Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = leaky junction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3219 KB  
Article
Caco2/HT-29 In Vitro Cell Co-Culture: Barrier Integrity, Permeability, and Tight Junctions’ Composition During Progressive Passages of Parental Cells
by Elena Donetti, Paola Bendinelli, Margherita Correnti, Elena Gammella, Stefania Recalcati and Anita Ferraretto
Biology 2025, 14(3), 267; https://doi.org/10.3390/biology14030267 - 6 Mar 2025
Cited by 1 | Viewed by 1953
Abstract
Epithelial linings are crucial for the maintenance of physiological barriers. The intestinal epithelial barrier (IEB) consists of enterocytes through tight junctions and mucus-secreting cells and can undergo physiological modifications throughout life. To reproduce as closely as possible the IEB main features over time, [...] Read more.
Epithelial linings are crucial for the maintenance of physiological barriers. The intestinal epithelial barrier (IEB) consists of enterocytes through tight junctions and mucus-secreting cells and can undergo physiological modifications throughout life. To reproduce as closely as possible the IEB main features over time, in vitro co-cultures of Caco2/HT-29 70/30 formed by parental Caco2 and HT-29 cells sub-cultivated for more than 40 passages were set up. The measurements of the transepithelial electrical resistance (TEER) identified two populations: physiological TEER co-cultures (PC) with values > 50 Ωcm2 formed by parental cells with fewer than 40 passages, and leaky TEER co-cultures (LC) with values < 50 Ωcm2 formed by parental cells with more than 40 passages. In LC, paracellular permeability increased in parallel. By immunofluorescence and Western blot analysis, an increase in claudin 2 was observed in LC vs. PC, with no differences in occludin expression. MUC-2 immunoreactivity was stronger in PC than in LC. LC also showed an enhanced vulnerability to TNFα+IFN-γ. These results reproduce the main morpho-functional modifications reported in the human leaky/aged gut and support the usefulness of our in vitro cell model for studying the molecular processes underlying these modifications and testing drug/nutraceutical treatments to ameliorate leaky gut aging. Full article
Show Figures

Figure 1

16 pages, 1141 KB  
Review
Towards Clinical Application: Calcium Waves for In Vitro Qualitative Assessment of Propagated Primary Human Corneal Endothelial Cells
by Xiao Yu Ng, Gary Peh, Fernando Morales-Wong, Rami Gabriel, Poh Loong Soong, Kun-Han Lin and Jodhbir S. Mehta
Cells 2024, 13(23), 2012; https://doi.org/10.3390/cells13232012 - 5 Dec 2024
Cited by 1 | Viewed by 1397
Abstract
Corneal endothelium cells (CECs) regulate corneal hydration between the leaky barrier of the corneal endothelium and the ionic pumps on the surface of CECs. As CECs do not regenerate, loss of CECs leads to poor vision and corneal blindness. Corneal transplant is the [...] Read more.
Corneal endothelium cells (CECs) regulate corneal hydration between the leaky barrier of the corneal endothelium and the ionic pumps on the surface of CECs. As CECs do not regenerate, loss of CECs leads to poor vision and corneal blindness. Corneal transplant is the only treatment option; however, there is a severe shortage of donor corneas globally. Cell therapy using propagated primary human CECs is an alternative approach to corneal transplantations, and proof of functionality is crucial for validating such CECs. Expression markers like Na-K-ATPase and ZO-1 are typical but not specific to CECs. Assessing the barrier function of the expanded CECs via electrical resistance (i.e., TEER and Ussing’s chamber) involves difficult techniques and is thus impractical for clinical application. Calcium has been demonstrated to affect the paracellular permeability of the corneal endothelium. Its absence alters morphology and disrupts apical junctions in bovine CECs, underscoring its importance. Calcium signaling patterns such as calcium waves affect the rate of wound healing in bovine CECs. Therefore, observing calcium waves in expanded CECs could provide valuable insights into their health and functional integrity. Mechanical or chemical stimulations, combined with Ca2+-sensitive fluorescent dyes and time-lapse imaging, can be used to visualize these waves, which could potentially be used to qualify expanded CECs. Full article
Show Figures

Figure 1

26 pages, 8450 KB  
Article
Lymphatic Vessel Remodeling in the Hearts of Ang II-Treated Obese db/db Mice as an Integral Component of Cardiac Remodeling
by Aleksandra Flaht-Zabost, Elżbieta Czarnowska, Ewa Jankowska-Steifer, Justyna Niderla-Bielińska, Tymoteusz Żera, Aneta Moskalik, Mateusz Bartkowiak, Krzysztof Bartkowiak, Mateusz Tomczyk, Barbara Majchrzak, Daria Kłosińska, Hanna Kozłowska, Bogdan Ciszek, Magdalena Gewartowska, Agnieszka Cudnoch-Jędrzejewska and Anna Ratajska
Appl. Sci. 2024, 14(19), 8675; https://doi.org/10.3390/app14198675 - 26 Sep 2024
Viewed by 1221
Abstract
Cardiac lymphatic vessels (LyVs) are suggested to be important players in cardiovascular disease-associated myocardial remodeling. However, there is a gap in the knowledge of whether LyV remodeling is an integral component of cardiac remodeling, especially in obesity associated with other comorbidities, including increased [...] Read more.
Cardiac lymphatic vessels (LyVs) are suggested to be important players in cardiovascular disease-associated myocardial remodeling. However, there is a gap in the knowledge of whether LyV remodeling is an integral component of cardiac remodeling, especially in obesity associated with other comorbidities, including increased levels of circulating angiotensin II (Ang II). We studied the structural alterations in the myocardium and LyVs in Ang II-treated db/db mice compared with db/db mice and Ang II-treated wild-type mice with histopathological imaging methods, confocal microscopy, ultrastructural morphology, and morphometric analysis. We demonstrated that Ang II-treated db/db mice exhibited significantly increased fibrosis, cardiomyocyte hypertrophy, and local edema compared with untreated db/db mice; however, the cardiomyocyte hypertrophy was similar to that in Ang II-treated control mice. The decreased density of the LyVs and their wall shape alterations, with disorganized anchoring filaments, widened junctional gaps, decreased numbers of cytoplasmic vesicles indicative of a leaky phenotype, and increased basement membrane (BM) thickness, were observed in Ang II-treated db/db mice compared with Ang II-treated controls. Our findings revealed a structural basis for intensive LyV remodeling in association with cardiac remodeling in obesity. Full article
Show Figures

Figure 1

15 pages, 3049 KB  
Article
Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) Protects against Binge Alcohol-Mediated Gut and Brain Injury
by Bipul Ray, Wiramon Rungratanawanich, Karli R. LeFort, Saravana Babu Chidambaram and Byoung-Joon Song
Cells 2024, 13(11), 927; https://doi.org/10.3390/cells13110927 - 28 May 2024
Cited by 7 | Viewed by 3038
Abstract
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) metabolizes acetaldehyde to acetate. People with ALDH2 deficiency and Aldh2-knockout (KO) mice are more susceptible to alcohol-induced tissue damage. However, the underlying mechanisms behind ALDH2-related gut-associated brain damage remain unclear. Age-matched young female Aldh2-KO and C57BL/6J wild-type [...] Read more.
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) metabolizes acetaldehyde to acetate. People with ALDH2 deficiency and Aldh2-knockout (KO) mice are more susceptible to alcohol-induced tissue damage. However, the underlying mechanisms behind ALDH2-related gut-associated brain damage remain unclear. Age-matched young female Aldh2-KO and C57BL/6J wild-type (WT) mice were gavaged with binge alcohol (4 g/kg/dose, three doses) or dextrose (control) at 12 h intervals. Tissues and sera were collected 1 h after the last ethanol dose and evaluated by histological and biochemical analyses of the gut and hippocampus and their extracts. For the mechanistic study, mouse neuroblast Neuro2A cells were exposed to ethanol with or without an Aldh2 inhibitor (Daidzin). Binge alcohol decreased intestinal tight/adherens junction proteins but increased oxidative stress-mediated post-translational modifications (PTMs) and enterocyte apoptosis, leading to elevated gut leakiness and endotoxemia in Aldh2-KO mice compared to corresponding WT mice. Alcohol-exposed Aldh2-KO mice also showed higher levels of hippocampal brain injury, oxidative stress-related PTMs, and neuronal apoptosis than the WT mice. Additionally, alcohol exposure reduced Neuro2A cell viability with elevated oxidative stress-related PTMs and apoptosis, all of which were exacerbated by Aldh2 inhibition. Our results show for the first time that ALDH2 plays a protective role in binge alcohol-induced brain injury partly through the gut–brain axis, suggesting that ALDH2 is a potential target for attenuating alcohol-induced tissue injury. Full article
(This article belongs to the Topic Animal Models of Human Disease 2.0)
Show Figures

Figure 1

25 pages, 1210 KB  
Review
Systematic-Narrative Hybrid Literature Review: Crosstalk between Gastrointestinal Renin–Angiotensin and Dopaminergic Systems in the Regulation of Intestinal Permeability by Tight Junctions
by Nadia Khan, Magdalena Kurnik-Łucka, Gniewomir Latacz and Krzysztof Gil
Int. J. Mol. Sci. 2024, 25(10), 5566; https://doi.org/10.3390/ijms25105566 - 20 May 2024
Cited by 2 | Viewed by 2159
Abstract
In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin–angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) [...] Read more.
In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin–angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin–angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin–angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin–angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin–angiotensin and dopaminergic systems. Full article
(This article belongs to the Special Issue Role of Dopamine in Health and Disease: Biological Aspect 2.0)
Show Figures

Figure 1

17 pages, 3708 KB  
Article
Efficacy of Laurus nobilis L. for Tight Junction Protein Imbalance in Leaky Gut Syndrome
by Yelim Shin, Jiyeon Kim, Youngcheon Song, Sangbum Kim and Hyunseok Kong
Nutrients 2024, 16(9), 1250; https://doi.org/10.3390/nu16091250 - 23 Apr 2024
Cited by 1 | Viewed by 1928
Abstract
Laurus nobilis L. (LNL) belongs to the evergreen Lauraceae family. It is native to the Mediterranean and widely distributed in the southern United States, Europe, and the Middle East. LNL is rich in active ingredients of the sesquiterpene lactone series and has been [...] Read more.
Laurus nobilis L. (LNL) belongs to the evergreen Lauraceae family. It is native to the Mediterranean and widely distributed in the southern United States, Europe, and the Middle East. LNL is rich in active ingredients of the sesquiterpene lactone series and has been reported to have antioxidant, anti-inflammatory, and anticancer effects. And parthenolide, known as a sesquiterpene lactone-based compound, inhibits the activation of lipopolysaccharide-binding protein (LBP), which is a major trigger for leaky gut syndrome. However, the effectiveness of LNL in improving the state of increased intestinal permeability has not yet been reported. Therefore, we demonstrated the efficacy of LNL, which is known to be rich in parthenolide, in improving intestinal permeability induced by IL-13. We investigated the improvement in permeability and analyzed major tight junction proteins (TJs), permeability-related mechanisms, weight and disease activity indices, and corresponding cytokine mechanisms. LNL maintained TJs homeostasis and clinical improvement by reducing increased claudin-2 through the inhibition of IL-13/STAT6 activation in TJ-damaged conditions. These results are expected to be effective in preventing leaky gut syndrome through the TJ balance and to further improve intestinal-related diseases, such as inflammatory bowel disease. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

17 pages, 756 KB  
Article
A New Type of Si-Based MOSFET for Radiation Reinforcement
by Weifeng Liu, Zhirou Zhou, Dong Zhang and Jianjun Song
Micromachines 2024, 15(2), 229; https://doi.org/10.3390/mi15020229 - 31 Jan 2024
Cited by 2 | Viewed by 1534
Abstract
This paper thoroughly analyses the role of drift in the sensitive region in the single-event effect (SEE), with the aim of enhancing the single-particle radiation resistance of N-type metal-oxide semiconductor field-effect transistors (MOSFETs). It proposes a design for a Si-based device structure that [...] Read more.
This paper thoroughly analyses the role of drift in the sensitive region in the single-event effect (SEE), with the aim of enhancing the single-particle radiation resistance of N-type metal-oxide semiconductor field-effect transistors (MOSFETs). It proposes a design for a Si-based device structure that extends the lightly doped source–drain region of the N-channel metal-oxide semiconductor (NMOS), thereby moderating the electric field of the sensitive region. This design leads to a 15.69% decrease in the charge collected at the leaky end of the device under the standard irradiation conditions. On this basis, a device structure is further proposed to form a composite metal-oxide semiconductor (MOS) by connecting a pn junction at the lightly doped source–drain end. By adding two charge paths, the leakage collection charge is further reduced by 13.85% under standard irradiation conditions. Moreover, the deterioration of the drive current in the purely growing lightly doped source–drain region can be further improved. Simulations of single-event effects under different irradiation conditions show that the device has good resistance to single-event irradiation, and the composite MOS structure smoothly converges to a 14.65% reduction in drain collection charge between 0.2 pC/μm and 1 pC/μm Linear Energy Transfer (LET) values. The incidence position at the source-to-channel interface collects the highest charge reduction rate of 28.23%. The collecting charge reduction rate is maximum, at 17.12%, when the incidence is at a 45-degree angle towards the source. Full article
Show Figures

Figure 1

17 pages, 3373 KB  
Article
Epithelial Barrier Dysfunction in Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D) via Downregulation of Claudin-1
by Karem Awad, Christian Barmeyer, Christian Bojarski, Oliver Nagel, In-Fah M. Lee, Michal R. Schweiger, Jörg-Dieter Schulzke and Roland Bücker
Cells 2023, 12(24), 2846; https://doi.org/10.3390/cells12242846 - 15 Dec 2023
Cited by 13 | Viewed by 4145
Abstract
Background: In patients with diarrhea-predominant irritable bowel syndrome (IBS-D), the diarrheal mechanisms are largely unknown, and they were examined in this study on colon biopsies. Methods: Electrophysiological measurements were used for monitoring functional changes in the diarrheic colon specimens. In parallel, tight junction [...] Read more.
Background: In patients with diarrhea-predominant irritable bowel syndrome (IBS-D), the diarrheal mechanisms are largely unknown, and they were examined in this study on colon biopsies. Methods: Electrophysiological measurements were used for monitoring functional changes in the diarrheic colon specimens. In parallel, tight junction protein expression was analyzed by Western blot and confocal laser-scanning microscopy, and signaling pathway analysis was performed using RNA sequencing and bioinformatics. Results: Epithelial resistance was decreased, indicating an epithelial leak flux diarrheal mechanism with a molecular correlate of decreased claudin-1 expression, while induction of active anion secretion and impairment of active sodium absorption via the epithelial sodium channel, ENaC, were not detected. The pathway analysis revealed activation of barrier-affecting cytokines TNF-α, IFN-γ, IL-1β and IL-4. Conclusions: Barrier dysfunction as a result of epithelial tight junction changes plays a role in IBS-D as a pathomechanism inducing a leak flux type of diarrhea. Full article
(This article belongs to the Special Issue Structure and Function of Tight Junctions)
Show Figures

Figure 1

21 pages, 3202 KB  
Article
New Enhancing MRI Lesions Associate with IL-17, Neutrophil Degranulation and Integrin Microparticles: Multi-Omics Combined with Frequent MRI in Multiple Sclerosis
by Zsolt Illes, Malene Møller Jørgensen, Rikke Bæk, Lisa-Marie Bente, Jørgen T. Lauridsen, Kirsten H. Hyrlov, Christopher Aboo, Jan Baumbach, Tim Kacprowski, Francois Cotton, Charles R. G. Guttmann and Allan Stensballe
Biomedicines 2023, 11(12), 3170; https://doi.org/10.3390/biomedicines11123170 - 28 Nov 2023
Cited by 5 | Viewed by 3618
Abstract
Background: Blood–barrier (BBB) breakdown and active inflammation are hallmarks of relapsing multiple sclerosis (RMS), but the molecular events contributing to the development of new lesions are not well explored. Leaky endothelial junctions are associated with increased production of endothelial-derived extracellular microvesicles (EVs) and [...] Read more.
Background: Blood–barrier (BBB) breakdown and active inflammation are hallmarks of relapsing multiple sclerosis (RMS), but the molecular events contributing to the development of new lesions are not well explored. Leaky endothelial junctions are associated with increased production of endothelial-derived extracellular microvesicles (EVs) and result in the entry of circulating immune cells into the brain. MRI with intravenous gadolinium (Gd) can visualize acute blood–barrier disruption as the initial event of the evolution of new lesions. Methods: Here, weekly MRI with Gd was combined with proteomics, multiplex immunoassay, and endothelial stress-optimized EV array to identify early markers related to BBB disruption. Five patients with RMS with no disease-modifying treatment were monitored weekly using high-resolution 3T MRI scanning with intravenous gadolinium (Gd) for 8 weeks. Patients were then divided into three groups (low, medium, or high MRI activity) defined by the number of new, total, and maximally enhancing Gd-enhancing lesions and the number of new FLAIR lesions. Plasma samples taken at each MRI were analyzed for protein biomarkers of inflammation by quantitative proteomics, and cytokines using multiplex immunoassays. EVs were characterized with an optimized endothelial stress EV array based on exosome surface protein markers for the detection of soluble secreted EVs. Results: Proteomics analysis of plasma yielded quantitative information on 208 proteins at each patient time point (n = 40). We observed the highest number of unique dysregulated proteins (DEPs) and the highest functional enrichment in the low vs. high MRI activity comparison. Complement activation and complement/coagulation cascade were also strongly overrepresented in the low vs. high MRI activity comparison. Activation of the alternative complement pathway, pathways of blood coagulation, extracellular matrix organization, and the regulation of TLR and IGF transport were unique for the low vs. high MRI activity comparison as well, with these pathways being overrepresented in the patient with high MRI activity. Principal component analysis indicated the individuality of plasma profiles in patients. IL-17 was upregulated at all time points during 8 weeks in patients with high vs. low MRI activity. Hierarchical clustering of soluble markers in the plasma indicated that all four MRI outcomes clustered together with IL-17, IL-12p70, and IL-1β. MRI outcomes also showed clustering with EV markers CD62E/P, MIC A/B, ICAM-1, and CD42A. The combined cluster of these cytokines, EV markers, and MRI outcomes clustered also with IL-12p40 and IL-7. All four MRI outcomes correlated positively with levels of IL-17 (p < 0.001, respectively), and EV-ICAM-1 (p < 0.0003, respectively). IL-1β levels positively correlated with the number of new Gd-enhancing lesions (p < 0.01), new FLAIR lesions (p < 0.001), and total number of Gd-enhancing lesions (p < 0.05). IL-6 levels positively correlated with the number of new FLAIR lesions (p < 0.05). Random Forests and linear mixed models identified IL-17, CCL17/TARC, CCL3/MIP-1α, and TNF-α as composite biomarkers predicting new lesion evolution. Conclusions: Combination of serial frequent MRI with proteome, neuroinflammation markers, and protein array data of EVs enabled assessment of temporal changes in inflammation and endothelial dysfunction in RMS related to the evolution of new and enhancing lesions. Particularly, the Th17 pathway and IL-1β clustered and correlated with new lesions and Gd enhancement, indicating their importance in BBB disruption and initiating acute brain inflammation in MS. In addition to the Th17 pathway, abundant protein changes between MRI activity groups suggested the role of EVs and the coagulation system along with innate immune responses including acute phase proteins, complement components, and neutrophil degranulation. Full article
Show Figures

Figure 1

24 pages, 4615 KB  
Article
Influences of Yogurt with Functional Ingredients from Various Sources That Help Treat Leaky Gut on Intestinal Barrier Dysfunction in Caco-2 Cells
by Ricardo S. Aleman, Ryan Page, Roberto Cedillos, Ismael Montero-Fernández, Jhunior Abraham Marcia Fuentes, Douglas W. Olson and Kayanush Aryana
Pharmaceuticals 2023, 16(11), 1511; https://doi.org/10.3390/ph16111511 - 24 Oct 2023
Cited by 8 | Viewed by 2937
Abstract
The impact of yogurts made with starter culture bacteria (L. bulgaricus and S. thermophilus) and supplemented with ingredients (maitake mushrooms, quercetin, L-glutamine, slippery elm bark, licorice root, N-acetyl-D-glucosamine, zinc orotate, and marshmallow root) that can help treat leaky gut were investigated [...] Read more.
The impact of yogurts made with starter culture bacteria (L. bulgaricus and S. thermophilus) and supplemented with ingredients (maitake mushrooms, quercetin, L-glutamine, slippery elm bark, licorice root, N-acetyl-D-glucosamine, zinc orotate, and marshmallow root) that can help treat leaky gut were investigated using the Caco-2 cell monolayer as a measure of intestinal barrier dysfunction. Milk from the same source was equally dispersed into nine pails, and the eight ingredients were randomly allocated to the eight pails. The control had no ingredients. The Caco-2 cells were treated with isoflavone genistein (negative control) and growth media (positive control). Inflammation was stimulated using an inflammatory cocktail of cytokines (interferon-γ, tumor necrosis factor-α, and interleukin-1β) and lipopolysaccharide. The yogurt without ingredients (control yogurt) was compared to the yogurt treatments (yogurts with ingredients) that help treat leaky gut. Transepithelial electrical resistance (TEER) and paracellular permeability were measured to evaluate the integrity of the Caco-2 monolayer. Transmission electron microscopy (TEM), immunofluorescence microscopy (IM), and real-time quantitative polymerase chain reaction (RTQPCR) were applied to measure the integrity of tight junction proteins. The yogurts were subjected to gastric and intestinal digestion, and TEER was recorded. Ferrous ion chelating activity, ferric reducing potential, and DPPH radical scavenging were also examined to determine the yogurts’ antioxidant capacity. Yogurt with quercetin and marshmallow root improved the antioxidant activity and TEER and had the lowest permeability in fluorescein isothiocyanate (FITC)–dextran and Lucifer yellow flux among the yogurt samples. TEM, IM, and RTQPCR revealed that yogurt enhanced tight junction proteins’ localization and gene expression. Intestinal digestion of the yogurt negatively impacted inflammation-induced Caco-2 barrier dysfunction, while yogurt with quercetin, marshmallow root, maitake mushroom, and licorice root had the highest TEER values compared to the control yogurt. Yogurt fortification with quercetin, marshmallow root, maitake mushroom, and licorice root may improve functionality when dealing with intestinal barrier dysfunction. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

28 pages, 5661 KB  
Article
BD-AcAc2 Mitigates Chronic Colitis in Rats: A Promising Multi-Pronged Approach Modulating Inflammasome Activity, Autophagy, and Pyroptosis
by Sameh Saber, Mohannad Mohammad S. Alamri, Jaber Alfaifi, Lobna A. Saleh, Sameh Abdel-Ghany, Adel Mohamed Aboregela, Alshaimaa A. Farrag, Abdulrahman H. Almaeen, Masoud I. E. Adam, AbdulElah Al Jarallah AlQahtani, Ali M. S. Eleragi, Mustafa Ahmed Abdel-Reheim, Heba A. Ramadan and Osama A. Mohammed
Pharmaceuticals 2023, 16(7), 953; https://doi.org/10.3390/ph16070953 - 3 Jul 2023
Cited by 10 | Viewed by 3080 | Correction
Abstract
Ulcerative colitis is a chronic and incurable form of inflammatory bowel disease that can increase the risk of colitis-associated cancer and mortality. Limited treatment options are available for this condition, and the existing ones often come with non-tolerable adverse effects. This study is [...] Read more.
Ulcerative colitis is a chronic and incurable form of inflammatory bowel disease that can increase the risk of colitis-associated cancer and mortality. Limited treatment options are available for this condition, and the existing ones often come with non-tolerable adverse effects. This study is the first to examine the potential benefits of consuming BD-AcAc2, a type of ketone ester (KE), and intermittent fasting in treating chronic colitis induced by dextran sodium sulfate (DSS) in rats. We selected both protocols to enhance the levels of β-hydroxybutyrate, mimicking a state of nutritional ketosis and early ketosis, respectively. Our findings revealed that only the former protocol, consuming the KE, improved disease activity and the macroscopic and microscopic features of the colon while reducing inflammation scores. Additionally, the KE counteracted the DSS-induced decrease in the percentage of weight change, reduced the colonic weight-to-length ratio, and increased the survival rate of DSS-insulted rats. KE also showed potential antioxidant activities and improved the gut microbiome composition. Moreover, consuming KE increased the levels of tight junction proteins that protect against leaky gut and exhibited anti-inflammatory properties by reducing proinflammatory cytokine production. These effects were attributed to inhibiting NFκB and NLRP3 inflammasome activation and restraining pyroptosis and apoptosis while enhancing autophagy as revealed by reduced p62 and increased BECN1. Furthermore, the KE may have a positive impact on maintaining a healthy microbiome. To conclude, the potential clinical implications of our findings are promising, as BD-AcAc2 has a greater safety profile and can be easily translated to human subjects. Full article
(This article belongs to the Special Issue Drug Treatments for Inflammatory Bowel Diseases)
Show Figures

Figure 1

25 pages, 4104 KB  
Article
Effects of Yogurt with Carao (Cassia grandis) on Intestinal Barrier Dysfunction, α-glycosidase Activity, Lipase Activity, Hypoglycemic Effect, and Antioxidant Activity
by Ricardo S. Aleman, Jhunior Marcia, Ryan Page, Shirin Kazemzadeh Pournaki, Daniel Martín-Vertedor, Víctor Manrique-Fernández, Ismael Montero-Fernández and Kayanush Aryana
Fermentation 2023, 9(6), 566; https://doi.org/10.3390/fermentation9060566 - 15 Jun 2023
Cited by 8 | Viewed by 3294
Abstract
Cell inflammation disrupts intestinal barrier functions and may cause disorders related to a leaky gut, possibly leading to diabetes. The objective of this study was to determine if carao (Cassia grandis) incorporated into yogurt enhances in vitro intestinal barrier function. To [...] Read more.
Cell inflammation disrupts intestinal barrier functions and may cause disorders related to a leaky gut, possibly leading to diabetes. The objective of this study was to determine if carao (Cassia grandis) incorporated into yogurt enhances in vitro intestinal barrier function. To achieve this goal, Caco-2 cells were used as a model of intestinal barrier permeability. Caco-2 cells were treated with cytokines (interleukin-1β, tumor necrosis factor-α, interferon-γ, and lipopolysaccharide (LPS)) and yogurt with carao yogurt (CY) at different doses (1.3 g/L, 2.65 g/L, and 5.3 g/L). Real-time quantitative polymerase chain and immunofluorescence microscopy were applied to evaluate the expression and localization of tight junction proteins. Functional effects of the formulation of yogurt supplemented with carao were also evaluated in terms of the antioxidant activity, the α-glycosidase activity, and lipase inhibitory properties. In addition, the hypoglycemic potential was validated in vivo in a rat model. Compared to the control yogurt, Caco-2 TEER (transepithelial electrical resistance evaluation) by yogurt with 5.3 g/L of carao was significantly lower (p < 0.05) after 48 h. Yogurt with 5.3 g/L of carao had a considerably lower permeability (p < 0.05) than control yogurt in FD and LY flux. Yogurt with 5.3 g/L of carao enhanced the localization of ZO-1. Carao addition into yogurt increased the flavonoid content, apparent viscosity, lipase inhibition activity, and α-glycosidase activity. The rats fed with the yogurt with 5.3 g/L of carao demonstrated a higher blood glucose modulation. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

16 pages, 3691 KB  
Review
Intravesical Contrast-Enhanced MRI: A Potential Tool for Bladder Cancer Surveillance and Staging
by Pradeep Tyagi, Chan-Hong Moon, Marc Connell, Anirban Ganguly, Kang Jun Cho, Tatum Tarin, Rajiv Dhir, Biatta Sholosh and Jodi Maranchie
Curr. Oncol. 2023, 30(5), 4632-4647; https://doi.org/10.3390/curroncol30050350 - 30 Apr 2023
Cited by 9 | Viewed by 3486
Abstract
This review article gives an overview of the current state of the art of bladder cancer imaging and then discusses in depth the scientific and technical merit of a novel imaging approach, tracing its evolution from murine cancer models to cancer patients. While [...] Read more.
This review article gives an overview of the current state of the art of bladder cancer imaging and then discusses in depth the scientific and technical merit of a novel imaging approach, tracing its evolution from murine cancer models to cancer patients. While the poor resolution of soft tissue obtained by widely available imaging options such as abdominal sonography and radiation-based CT leaves them only suitable for measuring the gross tumor volume and bladder wall thickening, dynamic contrast-enhanced magnetic resolution imaging (DCE MRI) is demonstrably superior in resolving muscle invasion. However, major barriers still exist in its adoption. Instead of injection for DCE-MRI, intravesical contrast-enhanced MRI (ICE-MRI) instills Gadolinium chelate (Gadobutrol) together with trace amounts of superparamagnetic agents for measurement of tumor volume, depth, and aggressiveness. ICE-MRI leverages leaky tight junctions to accelerate passive paracellular diffusion of Gadobutrol (604.71 Daltons) by treading the paracellular ingress pathway of fluorescein sodium and of mitomycin (<400 Daltons) into bladder tumor. The soaring cost of diagnosis and care of bladder cancer could be mitigated by reducing the use of expensive operating room resources with a potential non-surgical imaging option for cancer surveillance, thereby reducing over-diagnosis and over-treatment and increasing organ preservation. Full article
Show Figures

Figure 1

19 pages, 4231 KB  
Article
Development of an Inflammation-Triggered In Vitro “Leaky Gut” Model Using Caco-2/HT29-MTX-E12 Combined with Macrophage-like THP-1 Cells or Primary Human-Derived Macrophages
by Nguyen Phan Khoi Le, Markus Jörg Altenburger and Evelyn Lamy
Int. J. Mol. Sci. 2023, 24(8), 7427; https://doi.org/10.3390/ijms24087427 - 18 Apr 2023
Cited by 27 | Viewed by 7593
Abstract
The “leaky gut” syndrome describes a damaged (leaky) intestinal mucosa and is considered a serious contributor to numerous chronic diseases. Chronic inflammatory bowel diseases (IBD) are particularly associated with the “leaky gut” syndrome, but also allergies, autoimmune diseases or neurological disorders. We developed [...] Read more.
The “leaky gut” syndrome describes a damaged (leaky) intestinal mucosa and is considered a serious contributor to numerous chronic diseases. Chronic inflammatory bowel diseases (IBD) are particularly associated with the “leaky gut” syndrome, but also allergies, autoimmune diseases or neurological disorders. We developed a complex in vitro inflammation-triggered triple-culture model using 21-day-differentiated human intestinal Caco-2 epithelial cells and HT29-MTX-E12 mucus-producing goblet cells (90:10 ratio) in close contact with differentiated human macrophage-like THP-1 cells or primary monocyte-derived macrophages from human peripheral blood. Upon an inflammatory stimulus, the characteristics of a “leaky gut” became evident: a significant loss of intestinal cell integrity in terms of decreased transepithelial/transendothelial electrical resistance (TEER), as well as a loss of tight junction proteins. The cell permeability for FITC-dextran 4 kDa was then increased, and key pro-inflammatory cytokines, including TNF-alpha and IL-6, were substantially released. Whereas in the M1 macrophage-like THP-1 co-culture model, we could not detect the release of IL-23, which plays a crucial regulatory role in IBD, this cytokine was clearly detected when using primary human M1 macrophages instead. In conclusion, we provide an advanced human in vitro model that could be useful for screening and evaluating therapeutic drugs for IBD treatment, including potential IL-23 inhibitors. Full article
(This article belongs to the Special Issue Solving the Puzzle: Molecular Research in Inflammatory Bowel Diseases)
Show Figures

Figure 1

17 pages, 3741 KB  
Article
Protective Effect of Limosilactobacillus fermentum ME-3 against the Increase in Paracellular Permeability Induced by Chemotherapy or Inflammatory Conditions in Caco-2 Cell Models
by Alex De Gregorio, Annalucia Serafino, Ewa Krystyna Krasnowska, Fabiana Superti, Maria Rosa Di Fazio, Maria Pia Fuggetta, Ivano Hammarberg Ferri and Carla Fiorentini
Int. J. Mol. Sci. 2023, 24(7), 6225; https://doi.org/10.3390/ijms24076225 - 25 Mar 2023
Cited by 9 | Viewed by 4487
Abstract
Chemotherapy- or inflammation-induced increase in intestinal permeability represents a severe element in disease evolution in patients suffering from colorectal cancer and gut inflammatory conditions. Emerging data strongly support the gut microbiota’s role in preserving intestinal barrier integrity, whilst both chemotherapy and gut inflammation [...] Read more.
Chemotherapy- or inflammation-induced increase in intestinal permeability represents a severe element in disease evolution in patients suffering from colorectal cancer and gut inflammatory conditions. Emerging data strongly support the gut microbiota’s role in preserving intestinal barrier integrity, whilst both chemotherapy and gut inflammation alter microbiota composition. Some probiotics might have a strong re-balancing effect on the gut microbiota, also positively affecting intestinal barrier integrity. In this study, we asked whether Limosilactobacillus fermentum ME-3 can prevent the intestinal paracellular permeability increase caused by the chemotherapeutic drug Irinotecan or by inflammatory stimuli, such as lipopolysaccharide (LPS). As an intestinal barrier model, we used a confluent and polarized Caco-2 cell monolayer and assessed the ME-3-induced effect on paracellular permeability by transepithelial electrical resistance (TEER) and fluorescent-dextran flux assays. The integrity of tight and adherens junctions was examined by confocal microscopy analysis. Transwell co-cultures of Caco-2 cells and U937-derived macrophages were used as models of LPS-induced intestinal inflammation to test the effect of ME-3 on release of the pro-inflammatory cytokines Tumor Necrosis Factor α, Interleukin-6, and Interleukin-8, was measured by ELISA. The results demonstrate that ME-3 prevents the IRI-induced increment in paracellular permeability, possibly by modulating the expression and localization of cell junction components. In addition, ME-3 inhibited both the increase in paracellular permeability and the release of pro-inflammatory cytokines in the co-culture model of LPS-induced inflammation. Our findings sustain the validity of L. fermentum ME-3 as a valuable therapeutic tool for preventing leaky gut syndrome, still currently without an available specific treatment. Full article
(This article belongs to the Special Issue Integrative Oncology: From the Lab to New Therapeutic Possibilities)
Show Figures

Graphical abstract

Back to TopTop