particularly challenging in cutting operations involving heterogeneous materials, especially when the processed raw material contains inclusions and impurities significantly harder than the material itself. This situation occurs, among others, during flatfish skinning operations analyzed in this paper, a common process in the fish processing industry. These fish, due to their natural living environment and behavior, contain a significant proportion of hard inclusions and impurities (shell fragments, sand grains) embedded in their skin. Contact between the tool and hard inclusions causes deformation, wrapping, crushing, and even chipping of the cutting edge of planar knives, resulting in non-uniform blade wear, which manifests as areas of uncut skin on the fish fillet. This necessitates frequent tool changes, resulting in higher tooling costs and longer operating times. This study provides a unique opportunity to review the results of in-service pre-implementation tests of planar knives in the skinning operation conducted under industrial conditions. The main objective was to verify positive laboratory research results regarding the extension of technical blade tool life through optimization of sharpening conditions during grinding. Durability test results are presented for the skinning process of fillets from plaice (Pleuronectes platessa) and flounder (Platichthys flesus). The study also examined the effect of varying cooling and lubrication conditions in the grinding zone on the tool life of technical planar blades. Sharpening knives under flood cooling conditions and using the hybrid method (combining minimum quantity lubrication and cold compressed air) increased their service life in the plaice skinning process (Pleuronectes platessa) by 12.39% and 8.85%, respectively. The increase in effective working time of knives during flounder (Platichthys flesus) skinning was even greater, reaching 17.7% and 16.3% for the flood cooling and hybrid methods, respectively. Full article
Show Figures

Figure 1

33 pages, 12918 KiB  
Article
Time-Dependent Fragility Functions and Post-Earthquake Residual Seismic Performance for Existing Steel Frame Columns in Offshore Atmospheric Environment
by Xiaohui Zhang, Xuran Zhao, Shansuo Zheng and Qian Yang
Buildings 2025, 15(13), 2330; https://doi.org/10.3390/buildings15132330 - 2 Jul 2025
Viewed by 402
Abstract
This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel frame columns were revealed. A [...] Read more.
This paper evaluates the time-dependent fragility and post-earthquake residual seismic performance of existing steel frame columns in offshore atmospheric environments. Based on experimental research, the seismic failure mechanism and deterioration laws of the seismic behavior of corroded steel frame columns were revealed. A finite element analysis (FEA) method for steel frame columns, which considers corrosion damage and ductile metal damage criteria, is developed and validated. A parametric analysis in terms of service age and design parameters is conducted. Considering the impact of environmental erosion and aging, a classification criterion for damage states for existing steel frame columns is proposed, and the theoretical characterization of each damage state is provided based on the moment-rotation skeleton curves. Based on the test and numerical analysis results, probability distributions of the fragility function parameters (median and logarithmic standard deviation) are constructed. The evolution laws of the fragility parameters with increasing service age under each damage state are determined, and a time-dependent fragility model for existing steel frame columns in offshore atmospheric environments is presented through regression analysis. At a drift ratio of 4%, the probability of complete damage to columns with 40, 50, 60, and 70-year service ages increased by 18.1%, 45.3%, 79.2%, and 124.5%, respectively, compared with columns within a 30-year service age. Based on the developed FEA models and the damage class of existing columns, the influence of characteristic variables (service age, design parameters, and damage level) on the residual seismic capacity of earthquake-damaged columns, namely the seismic resistance that can be maintained even after suffering earthquake damage, is revealed. Using the particle swarm optimization back-propagation neural network (PSO-BPNN) model, nonlinear mapping relationships between the characteristic variables and residual seismic capacity are constructed, thereby proposing a residual seismic performance evaluation model for existing multi-aged steel frame columns in an offshore atmospheric environment. Combined with the damage probability matrix of the time-dependent fragility, the expected values of the residual seismic capacity of existing multi-aged steel frame columns at a given drift ratio are obtained directly in a probabilistic sense. The results of this study lay the foundation for resistance to sequential earthquakes and post-earthquake functional recovery and reconstruction, and provide theoretical support for the full life-cycle seismic resilience assessment of existing steel structures in earthquake-prone areas. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 4066 KiB  
Article
Mechanical Response and Fatigue Life Analysis of Asphalt Pavements Under Temperature-Load Coupling Conditions
by Zhenzheng Liu, Le Zhang, Yuan Gao, Yanying Dong, Yuhang Liu and Bo Li
Appl. Sci. 2025, 15(13), 7441; https://doi.org/10.3390/app15137441 - 2 Jul 2025
Viewed by 201
Abstract
The effects of heavy traffic and complex natural environmental conditions have made the problem of the inadequate life expectancy of asphalt pavements increasingly pronounced. In this study, finite-element software was used to establish the three-dimensional analytical model of temperature-load coupling under different axial [...] Read more.
The effects of heavy traffic and complex natural environmental conditions have made the problem of the inadequate life expectancy of asphalt pavements increasingly pronounced. In this study, finite-element software was used to establish the three-dimensional analytical model of temperature-load coupling under different axial loads and calculate the distribution law of temperature-load coupling stress under the most unfavorable loading conditions. By comparing temperature and coupled stresses at different depths, the extent to which combined stress changes due to environmental factors affect different depths was determined. Finally, the fatigue life patterns of asphalt pavements under different seasons and axle loads were analyzed. The results showed that the temperature-load coupling stress varied periodically under different axial loads. Among them, the temperature stress had less influence on the coupling stress in spring and fall and more influence in winter. As the depth increases, the coupling stresses and their range of influence gradually decrease. Also, the farther away from the wheel load position, the smaller the traveling load disturbance and the closer the coupling stresses were to the temperature stresses. Under the most unfavorable loading conditions, the change rule of the degree of influence of environmental effects along the depth direction showed that the winter gradually decreased, the spring and fall seasons for the first time decreased and then increased, and the minimum influence on the road surface was at 9 cm. Overall, the degree of influence of environmental action at different axial loads was 70.53%, 41.90%, 27.13%, and 23.77% along the depth direction. Full article
Show Figures

Figure 1

13 pages, 515 KiB  
Article
The Impact of Total Hip Arthroplasty on the Incidence of Hip Fractures in Romania
by Flaviu Moldovan and Liviu Moldovan
J. Clin. Med. 2025, 14(13), 4636; https://doi.org/10.3390/jcm14134636 - 30 Jun 2025
Viewed by 352
Abstract
Background/Objectives: The increase in life expectancy and the share of the elderly population has the effect of increasing the number of osteoporotic hip fractures. At the same time, the number of total hip arthroplasty (THA) interventions is continuously increasing. The objective of [...] Read more.
Background/Objectives: The increase in life expectancy and the share of the elderly population has the effect of increasing the number of osteoporotic hip fractures. At the same time, the number of total hip arthroplasty (THA) interventions is continuously increasing. The objective of this study is to investigate the incidence rates of hip fractures during the period 2008–2019, in Romania, among people who are at least 40 years old, as well as to determine the extent to which the increase in the prevalence of people who have undergone THA has affected the incidence of hip fractures, given that the operated hip no longer presents a risk of fracture. Methods: We extracted the information, between 2008 and 2019, from nationwide retrospective studies about the incidence and time trend of hip fractures in Romania. Information on primary THA interventions during the period 2001–2019 was obtained from the Romanian Arthroplasty Register (RAR). We obtained the population size, by gender and age groups, from the reports of the National Institute of Statistics. For the period 2008–2019, we calculated the standardized annual hip fracture incidence rates by sex and by age. Given that each person has two hips at risk of fracture, we calculated hip fracture rates in a scenario without THA interventions. For this, we subtracted 0.5 people from the at-risk population for each prevalent hip prosthesis. Thus, we revealed the effects of decreasing fracture rates due to having hip prostheses. Results: From 2008 to 2019, age-standardized incidence rates of hip fractures increased by 10.8% in women, and by 2.8% in men. By excluding hips being replaced with prostheses in the at-risk population, we obtained higher hip fracture incidence rates. These recorded values were considerably higher for the elderly population. The variation in hip fracture rates during the observed period was 10.16% (9.76% in women and 11.68% in men) lower due to the increased prevalence of hip prostheses. Conclusions: Although the incidence of hip fractures has continued to rise, the growing number of people who have undergone THA and are living with hip prostheses has helped to blunt this increase. Full article
(This article belongs to the Special Issue Hip Fracture and Surgery: Clinical Updates and Challenges)
Show Figures

Figure 1

Back to TopTop