Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (622)

Search Parameters:
Keywords = length calibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2466 KiB  
Article
A Capillary-Based Micro Gas Flow Measurement Method Utilizing Laminar Flow Regime
by Yuheng Zheng, Dailiang Xie, Zhengcheng Qin, Zhengwei Huang, Ya Xu, Da Wang and Hong Zheng
Appl. Sci. 2025, 15(15), 8593; https://doi.org/10.3390/app15158593 (registering DOI) - 2 Aug 2025
Abstract
Accurate micro gas flow measurement is critical for medical ventilator calibration, environmental gas monitoring, and semiconductor manufacturing. Laminar flowmeters are widely employed in micro gas flow measurement applications owing to their inherent advantages of high linearity, the absence of moving components, and a [...] Read more.
Accurate micro gas flow measurement is critical for medical ventilator calibration, environmental gas monitoring, and semiconductor manufacturing. Laminar flowmeters are widely employed in micro gas flow measurement applications owing to their inherent advantages of high linearity, the absence of moving components, and a broad measurement range. Nevertheless, due to the low measurement accuracy under micro gas flow caused by nonlinear errors and a relatively complex structure, traditional laminar flow measurement devices exhibit limitations in micro gas flow measurement scenarios. This study proposes a novel micro gas flow measurement method based on a single capillary laminar flow element, which simplifies the structure and enhances applicability in the field of micro gas flow. Through structural optimization with precise control of the capillary length–diameter ratios and theoretical error correction based on computational analysis, nonlinear errors were effectively reduced while improving the measurement accuracy in the field of micro gas flow. The proposed methodology was systematically validated through computational fluid dynamics simulations (ANSYS Fluent 2021 R1) and experimental investigations using a dedicated test platform. The experimental results show that the relative error of the measurement system within the full measurement range is less than ±0.6% (1–10 cm3/min; cm3/min means cubic centimeter per minute), and its accuracy is superior to 1% of reading (1% Rd) or 1.5% of reading (1.5% Rd) of conventional laminar flowmeters. The fitting curve of the flow rate versus the pressure difference derived from the measurement results maintains an excellent linear correlation (R2 > 0.99), thus confirming that this method has practical application value in the field of micro gas flow measurement. Full article
Show Figures

Figure 1

27 pages, 2327 KiB  
Article
Experimental Study of Ambient Temperature Influence on Dimensional Measurement Using an Articulated Arm Coordinate Measuring Machine
by Vendula Samelova, Jana Pekarova, Frantisek Bradac, Jan Vetiska, Matej Samel and Robert Jankovych
Metrology 2025, 5(3), 45; https://doi.org/10.3390/metrology5030045 (registering DOI) - 1 Aug 2025
Abstract
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute [...] Read more.
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute Arm 8312. The experiment was carried out in a laboratory setting simulating typical shop floor conditions through controlled temperature changes in the range of approximately 20–31 °C. A calibrated steel gauge block was used as a reference standard, allowing separation of the influence of the measuring system from that of the measured object. The results showed that the gauge block length changed in line with the expected thermal expansion, while the articulated arm coordinate measuring machine exhibited only a minor residual thermal drift and stable performance. The experiment also revealed a constant measurement offset of approximately 22 µm, likely due to calibration deviation. As part of the study, an uncertainty budget was developed, taking into account all relevant sources of influence and enabling a more realistic estimation of accuracy under operational conditions. The study confirms that modern carbon composite articulated arm coordinate measuring machines with integrated compensation can maintain stable measurement behavior even under fluctuating temperatures in controlled environments. Full article
Show Figures

Figure 1

13 pages, 2541 KiB  
Article
Multiantenna Synthetic Interference Technology Using Phase Comparison Method
by Xin Zhou, Mengxia Yu and Maoyan Wang
Aerospace 2025, 12(8), 671; https://doi.org/10.3390/aerospace12080671 - 27 Jul 2025
Viewed by 298
Abstract
Based on the theoretical framework of the phase comparison method and the computational analysis of the interference model calculation analysis, this paper designs, implements, establishes, calibrates, and verifies an interference experimental platform. The proposed methodology validates the effectiveness and practical feasibility of multiantenna [...] Read more.
Based on the theoretical framework of the phase comparison method and the computational analysis of the interference model calculation analysis, this paper designs, implements, establishes, calibrates, and verifies an interference experimental platform. The proposed methodology validates the effectiveness and practical feasibility of multiantenna synthetic interference technology in real-world applications. Experimental results demonstrate that the developed system can achieve flexible and arbitrary interference angles with desired distortion characteristics through precise amplitude–phase modulation, enabling dynamic manipulation of phase plane angles. Furthermore, the system successfully synthesizes false target positions at distances exceeding five times the baseline length from the jamming platform center. Both mathematical computations and experimental validations confirm that this multiantenna synthetic interference technology represents an advanced electromagnetic countermeasure characterized by two-dimensional planar interference coverage and robust phase parameter tolerance, while also enabling artificial angular glint generation. This technology exhibits significant potential for practical engineering applications. Full article
Show Figures

Figure 1

18 pages, 12946 KiB  
Article
High-Resolution 3D Reconstruction of Individual Rice Tillers for Genetic Studies
by Jiexiong Xu, Jiyoung Lee, Gang Jiang and Xiangchao Gan
Agronomy 2025, 15(8), 1803; https://doi.org/10.3390/agronomy15081803 - 25 Jul 2025
Viewed by 165
Abstract
The architecture of rice tillers plays a pivotal role in yield potential, yet conventional phenotyping methods have struggled to capture these intricate three-dimensional (3D) structures with high fidelity. In this study, a 3D model reconstruction method was developed specifically for rice tillers to [...] Read more.
The architecture of rice tillers plays a pivotal role in yield potential, yet conventional phenotyping methods have struggled to capture these intricate three-dimensional (3D) structures with high fidelity. In this study, a 3D model reconstruction method was developed specifically for rice tillers to overcome the challenges posed by their slender, feature-poor morphology in multi-view stereo-based 3D reconstruction. By applying strategically designed colorful reference markers, high-resolution 3D tiller models of 231 rice landraces were reconstructed. Accurate phenotyping was achieved by introducing ScaleCalculator, a software tool that integrated depth images from a depth camera to calibrate the physical sizes of the 3D models. The high efficiency of the 3D model-based phenotyping pipeline was demonstrated by extracting the following seven key agronomic traits: flag leaf length, panicle length, first internode length below the panicle, stem length, flag leaf angle, second leaf angle from the panicle, and third leaf angle. Genome-wide association studies (GWAS) performed with these 3D traits identified numerous candidate genes, nine of which had been previously confirmed in the literature. This work provides a 3D phenomics solution tailored for slender organs and offers novel insights into the genetic regulation of complex morphological traits in rice. Full article
Show Figures

Figure 1

21 pages, 1844 KiB  
Article
Fast, Simple and Accurate Method for Simultaneous Determination of α-Lipoic Acid and Selected Thiols in Human Saliva by Capillary Electrophoresis with UV Detection and pH-Mediated Sample Stacking
by Urszula Sudomir, Justyna Piechocka, Rafał Głowacki and Paweł Kubalczyk
Molecules 2025, 30(15), 3129; https://doi.org/10.3390/molecules30153129 - 25 Jul 2025
Viewed by 245
Abstract
This report presents the first method for simultaneous determination of the 2-S-lepidinium derivatives of total α-lipoic acid (LA), homocysteine (Hcy), cysteinylglycine (CysGly), and cysteine (Cys) in human saliva, using capillary electrophoresis with pH-mediated sample stacking and ultraviolet detection (CE-UV) at 355 [...] Read more.
This report presents the first method for simultaneous determination of the 2-S-lepidinium derivatives of total α-lipoic acid (LA), homocysteine (Hcy), cysteinylglycine (CysGly), and cysteine (Cys) in human saliva, using capillary electrophoresis with pH-mediated sample stacking and ultraviolet detection (CE-UV) at 355 nm. Electrophoretic separation is carried out at 20 kV and 25 °C using a standard fused silica capillary (effective length 91.5 cm, inner diameter 75 µm). The background electrolyte consists of 0.5 mol/L lithium acetate buffer, adjusted to pH 3.5 with 0.5 mol/L acetic acid. The limit of quantification was determined to be 1 µmol/L for LA and 0.17 µmol/L for Hcy, 0.11 µmol/L for CysGly, and 0.10 µmol/L for Cys in saliva samples. Calibration curves demonstrated linearity over the concentration range of 3 to 30 µmol/L for all analytes. Method precision did not exceed 4.7%, and accuracy ranged from 87.9% to 114.0%. The developed method was successfully applied to saliva samples from eleven apparently healthy volunteers to determine the content of LA, Hcy, CysGly, and Cys. The Hcy, CysGly, and Cys concentrations ranged from 0.55 to 13.76 µmol/L, 0.89 to 9.29 µmol/L, and 1.73 to 12.99 µmol/L, respectively. No LA-derived peaks were detected in the native saliva samples. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

39 pages, 4364 KiB  
Review
Bond Behavior of Glass Fiber-Reinforced Polymer (GFRP) Bars Embedded in Concrete: A Review
by Saad Saad and Maria Anna Polak
Materials 2025, 18(14), 3367; https://doi.org/10.3390/ma18143367 - 17 Jul 2025
Viewed by 282
Abstract
Glass Fiber-Reinforced Polymer (GFRP) bars are becoming increasingly common in structural engineering applications due to their superior material properties, mainly their resistance to corrosion due to their metallic nature in comparison to steel reinforcement and their improved durability in alkaline environments compared to [...] Read more.
Glass Fiber-Reinforced Polymer (GFRP) bars are becoming increasingly common in structural engineering applications due to their superior material properties, mainly their resistance to corrosion due to their metallic nature in comparison to steel reinforcement and their improved durability in alkaline environments compared to CFRP and BFRP reinforcement. However, GFRP bars also suffer from a few limitations. One of the main issues that affects the performance of GFRP reinforcing bars is their bond with concrete, which may differ from the bond between traditional steel bars and concrete. However, despite the wide attention of researchers, there has not been a critical review of the recent research progress on bond behavior between GFRP bars and concrete. The objective of this paper is to provide an overview of the current state of research on bond in GFRP-reinforced concrete in an attempt to systematize the existing scientific knowledge. The study summarizes experimental investigations that directly measure bond strength and investigates the different factors that influence it. Additionally, an overview of the analytical and empirical models used to simulate bond behavior is then presented. The findings indicate the dependence of the bond on several factors that include bar diameter, bar surface, concrete strength, and embedment length. Additionally, it was concluded that both traditional and more recent bond models do not explicitly account for the effect of different factors, which highlights the need for improved bond models that do not require calibration with experimental tests. Full article
Show Figures

Figure 1

22 pages, 3480 KiB  
Article
Comprehensive DEM Calibration Using Face Central Composite Design and Response Surface Methodology for Rice–PLA Interactions in Enhanced Bucket Elevator Performance
by Pirapat Arunyanart, Nithitorn Kongkaew and Supattarachai Sudsawat
AgriEngineering 2025, 7(7), 240; https://doi.org/10.3390/agriengineering7070240 - 17 Jul 2025
Viewed by 342
Abstract
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere [...] Read more.
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere clusters to accurately represent their physical dimensions (6.5 mm length), while the Hertz–Mindlin contact model provided the theoretical framework for particle interactions. The calibration process employed a multi-phase experimental design integrating Plackett–Burmann screening, steepest ascent method, and Face Central Composite Design to systematically identify and optimize critical micro-mechanical parameters for agricultural material handling. Statistical analysis revealed the coefficient of static friction between rice and PLA as the dominant factor, contributing 96.49% to system performance—significantly higher than previously recognized in conventional agricultural processing designs. Response Surface Methodology generated predictive models achieving over 90% correlation with experimental results from 3D-printed PLA shear box tests. Validation through comparative velocity profile analysis during bucket elevator discharge operations confirmed excellent agreement between simulated and experimental behavior despite a 20% discharge velocity variance that warrants further investigation into agricultural material-specific phenomena. The established parameter set enables accurate virtual prototyping of sustainable agricultural handling equipment, offering post-harvest processing engineers a powerful tool for optimizing bulk material handling systems with reduced environmental impact. This integrated approach bridges fundamental agricultural material properties with sustainable engineering design principles, providing a scalable framework applicable across multiple agricultural processing operations using biodegradable components. Full article
Show Figures

Graphical abstract

14 pages, 1657 KiB  
Article
Assessment of Maximum Torque in Implant-Supported Prostheses: A Pilot Laboratory Study
by Mahoor Kaffashian, Seyedfarzad Fazaeli, Joana Fialho, Filipe Araújo, Patrícia Fonseca and André Correia
Prosthesis 2025, 7(4), 83; https://doi.org/10.3390/prosthesis7040083 - 15 Jul 2025
Viewed by 243
Abstract
Background/Objectives: the precise application of torque during prosthetic screw tightening is essential to the long-term success and mechanical stability of implant-supported restorations. This study aimed to evaluate the influence of practitioner experience, glove material, screwdriver length, and hand moisture on the maximum torque [...] Read more.
Background/Objectives: the precise application of torque during prosthetic screw tightening is essential to the long-term success and mechanical stability of implant-supported restorations. This study aimed to evaluate the influence of practitioner experience, glove material, screwdriver length, and hand moisture on the maximum torque value (MTV) generated during manual tightening. Methods: thirty participants, comprising 10 experienced professors and 20 senior dental students, performed tightening tasks under six hand conditions (nitrile gloves, latex gloves, and bare hands, each in dry and wet environments) using two screwdriver lengths (21 mm and 27 mm). The torque values were measured using a calibrated digital torque meter, and the results were analyzed using a linear mixed model. Results: professors applied significantly higher torque than students (16.92 Ncm vs. 15.03 Ncm; p = 0.008). Nitrile gloves yielded the highest torque (17.11 Ncm), surpassing bare hands significantly (p = 0.003). No statistically significant differences were found for screwdriver length (p = 0.12) or hand moisture (p = 0.11). Conclusions: these findings underscore the importance of clinical proficiency and glove material in torque delivery, providing evidence-based insights to enhance procedural reliability and training standards in implant prosthodontics. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

23 pages, 3747 KiB  
Article
Design Optimization and Performance Evaluation of an Automated Pelleted Feed Trough for Sheep Feeding Management
by Xinyu Gao, Chuanzhong Xuan, Jianxin Zhao, Yanhua Ma, Tao Zhang and Suhui Liu
Agriculture 2025, 15(14), 1487; https://doi.org/10.3390/agriculture15141487 - 10 Jul 2025
Viewed by 300
Abstract
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. [...] Read more.
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. The uniformity of pellet flow is a critical factor in the study of automatic feeding troughs, and optimizing the movement characteristics of the pellets contributes to enhanced operational efficiency of the equipment. However, existing research often lacks a systematic analysis of the pellet size characteristics (such as diameter and length) and flow behavior differences in pellet feed, which limits the practical application of feed troughs. This study optimized the angle of repose and structural parameters of the feeding trough using Matlab simulations and discrete element modeling. It explored how the stock bin slope and baffle opening height influence pellet feed flow characteristics. A programmable logic controller (PLC) and human–machine interface (HMI) were used for precise timing and quantitative feeding, validating the design’s practicality. The results indicated that the Matlab method could calibrate the Johnson–Kendall–Roberts (JKR) model’s surface energy. The optimal slope was found to be 63°, with optimal baffle heights of 28 mm for fine and medium pellets and 30 mm for coarse pellets. The experimental metrics showed relative errors of 3.5%, 2.8%, and 4.2% (for average feed rate) and 8.2%, 7.3%, and 1.2% (for flow time). The automatic feeding trough showed a feeding error of 0.3% with PLC-HMI. This study’s optimization of the automatic feeding trough offers a strong foundation and guidance for efficient, accurate pellet feed distribution. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 5006 KiB  
Article
Time-Domain ADC and Security Co-Design for SiP-Based Wireless SAW Sensor Readers
by Zhen Mao, Bing Li, Linning Peng and Jinghe Wei
Sensors 2025, 25(14), 4308; https://doi.org/10.3390/s25144308 - 10 Jul 2025
Viewed by 298
Abstract
The signal-processing architecture of passive surface acoustic wave (SAW) sensors presents significant implementation challenges due to its radar-like operational principle and the inherent complexity of discrete component-based hardware design. While System-in-Package (SiP) has demonstrated remarkable success in miniaturizing electronic systems for smartphones, automotive [...] Read more.
The signal-processing architecture of passive surface acoustic wave (SAW) sensors presents significant implementation challenges due to its radar-like operational principle and the inherent complexity of discrete component-based hardware design. While System-in-Package (SiP) has demonstrated remarkable success in miniaturizing electronic systems for smartphones, automotive electronics, and IoT applications, its potential for revolutionizing SAW sensor interrogator design remains underexplored. This paper presents a novel architecture that synergistically combines time-domain ADC design with SiP-based miniaturization to achieve unprecedented simplification of SAW sensor readout systems. The proposed time-domain ADC incorporates an innovative delay chain calibration methodology that integrates physical unclonable function (PUF) principles during time-to-digital converter (TDC) characterization, enabling the simultaneous generation of unique system IDs. The experimental results demonstrate that the integrated security mechanism provides variable-length bit entropy for device authentication, and has a reliability of 97.56 and uniqueness of 49.43, with 53.28 uniformity, effectively addressing vulnerability concerns in distributed sensor networks. The proposed SiP is especially suitable for space-constrained IoT applications requiring robust physical-layer security. This work advances the state-of-the-art wireless sensor interfaces by demonstrating how time-domain signal processing and advanced packaging technologies can be co-optimized to address performance and security challenges in next-generation sensor systems. Full article
Show Figures

Figure 1

18 pages, 3007 KiB  
Article
Enhancing Reservoir Modeling via the Black Oil Model for Horizontal Wells: South Rumaila Oilfield, Iraq
by Dhyaa H. Haddad, Sameera Hamd-Allah and Mohamed Reda
Resources 2025, 14(7), 110; https://doi.org/10.3390/resources14070110 - 9 Jul 2025
Viewed by 559
Abstract
Horizontal wells have revolutionized hydrocarbon production by enhancing recovery efficiency and reducing environmental impact. This paper presents an enhanced Black Oil Model simulator, written in Visual Basic, for three-dimensional two-phase (oil and water) flow through porous media. Unlike most existing tools, this simulator [...] Read more.
Horizontal wells have revolutionized hydrocarbon production by enhancing recovery efficiency and reducing environmental impact. This paper presents an enhanced Black Oil Model simulator, written in Visual Basic, for three-dimensional two-phase (oil and water) flow through porous media. Unlike most existing tools, this simulator is customized for horizontal well modeling and calibrated using extensive historical data from the South Rumaila Oilfield, Iraq. The simulator first achieves a strong match with historical pressure data (1954–2004) using vertical wells, with an average deviation of less than 5% from observed pressures, and is then applied to forecast the performance of hypothetical horizontal wells (2008–2011). The results validate the simulator’s reliability in estimating bottom-hole pressure (e.g., ±3% accuracy for HRU1 well) and water–oil ratios (e.g., WOR reduction of 15% when increasing horizontal well length from 1000 m to 2000 m). Notably, the simulator demonstrated that doubling the horizontal well length reduced WOR by 15% while increasing bottom-hole pressure by only 2%, highlighting the efficiency of longer wells in mitigating water encroachment. This work contributes to improved reservoir management by enabling efficient well placement strategies and optimizing extraction planning, thereby promoting both economic and resource-efficient hydrocarbon recovery. Full article
Show Figures

Figure 1

19 pages, 1145 KiB  
Article
Speed Prediction Models for Tangent Segments Between Horizontal Curves Using Floating Car Data
by Giulia Del Serrone and Giuseppe Cantisani
Vehicles 2025, 7(3), 68; https://doi.org/10.3390/vehicles7030068 - 5 Jul 2025
Viewed by 514
Abstract
The integration of connected autonomous vehicles (CAVs), advanced driver assistance systems (ADAS), and conventional vehicles necessitates the development of robust methodologies to enhance traffic efficiency and ensure safety across heterogeneous traffic streams. A comprehensive understanding of vehicle interactions and operating speed variability is [...] Read more.
The integration of connected autonomous vehicles (CAVs), advanced driver assistance systems (ADAS), and conventional vehicles necessitates the development of robust methodologies to enhance traffic efficiency and ensure safety across heterogeneous traffic streams. A comprehensive understanding of vehicle interactions and operating speed variability is essential to support informed decision-making in traffic management and infrastructure design. This study presents operating speed models aimed at estimating the 85th percentile speed (V85) on straight road segments, utilizing floating car data (FCD) for both calibration and validation purposes. The dataset encompasses approximately 2000 km of the Italian road network, characterized by diverse geometric features. Speed observations were analyzed under three traffic conditions: general traffic, free-flow, and free-flow with dry pavement. Results indicate that free-flow conditions improve the model’s explanatory power, while dry pavement conditions introduce greater speed variability. Initial models based exclusively on geometric parameters exhibited limited predictive accuracy. However, the inclusion of posted speed limits significantly enhanced model performance. The most influential predictors identified were the V85 on the preceding curve and the length of the straight segment. These findings provide empirical evidence to inform road safety evaluations and geometric design practices, offering insights into driver behavior in mixed-traffic environments. The proposed model supports the development of data-driven strategies for the seamless integration of automated and non-automated vehicles. Full article
Show Figures

Figure 1

20 pages, 3583 KiB  
Article
Bridge Cable Performance Warning Method Based on Temperature and Displacement Monitoring Data
by Yan Shi, Yan Wang, Lu-Nan Wang, Wei-Nan Wang and Tao-Yuan Yang
Buildings 2025, 15(13), 2342; https://doi.org/10.3390/buildings15132342 - 3 Jul 2025
Viewed by 312
Abstract
Cable-stayed bridge cables experience significant tension over time, making the bridge cables prone to corrosion and fatigue. The direct measurement of cable length is not a standard capability in most current structural health monitoring systems, nor is long-term monitoring of cable changes. Bridge [...] Read more.
Cable-stayed bridge cables experience significant tension over time, making the bridge cables prone to corrosion and fatigue. The direct measurement of cable length is not a standard capability in most current structural health monitoring systems, nor is long-term monitoring of cable changes. Bridge displacements are caused by both dynamic loads (wind and traffic) and quasi-static factors, primarily temperature. This study filtered out dynamic responses by the three-sigma rule, multiple linear regression, interpolation method, and not-a-number calibration. Monitoring data were used to analyze the bridge’s thermal field distribution and the time-dependent variation of tower displacements. Correlation analysis revealed a strong linear correlation between air temperature and quasi-static tower-girder displacements. This research proposes to use the tower-girder distance (effective cable length) to represent the length of the cable, take the thermal expansion coefficient of the effective length of the cable as the quantitative index for long-term monitoring, and take its error as the performance early warning indicator. This method effectively monitors cable health and provides damage warnings. Full article
Show Figures

Figure 1

23 pages, 2289 KiB  
Article
Experimental Study on Influence of Height of Full-Width Plate Weirs on Flow Behavior, Discharge, and Energy Dissipation
by Ali Mahdian Khalili, Hossein Sohrabzadeh Anzani, Mehdi Hamidi and Sameh Ahmed Kantoush
Hydrology 2025, 12(7), 176; https://doi.org/10.3390/hydrology12070176 - 1 Jul 2025
Viewed by 328
Abstract
The role of weirs in flow regulation in water resources infrastructure and flood control is well known. In the meantime, the study of full-width plate weirs (FWPW), due to their wide application and lacking findings, is of great importance. In this study, experimental [...] Read more.
The role of weirs in flow regulation in water resources infrastructure and flood control is well known. In the meantime, the study of full-width plate weirs (FWPW), due to their wide application and lacking findings, is of great importance. In this study, experimental models were conducted at Babol Noshirvani University of Technology to investigate flow passing through FWPWs with five different heights (p = 0.07, 0.09, 0.11, and 0.15 m) under eight discharge conditions (Q = 1.4 to 6.3 L/s). The experiments were carried out in a flume measuring 4 m in length, 0.6 m in width, and 0.2 m in height. The discharges were measured with a calibrated flowmeter, and the water depths upstream of the weir (h) and the tailwater depths (h1) were measured with a point gauge with an accuracy of 0.1 mm. For each test, the discharge coefficient (Cd), relative residual energy (E1/E0), and relative energy dissipation ((E0E1)/E0) were computed. The proposed equation for calculating discharge achieved good accuracy with RMSE = 0.0002, MAE=0.0002, and R2 = 0.997. Results show a reducing trend of Cd by increasing h/P, which is compatible with previous results. It was observed that at a constant discharge, relative residual energy reduces by an average of 47% by increasing weir height, and at a constant P, increasing flow discharge increases it a little. A novel accurate equation for relative energy dissipation in FWPW was proposed based on h/P that provided specific constant coefficients for each p value. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

12 pages, 2061 KiB  
Article
A Tube Furnace Design for the Oxygen Annealing of a REBCO Superconducting Joint
by Zili Zhang, Chuangan Liu, Yang Gao, Hongli Suo, Lei Wang, Shunzhong Chen, Jianhua Liu and Qiuliang Wang
Materials 2025, 18(13), 3053; https://doi.org/10.3390/ma18133053 - 27 Jun 2025
Viewed by 328
Abstract
In this study, we investigated how to design a tube furnace for the oxygen annealing of a REBa2Cu3O7−x (REBCO, where RE = rare earth) superconducting joint. We confirmed the annealing temperature threshold of REBCO tape Ic degradation, [...] Read more.
In this study, we investigated how to design a tube furnace for the oxygen annealing of a REBa2Cu3O7−x (REBCO, where RE = rare earth) superconducting joint. We confirmed the annealing temperature threshold of REBCO tape Ic degradation, which was 175C. A heat exchange model that included REBCO tape and a tube furnace was established by using this temperature as the boundary condition. At the same time, the temperature distribution of the REBCO tape in a commercial tube furnace was measured for the calibration of the heat exchange model. The feasibility and accuracy of the model were confirmed by comparing the real measurements and the simulation results. We then optimized the furnace design based on the model according to two criteria: a 20 mm length of REBCO tape should be kept at high temperatures for the oxygen annealing of REBCO joints and the length of tape at temperatures over the Ic degradation temperature should be as short as possible. The results of this furnace design investigation could help fabricate shorter REBCO superconducting joints, making the magnet more compact and decreasing the length of the Cu stabilizer layer to be removed. Full article
Show Figures

Figure 1

Back to TopTop