Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = lens antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4549 KiB  
Review
Research on Tbps and Kilometer-Range Transmission of Terahertz Signals
by Jianjun Yu and Jiali Chen
Micromachines 2025, 16(7), 828; https://doi.org/10.3390/mi16070828 - 20 Jul 2025
Viewed by 579
Abstract
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) [...] Read more.
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group′s advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic–electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna–lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330–500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity–distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication′s viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity. Full article
Show Figures

Figure 1

20 pages, 18467 KiB  
Article
Additive Manufacturing of Variable Density Lenses for Radio Frequency Communications in X-Band
by Aleksandr Voronov, Carmen Bachiller, Álvaro Ferrer, Felipe Vico, Lluc Sempere, Felipe Peñaranda and Rainer Kronberger
J. Manuf. Mater. Process. 2025, 9(7), 238; https://doi.org/10.3390/jmmp9070238 - 11 Jul 2025
Viewed by 440
Abstract
This paper presents three realizations of a complete set with a horn antenna and a focusing Gradient Index (GRIN) lens in X-band. The set was specifically designed for advancing additive manufacturing (AM) of polymers with different materials and techniques. The set has three [...] Read more.
This paper presents three realizations of a complete set with a horn antenna and a focusing Gradient Index (GRIN) lens in X-band. The set was specifically designed for advancing additive manufacturing (AM) of polymers with different materials and techniques. The set has three constituent parts: a horn antenna, a support, and a lens. The horn antenna is the active element and must be electrically conductive; it was manufactured with Rigid10K acrylic resin and subsequently metallized using an electroless process. The support needed to be light, robust, and electrically transparent, so that Polyamide 11 (PA11) was used. The lens realization was intended for a dielectric material whose permittivity varies with its density. Therefore, the dielectric permittivity and loss tangent of different polymeric materials used in AM at 2.45, 6.25, and 24.5 GHz were measured. In addition, stochastic and gyroid mesh structures have been studied. These structures allow for printing a volume that presents porosity, enabling control over material density. Measuring the dielectric characteristics of each material with each density enables the establishment of graphs that relate them. The sets were then manufactured, and their frequency response and radiation diagram were measured, showing excellent results when compared with the literature. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Graphical abstract

18 pages, 3317 KiB  
Article
A Novel High-Precision Imaging Radar for Quality Inspection of Building Insulation Layers
by Dandan Cheng, Zhaofa Zeng, Wei Ge, Yuemeng Yin, Chenghao Wang and Shaolong Li
Appl. Sci. 2025, 15(11), 5991; https://doi.org/10.3390/app15115991 - 26 May 2025
Viewed by 341
Abstract
In recent years, the building insulation layer peeling caused by quality problems has brought about safety hazards to human life. Existing means of non-destructive testing of building insulation layers, including laser scanning, infrared thermal imaging, ultrasonic testing, acoustic emission, ground-penetrating radar, etc., are [...] Read more.
In recent years, the building insulation layer peeling caused by quality problems has brought about safety hazards to human life. Existing means of non-destructive testing of building insulation layers, including laser scanning, infrared thermal imaging, ultrasonic testing, acoustic emission, ground-penetrating radar, etc., are unable to simultaneously guarantee the detection depth and resolution of the insulation layer defects, not to mention high-precision imaging of the insulation layer structure. A new type of high-precision imaging radar is specifically designed for the quantitative quality inspection of external building insulation layers in this paper. The center frequency of the radar is 8800 MHz and the −10 dB bandwidth is 3100 MHz, which means it can penetrate the insulated panel not less than 48.4 mm thick and catch the reflected wave from the upper surface of the bonding mortar. When the bonding mortar is 120 mm away from the radar, the radar can achieve a lateral resolution of about 45 mm (capable of distinguishing two parties of bonding mortar with a 45 mm gap). Furthermore, an ultra-wideband high-bunching antenna is designed in this paper combining the lens and the sinusoidal antenna, taking into account the advantages of high directivity and ultra-wideband. Finally, the high-precision imaging of data collected from multiple survey lines can visually reveal the distribution of bonded mortar and the bonding area. This helps determine whether the bonding area meets construction standards and provides data support for evaluating the quality of the insulation layer. Full article
Show Figures

Figure 1

17 pages, 127269 KiB  
Article
A Novel 28-GHz Meta-Window for Millimeter-Wave Indoor Coverage
by Chun Yang, Chuanchuan Yang, Cheng Zhang and Hongbin Li
Electronics 2025, 14(9), 1893; https://doi.org/10.3390/electronics14091893 - 7 May 2025
Viewed by 672
Abstract
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and [...] Read more.
Millimeter-wave signals experience substantial path loss when penetrating common building materials, hindering seamless indoor coverage from outdoor networks. To address this limitation, we present the 28-GHz “Meta-Window”, a mass-producible, visible transparent device designed to enhance millimeter-wave signal focusing. Fabricated via metal sputtering and etching on a standard soda-lime glass substrate, the meta-window incorporates subwavelength metallic structures arranged in a rotating pattern based on the Pancharatnam–Berry phase principle, enabling 0–360° phase control within the 25–32 GHz frequency band. A 210 mm × 210 mm prototype operating at 28 GHz was constructed using a 69 × 69 array of metasurface unit cells, leveraging planar electromagnetic lens principles. Experimental results demonstrate that the meta-window achieves greater than 20 dB signal focusing gain between 26 and 30 GHz, consistent with full-wave electromagnetic simulations, while maintaining up to 74.93% visible transmittance. This dual transparency—for both visible light and millimeter-wave frequencies—was further validated by a communication prototype system exhibiting a greater than 20 dB signal-to-noise ratio improvement and successful demodulation of a 64-QAM single-carrier signal (1 GHz bandwidth, 28 GHz) with an error vector magnitude of 4.11%. Moreover, cascading the meta-window with a reconfigurable reflecting metasurface antenna array facilitates large-angle beam steering; stable demodulation (error vector magnitude within 6.32%) was achieved within a ±40° range using the same signal parameters. Compared to conventional transmissive metasurfaces, this approach leverages established glass manufacturing techniques and offers potential for direct building integration, providing a promising solution for improving millimeter-wave indoor penetration and coverage. Full article
Show Figures

Figure 1

10 pages, 3271 KiB  
Article
Focal Plane Array Based on Silicon Nitride for Optical Beam Steering at 2 Microns
by Qing Gao, Jiaqi Li, Jincheng Wei, Jinjie Zeng, Dong Yang, Xiaoqun Yu, Mingshen Peng, Hongwen Xuan, Ruijun Wang and Yanfeng Zhang
Photonics 2025, 12(5), 448; https://doi.org/10.3390/photonics12050448 - 5 May 2025
Viewed by 847
Abstract
The 2 μm wavelength is ideal for light detection and ranging and gas sensing due to its eye-safe operation, strong molecular absorption targeting, and low atmospheric scattering—critical for environmental monitoring and free-space communications. The existing 2 μm systems rely on mechanical beam steering, [...] Read more.
The 2 μm wavelength is ideal for light detection and ranging and gas sensing due to its eye-safe operation, strong molecular absorption targeting, and low atmospheric scattering—critical for environmental monitoring and free-space communications. The existing 2 μm systems rely on mechanical beam steering, which limits speed and reliability. Integrated photonic solutions have not yet been demonstrated in this wavelength. We propose a focal plane array design to address these challenges. Compared to optical phased arrays requiring complex phase control for each antenna, FPAs have a simple switch-based control and high suppression of background noise. Although FPAs need an external lens for beam collimation, they significantly reduce system complexity. This study introduces a compact, low-loss 1 × 8 focal plane array operating in the 2 μm range, employing a cascaded Mach–Zehnder interferometer switch array on a silicon nitride platform. The device demonstrates a field of view of 16.8°, background suppression better than 17 dB, and excess loss of −1.4 dB. This integrated photonic beam steering solution offers a highly promising, cost-effective approach for rapid beam switching. This integrated photonic beam steering solution offers a highly promising, cost-effective approach for rapid beam switching. Full article
(This article belongs to the Special Issue Free-Space Optical Communication and Networking Technology)
Show Figures

Figure 1

12 pages, 1196 KiB  
Hypothesis
Exploring a Novel Hypothesis: Could the Eye Function as a Radar or Ultrasound Device in Depth and Distance Perception? Neurophysiological Insights
by Hüseyin Findik, Muhammet Kaim, Feyzahan Uzun, Ayhan Kanat, Osman Nuri Keleş and Mehmet Dumlu Aydin
Life 2025, 15(4), 536; https://doi.org/10.3390/life15040536 - 25 Mar 2025
Viewed by 688
Abstract
Recent advancements in ocular physiology suggest that the eyes may function similarly to radar antennae or ultrasound probes, with the occipital cortex acting as a detector, challenging the traditional view of binocular vision as the primary mechanism for depth and distance perception. Methods: [...] Read more.
Recent advancements in ocular physiology suggest that the eyes may function similarly to radar antennae or ultrasound probes, with the occipital cortex acting as a detector, challenging the traditional view of binocular vision as the primary mechanism for depth and distance perception. Methods: We conducted a comprehensive analysis of the neuroanatomical and histological architecture of the neuro-optico-cortical systems in a male wild rabbit model. The objective was to identify potential structural and functional similarities between the retino-optical system and radar/ultrasound effector-detector systems. Results: Histological examination revealed significant similarities between retinal morphology and radar/ultrasound systems. The outermost retinal layer resembled an acoustic lens, with underlying layers functioning as acoustic matching layers. The ganglion cell layer exhibited characteristics akin to the piezoelectric elements of transducers. Conclusions: Our findings support the hypothesis that the retinal apparatus functions similarly to radar antennae or ultrasound probes. Light-stimulated retinal-occipital cortex cells perceive objects and emit electromagnetic waves through the retina, which are reflected by objects and processed in the occipital cortex to provide information on their distance, shape, and depth. This mechanism may complement binocular vision and enhance depth and distance perception in the visual system. These results open new avenues for research in visual neuroscience and could have implications for understanding various visual phenomena and disorders. Full article
(This article belongs to the Special Issue Vision Science and Optometry)
Show Figures

Figure 1

19 pages, 1620 KiB  
Article
Underwater Coherent Optical Wireless Communications with Electronic Beam Steering and Turbulence Compensation Using Adaptive Optics and Aperture Averaging
by Ali Derakhshandeh, Peter A. Hoeher and Stephan Pachnicke
Photonics 2025, 12(3), 268; https://doi.org/10.3390/photonics12030268 - 14 Mar 2025
Viewed by 945
Abstract
A novel approach to underwater optical wireless coherent communications using liquid crystal spatial light modulators (LC-SLMs) and an aperture averaging lens, in combination with optical phased-array (OPA) antennas, is presented. A comprehensive channel model that includes a wide range of underwater properties, including [...] Read more.
A novel approach to underwater optical wireless coherent communications using liquid crystal spatial light modulators (LC-SLMs) and an aperture averaging lens, in combination with optical phased-array (OPA) antennas, is presented. A comprehensive channel model that includes a wide range of underwater properties, including absorption, scattering, and turbulence effects, is employed to simulate the underwater optical wireless communication (UOWC) system in a realistic manner. The proposed system concept utilizes aperture averaging and adaptive optics techniques to mitigate the degrading effects of turbulence. Additionally, OPA antennas are integrated into the system to provide electronic beam steering capabilities, facilitating precise pointing, acquisition, and tracking (PAT) between mobile underwater vehicles. This integration enables high-speed and reliable communication links by maintaining optimal alignment. The numerical results show that under strong turbulence, our combined turbulence-compensation approach (LC-SLM plus aperture averaging) can extend the communication range by approximately threefold compared to a baseline system without compensation. For instance, at a soft-decision FEC threshold of 1.25×102, the maximum achievable link distance increases from around 10m to over 30m. Moreover, the scintillation index is reduced by more than 90%, and the bit error rate (BER) improves. Full article
Show Figures

Figure 1

12 pages, 4905 KiB  
Article
All-Quartz Integrated Lens Antenna for Surface Wave Loss Reduction
by Haoran Zhao, Qi Wang, Wen Yue and Wei Wang
Microwave 2025, 1(1), 2; https://doi.org/10.3390/microwave1010002 - 13 Feb 2025
Viewed by 1135
Abstract
This work proposes an all-quartz integrated lens antenna for the first time. The antenna feed and lens materials are both made of quartz. The antenna is designed to work at 26 GHz and has the advantages of small size and reduced surface wave [...] Read more.
This work proposes an all-quartz integrated lens antenna for the first time. The antenna feed and lens materials are both made of quartz. The antenna is designed to work at 26 GHz and has the advantages of small size and reduced surface wave loss. Two antennas, a hemispheric lens and an extended hemispheric lens, are demonstrated. The hemispheric lens has an area of 30 × 30 mm2 and a height of 16 mm, while the extended hemispheric lens, with the same area, has a height of 26 mm. The measured peak gain of the extended hemispheric integrated lens antenna is 15.49 dBi, and the simulated peak gain is 17.68 dBi. The electric-field distribution was analyzed, and two hemispheric lens and extended hemispheric lens antennas of the same size were designed on PCB substrate for comparative analysis. The measured results validate the impact of the surface wave effect on the gain of the lens antenna proposed in this study. Full article
Show Figures

Figure 1

15 pages, 7237 KiB  
Article
New Design Scheme for and Application of Fresnel Lens for Broadband Photonics Terahertz Communication
by Peng Tian, Yang Han, Weiping Li, Xiongwei Yang, Mingxu Wang and Jianjun Yu
Sensors 2024, 24(23), 7592; https://doi.org/10.3390/s24237592 - 27 Nov 2024
Cited by 2 | Viewed by 1542
Abstract
In terahertz communication systems, lens antennas used in transceivers are basically plano-convex dielectric lenses. The size of a plano-convex lens increases as the aperture increases, and thinner lenses have longer focal lengths. Through theory and simulation, we designed a Fresnel lens suitable for [...] Read more.
In terahertz communication systems, lens antennas used in transceivers are basically plano-convex dielectric lenses. The size of a plano-convex lens increases as the aperture increases, and thinner lenses have longer focal lengths. Through theory and simulation, we designed a Fresnel lens suitable for the terahertz band to meet the requirements of large aperture and short focal length, and simulated the performance, advantages, and disadvantages of the terahertz Fresnel lens. A 300 GHz terahertz wireless communication system was built to verify the gain effect of the Fresnel lens antenna. The experimental results demonstrate that the Fresnel lens can be used for long-distance terahertz communication with larger aperture diameters, overcoming the limitations of traditional plano-convex lenses. The theoretical gain of a 30 cm Fresnel lens is 48.83 dB, while the actual measured gain is approximately 45 dB. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

19 pages, 4946 KiB  
Article
Directivity Improved Antenna with a Planar Dielectric Lens for Reducing the Physical Size of the On-Vehicle Communication System
by Seongbu Seo, Woogon Kim, Hongsik Park, Yejune Seo, Dohyun Park, Hyoungjong Kim, Kwonhee Lee, Hosub Lee and Sungtek Kahng
Sensors 2024, 24(21), 6831; https://doi.org/10.3390/s24216831 - 24 Oct 2024
Cited by 1 | Viewed by 8511
Abstract
As the physical size of a communication system for satellites or unmanned aerial vehicles demands to be reduced, a compact antenna with high directivity is proposed as a core element essential to the wireless device. Instead of using a horn or an array [...] Read more.
As the physical size of a communication system for satellites or unmanned aerial vehicles demands to be reduced, a compact antenna with high directivity is proposed as a core element essential to the wireless device. Instead of using a horn or an array antenna, a unit planar antenna is combined with a surface-modulated lens to convert a low antenna gain to a high antenna gain. The lens is not a metal-patterned PCB but is dielectric, which is neither curved nor very wide. This palm-sized lens comprises pixels with different heights from the backside of PolyPhenylene Sulfide (PPS) as the dielectric base. The antenna gain from the unit antenna of 4.5 cm × 4.5 cm is enhanced by 10 dB with the help of a compact dielectric lens of 7.5 cm × 7.5 cm at 24.5 GHz as the frequency of interest. The antenna design is verified by far-field measurement as well as near-field observation, including sensing a metal object behind a blocking wall by using an RF test bench. Moreover, antenna performance is understood by making a comparison with conventional designs of antennas in terms of directivity and physical sizes. Full article
Show Figures

Figure 1

34 pages, 11321 KiB  
Article
Optimized Machine Learning Model for Predicting Compressive Strength of Alkali-Activated Concrete Through Multi-Faceted Comparative Analysis
by Guo-Hua Fang, Zhong-Ming Lin, Cheng-Zhi Xie, Qing-Zhong Han, Ming-Yang Hong and Xin-Yu Zhao
Materials 2024, 17(20), 5086; https://doi.org/10.3390/ma17205086 - 18 Oct 2024
Cited by 3 | Viewed by 1389
Abstract
Alkali-activated concrete (AAC), produced from industrial by-products like fly ash and slag, offers a promising alternative to traditional Portland cement concrete by significantly reducing carbon emissions. Yet, the inherent variability in AAC formulations presents a challenge for accurately predicting its compressive strength using [...] Read more.
Alkali-activated concrete (AAC), produced from industrial by-products like fly ash and slag, offers a promising alternative to traditional Portland cement concrete by significantly reducing carbon emissions. Yet, the inherent variability in AAC formulations presents a challenge for accurately predicting its compressive strength using conventional approaches. To address this, we leverage machine learning (ML) techniques, which enable more precise strength predictions based on a combination of material properties and cement mix design parameters. In this study, we curated an extensive dataset comprising 1756 unique AAC mixtures to support robust ML-based modeling. Four distinct input variable schemes were devised to identify the optimal predictor set, and a comparative analysis was performed to evaluate their effectiveness. After this, we investigated the performance of several popular ML algorithms, including random forest (RF), adaptive boosting (AdaBoost), gradient boosting regression trees (GBRTs), and extreme gradient boosting (XGBoost). Among these, the XGBoost model consistently outperformed its counterparts. To further enhance the predictive accuracy of the XGBoost model, we applied four state-of-the-art optimization techniques: the Gray Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), beetle antennae search (BAS), and Bayesian optimization (BO). The optimized XGBoost model delivered superior performance, achieving a remarkable coefficient of determination (R2) of 0.99 on the training set and 0.94 across the entire dataset. Finally, we employed SHapely Additive exPlanations (SHAP) to imbue the optimized model with interpretability, enabling deeper insights into the complex relationships governing AAC formulations. Through the lens of ML, we highlight the benefits of the multi-faceted synergistic approach for AAC strength prediction, which combines careful input parameter selection, optimal hyperparameter tuning, and enhanced model interpretability. This integrated strategy improves both the robustness and scalability of the model, offering a clear and reliable prediction of AAC performance. Full article
Show Figures

Figure 1

12 pages, 3583 KiB  
Article
Smart Transfer Planer with Multiple Antenna Arrays to Enhance Low Earth Orbit Satellite Communication Ground Links
by Mon-Li Chang, Ding-Bing Lin, Hui-Tzu Rao, Hsuan-Yu Lin and Hsi-Tseng Chou
Electronics 2024, 13(17), 3581; https://doi.org/10.3390/electronics13173581 - 9 Sep 2024
Viewed by 1138
Abstract
In this study, we propose a smart transfer planer equipped with multiple antenna arrays to improve ground links for low Earth orbit (LEO) satellite communication. The STP features a symmetrical structure and is strategically placed on both ends of a window, serving both [...] Read more.
In this study, we propose a smart transfer planer equipped with multiple antenna arrays to improve ground links for low Earth orbit (LEO) satellite communication. The STP features a symmetrical structure and is strategically placed on both ends of a window, serving both indoor and outdoor environments. Using the window glass as a medium, energy transmission occurs through a coupling mechanism between the planers. The design focuses on large array antenna design, beamforming networks, and coupler design on both sides of the glass. Beamforming networks enable the indoor and outdoor antenna arrays to switch beams in various directions, optimizing high-gain antennas with narrow beamwidths. Through electromagnetic induction and filter couplers, a robust signal transmission channel is established between indoor and outdoor environments. This setup significantly enhances communication efficiency, particularly in non-line-of-sight environments. Full article
Show Figures

Figure 1

13 pages, 373 KiB  
Article
Ambient Backscatter-Based User Cooperation for mmWave Wireless-Powered Communication Networks with Lens Antenna Arrays
by Rongbin Guo, Rui Yin, Guan Wang, Congyuan Xu and Jiantao Yuan
Electronics 2024, 13(17), 3485; https://doi.org/10.3390/electronics13173485 - 2 Sep 2024
Cited by 1 | Viewed by 999
Abstract
With the rapid consumer adoption of mobile devices such as tablets and smart phones, tele-traffic has experienced a tremendous growth, making low-power technologies highly desirable for future communication networks. In this paper, we consider an ambient backscatter (AB)-based user cooperation (UC) scheme for [...] Read more.
With the rapid consumer adoption of mobile devices such as tablets and smart phones, tele-traffic has experienced a tremendous growth, making low-power technologies highly desirable for future communication networks. In this paper, we consider an ambient backscatter (AB)-based user cooperation (UC) scheme for mmWave wireless-powered communication networks (WPCNs) with lens antenna arrays. Firstly, we formulate an optimization problem to maximize the minimum rate of two users by jointly designing power and time allocation. Then, we introduce auxiliary variables and transform the original problem into a convex form. Finally, we propose an efficient algorithm to solve the transformed problem. Simulation results demonstrate that the proposed AB-based UC scheme outperforms the competing schemes, thus improving the fairness performance of throughput in WPCNs. Full article
Show Figures

Figure 1

13 pages, 9982 KiB  
Article
The Focusing Properties of a Modular All-Metal Lens in the Near-Field Region
by Qifei Zhang, Linyan Guo, Yunqing Li and Chen Wang
Sensors 2024, 24(16), 5092; https://doi.org/10.3390/s24165092 - 6 Aug 2024
Viewed by 1269
Abstract
This article proposes a modular and passive all-metal lens to achieve near-field focusing with adjustable focus. The proposed lens consists of all-metal units with the phase coverage range exceeding 360°, and the arrangement of units is guided by the phase compensation method. Specifically, [...] Read more.
This article proposes a modular and passive all-metal lens to achieve near-field focusing with adjustable focus. The proposed lens consists of all-metal units with the phase coverage range exceeding 360°, and the arrangement of units is guided by the phase compensation method. Specifically, using the strategy of module unit synthesis, the arrangement of lens units under different focuses can be assembled arbitrarily, which reduces the production costs by 39.3% and improves the freedom of lens design. The simulation and experimental results show that the lens exhibits excellent focusing properties and freely changes the position of the expected focus (0.30 m–0.75 m). Therefore, the modular all-metal lens designed in this article has the characteristics of high transparency and a high degree of freedom, which can provide low-cost and lightweight solutions for various applications in the field of antennas, such as near-field target detection, microwave imaging, biomedicine, and so on. Full article
Show Figures

Figure 1

14 pages, 5388 KiB  
Article
Additively-Manufactured Broadband Metamaterial-Based Luneburg Lens for Flexible Beam Scanning
by Xuanjing Li, Rui Feng, Quilin Tan, Jianjia Yi, Shixiong Wang, Feng He and Shah Nawaz Burokur
Materials 2024, 17(12), 2847; https://doi.org/10.3390/ma17122847 - 11 Jun 2024
Viewed by 2142
Abstract
Multi-beam microwave antennas have attracted enormous attention owing to their wide range of applications in communication systems. Here, we propose a broadband metamaterial-based multi-beam Luneburg lens-antenna with low polarization sensitivity. The lens is constructed from additively manufactured spherical layers, where the effective permittivity [...] Read more.
Multi-beam microwave antennas have attracted enormous attention owing to their wide range of applications in communication systems. Here, we propose a broadband metamaterial-based multi-beam Luneburg lens-antenna with low polarization sensitivity. The lens is constructed from additively manufactured spherical layers, where the effective permittivity of the constituting elements is obtained by adjusting the ratio of dielectric material to air. Flexible microstrip patch antennas operating at different frequencies are used as primary feeds illuminating the lens to validate the radiation features of the lens-antenna system. The proposed Luneburg lens-antenna achieves ±72° beam scanning angle over a broad frequency range spanning from 2 GHz to 8 GHz and presents a gain between 15.3 dBi and 22 dBi, suggesting potential applications in microwave- and millimeter-wave mobile communications, radar detection and remote sensing. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

Back to TopTop