Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (615)

Search Parameters:
Keywords = leaching characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2902 KiB  
Article
Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag
by Liangjin Zhang, Zihao Yang, Yuzhu Zhang, Bao Liu and Shuang Cai
Sustainability 2025, 17(15), 6979; https://doi.org/10.3390/su17156979 (registering DOI) - 31 Jul 2025
Viewed by 198
Abstract
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer [...] Read more.
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer remains a topic of significant debate, however. In this work, pakchoi (Brassica chinensis L.) was planted in CAS-fertilized soil to investigate the accumulation and migration behavior of heavy metals in the soil–plant system and perform an associated risk assessment. Our results demonstrated that CAS addition increases Ca, Si, and Cr concentrations but decreases Mg and Fe concentrations in soil leachates. Low rates (0.25–1%) of CAS fertilization facilitate the growth of pakchoi, resulting in the absence of soil contamination and posing no threat to human health. At the optimal slag addition rate of 0.25%, the pakchoi leaf biomass, stem biomass, leaf area, and seedling height increased by 34.2%, 17.2%, 26.3%, and 8.7%, respectively. The accumulation of heavy metals results in diverging characteristics in pakchoi. Cr primarily accumulates in the roots; in comparison, Pb, Cd, Ni, and Hg preferentially accumulate in the leaves. The migration rate of the investigated heavy metals from the soil to pakchoi follows the order of Cr > Cd > Hg > Ni > Pb; in comparison, that from the roots to the leaves follows the order Cd > Ni > Hg > Cr > Pb. Appropriate utilization of CAS as a mineral fertilizer can aid in improving pakchoi yield, achieving sustainable economic benefits, and preventing environmental pollution. Full article
Show Figures

Figure 1

26 pages, 8845 KiB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 (registering DOI) - 31 Jul 2025
Viewed by 146
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

17 pages, 6856 KiB  
Article
Selection of Optimal Parameters for Chemical Well Treatment During In Situ Leaching of Uranium Ores
by Kuanysh Togizov, Zhiger Kenzhetaev, Akerke Muzapparova, Shyngyskhan Bainiyazov, Diar Raushanbek and Yuliya Yaremkiv
Minerals 2025, 15(8), 811; https://doi.org/10.3390/min15080811 (registering DOI) - 31 Jul 2025
Viewed by 121
Abstract
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and [...] Read more.
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and extend the uninterrupted operation period of wells, considering the clay content of the productive horizon, the geological characteristics of the ore-bearing layer, and the composition of precipitation-forming materials. The mineralogical characteristics of ore and precipitate samples formed during the in situ leaching of uranium under various mining and geological conditions at a uranium deposit in the Syrdarya depression were identified using an X-ray diffraction analysis. It was established that ores of the Santonian stage are relatively homogeneous and consist mainly of quartz. During well operation, the precipitates formed are predominantly gypsum, which has little impact on the filtration properties of the ore. Ores of the Maastrichtian stage are less homogeneous and mainly composed of quartz and smectite, with minor amounts of potassium feldspar and kaolinite. The leaching of these ores results in the formation of gypsum with quartz impurities, which gradually reduces the filtration properties of the ore. Ores of the Campanian stage are heterogeneous, consisting mainly of quartz with varying proportions of clay minerals and gypsum. The leaching of these ores generates a variety of precipitates that significantly reduce the filtration properties of the productive horizon. Effective compositions and concentrations of decolmatant (clog removal) solutions were selected under laboratory conditions using a specially developed methodology and a TESCAN MIRA scanning electron microscope. Based on a scanning electron microscope analysis of the samples, the effectiveness of a decolmatizing solution based on hydrochloric and hydrofluoric acids (taking into account the concentration of the acids in the solution) was established for the destruction of precipitate formation during the in situ leaching of uranium. Geological blocks were ranked by their clay content to select rational parameters of decolmatant solutions for the efficient enhancement of ore filtration properties and the prevention of precipitation formation. Pilot-scale testing of the selected decolmatant parameters under various mining and geological conditions allowed the optimal chemical treatment parameters to be determined based on the clay content and the composition of precipitates in the productive horizon. An analysis of pilot well trials using the new approach showed an increase in the uninterrupted operational period of wells by 30%–40% under average mineral acid concentrations and by 25%–45% under maximum concentrations with surfactant additives in complex geological settings. As a result, an effective methodology for ranking geological blocks based on their ore clay content and precipitate composition was developed to determine the rational parameters of decolmatant solutions, enabling a maximized filtration performance and an extended well service life. This makes it possible to reduce the operating costs of extraction, control the geotechnological parameters of uranium well mining, and improve the efficiency of the in situ leaching of uranium under complex mining and geological conditions. Additionally, the approach increases the environmental and operational safety during uranium ore leaching intensification. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 2234 KiB  
Article
Impact of Co-Presence of Endotoxins and Microplastics on Seawater Biophysicochemical Indicators
by Hasan Saygin and Asli Baysal
Int. J. Mol. Sci. 2025, 26(15), 7178; https://doi.org/10.3390/ijms26157178 - 25 Jul 2025
Viewed by 141
Abstract
Micro/nanoplastics (MNP) and endotoxin, typical emerging contaminants, can be found in marine aqueous systems due to various natural and anthropogenic activities, and their co-occurrence may influence the biophysicochemical characteristics of seawater. Moreover, endotoxins may be transported by the micro/nanoplastics or increase the deformation [...] Read more.
Micro/nanoplastics (MNP) and endotoxin, typical emerging contaminants, can be found in marine aqueous systems due to various natural and anthropogenic activities, and their co-occurrence may influence the biophysicochemical characteristics of seawater. Moreover, endotoxins may be transported by the micro/nanoplastics or increase the deformation of these substances, comprising other risks to the ecosystem. However, the impacts of the co-occurrence of micro/nanoplastics and endotoxins in seawater remain unknown. We studied the effects of endotoxin at three concentration levels in seawater and its combined impact with micro/nanoplastics at three doses on biophysicochemical processes in seawater through spectroscopic analysis, leaching indicators (turbidity and humidification index), oxidative potential, antioxidant activity, and biofilm production. The results showed that the UV–VIS spectra of seawater changed with their co-occurrence. The co-presence of MNPs and endotoxins increased the turbidity in seawater, indicating the leaching of micro/nanoplastic in the presence of endotoxins. A higher humification index in seawater showed the formation of dissolved organic substances in micro/nanoplastic and endotoxin seawater compared to the results for untreated seawater. Dithioerythritol assay revealed the differences in oxidative potentials of plain seawater and seawater in the co-presence of micro/nanoplastics and endotoxins. An important biochemical reaction in seawater was tested using biofilm formation. The results showed higher biofilm formation in their co-presence. This study provides new insights into the effects of micro/nanoplastics and their composite pollution with endotoxins on biophysiochemical indicators in seawater. Full article
Show Figures

Figure 1

19 pages, 2173 KiB  
Article
The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment
by Chunxiao Han, Zhizhi Zhang, Renlong Liu, Changyuan Tao and Xing Fan
Appl. Sci. 2025, 15(15), 8216; https://doi.org/10.3390/app15158216 - 24 Jul 2025
Viewed by 337
Abstract
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 [...] Read more.
To address the issue of excessive chemical fertilizer use in agricultural production, this study conducted a pot experiment with four treatments: CK (no fertilization), T1 (the application of potassium magnesium sulfate fertilizer), T2 (the application of slow-release fertilizer equal to T1), and T3 (the application of slow-release fertilizer with the same fertility as T1). The effects of these treatments on garlic seedling yield, growth quality, chlorophyll content, photosynthetic characteristics, and the soil environment were investigated to evaluate the feasibility of replacing conventional fertilizers with slow-release formulations. The results showed that compared with CK, all three fertilized treatments (T1, T2, and T3) significantly increased the plant heights and stem diameters of the garlic sprouts (p < 0.05). Plant height increased by 14.85%, 17.81%, and 27.75%, while stem diameter increased by 9.36%, 8.83%, and 13.96%, respectively. Additionally, the chlorophyll content increased by 4.34%, 7.22%, and 8.05% across T1, T2, and T3, respectively. Among the treatments, T3 exhibited the best overall growth performance. Compared with those in the CK group, the contents of soluble sugars, soluble proteins, free amino acids, vitamin C, and allicin increased by 64.74%, 112.17%, 126.82%, 36.15%, and 45.43%, respectively. Furthermore, soil organic matter, available potassium, magnesium, and phosphorus increased by 109.02%, 886.25%, 91.65%, and 103.14%, respectively. The principal component analysis indicated that soil pH and exchangeable magnesium were representative indicators reflecting the differences in the soil’s chemical properties under different fertilization treatments. Compared with the CK group, the metal contents in the T1 group slightly increased, while those in T2 and T3 generally decreased, suggesting that the application of slow-release fertilizer exerts a certain remediation effect on soils contaminated with heavy metals. This may be attributed to the chemical precipitation and ion exchange capacities of phosphogypsum, as well as the high adsorption and cation exchange capacity of bentonite, which help reduce the leaching of soil metal ions. In summary, slow-release fertilizers not only promote garlic sprout growth but also enhance soil quality by regulating its chemical properties. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

15 pages, 3017 KiB  
Article
Strategies for the Recovery of Tungsten from Wolframite, Scheelite, or Wolframite–Scheelite Mixed Concentrates of Spanish Origin
by Francisco Jose Alguacil, Manuel Alonso, Luis Javier Lozano and Jose Ignacio Robla
Metals 2025, 15(8), 819; https://doi.org/10.3390/met15080819 - 22 Jul 2025
Viewed by 251
Abstract
Among the strategic materials considered by the EU, tungsten is included; thus, investigations about the recovery of this metal both from natural and recyclable sources are of interest. In this work, we presented an investigation about the recovery of tungsten based on the [...] Read more.
Among the strategic materials considered by the EU, tungsten is included; thus, investigations about the recovery of this metal both from natural and recyclable sources are of interest. In this work, we presented an investigation about the recovery of tungsten based on the treatment of three tungsten-bearing concentrates: scheelite (29% W), wolframite (50% W), and mixed scheelite–wolframite (29% W). All of these come from a cassiterite ore of Spanish origin. The characteristics of each concentrate pave the procedure to be followed in each case. In the case of the wolframite concentrate, the best results were derived from the leaching of the ore with NaOH solutions, whereas the treatment of the scheelite concentrate benefits from an acidic (HCl) leaching. The attack of the mixed concentrate is only possible by a previous roasting step (sodium carbonate and 700–800 °C) followed by a leaching step with water. In the acidic leaching, tungstic acid (H2WO4) was obtained, and the alkaline–water leaching produces Na2WO4 solutions from which pure synthesized scheelite is precipitated. Full article
Show Figures

Figure 1

11 pages, 1400 KiB  
Article
Dynamic Changes in Sensory Quality and Chemical Components of Bingdao Ancient Tree Tea During Multiple Brewing
by Chunju Peng, Yuxin Zhao, Sifeng Zhang, Yan Tang, Li Jiang, Shujing Liu, Benying Liu, Yuhua Wang, Xinghui Li and Guanghui Zeng
Foods 2025, 14(14), 2510; https://doi.org/10.3390/foods14142510 - 17 Jul 2025
Viewed by 288
Abstract
Bingdao ancient tree tea (BATT), a type of raw Pu-erh tea, is renowned for its brewing durability, characterized by a unique aroma and flavor. To explore the dynamic changes in infusion quality and the impact of multiple steeping process, BATT was brewed 14 [...] Read more.
Bingdao ancient tree tea (BATT), a type of raw Pu-erh tea, is renowned for its brewing durability, characterized by a unique aroma and flavor. To explore the dynamic changes in infusion quality and the impact of multiple steeping process, BATT was brewed 14 times, and its sensory attributes, infusion color, and chemical composition were assessed across different brewing intervals. The color of the tea infusion remained relatively stable throughout the brewing process. Sensory evaluation indicated that BATT exhibited optimal sensory quality between the third and seventh infusions. While the leaching of polyphenols showed minimal variation across brews, the concentrations of ester-catechins, non-ester catechins, free amino acids, and caffeine after the seventh brewing decreased by 28.82%, 21.83%, 28.86%, and 40.37%, respectively. Our results indicated that higher concentrations of flavor compounds in the BATT infusion appeared between the fourth and seventh brews. This study provides a theoretical basis for understanding the brewing characteristics of BATT. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

22 pages, 10354 KiB  
Article
Leaching Characteristics of Exogenous Cl in Rain-Fed Potato Fields and Residual Estimation Model Validation
by Jiaqi Li, Jingyi Li, Hao Sun, Xin Li, Lei Sun and Wei Li
Plants 2025, 14(14), 2171; https://doi.org/10.3390/plants14142171 - 14 Jul 2025
Viewed by 295
Abstract
Potato (Solanum tuberosum L.) is a chlorine-sensitive crop. When soil Cl concentrations exceed optimal thresholds, the yield and quality of potatoes are limited. Consequently, chloride-containing fertilizers are rarely used in actual agricultural production. Therefore, two years of field experiments under natural [...] Read more.
Potato (Solanum tuberosum L.) is a chlorine-sensitive crop. When soil Cl concentrations exceed optimal thresholds, the yield and quality of potatoes are limited. Consequently, chloride-containing fertilizers are rarely used in actual agricultural production. Therefore, two years of field experiments under natural rainfall regimes with three chlorine application levels (37.5 kg ha−1/20 mg kg−1, 75 kg ha−1/40 mg kg−1, and 112.5 kg ha−1/60 mg kg−1) were conducted to investigate the leaching characteristics of Cl in field soils with two typical textures for Northeast China (loam and sandy loam soils). In this study, the reliability of Cl residual estimation models across different soil types was evaluated, providing critical references for safe chlorine-containing fertilizer application in rain-fed potato production systems in Northeast China. The results indicated that the leaching efficiency of Cl was significantly positively correlated with both the rainfall amount and the chlorine application rate (p < 0.01). The Cl migration rate in sandy loam soil was significantly greater than that in loam soil. However, the influence of soil texture on the Cl leaching efficiency was only observed at lower rainfall levels. When the rainfall level exceeded 270 mm, the Cl content in all the soil layers became independent of the rainfall amount, soil texture, and chlorine application rate. Under rain-fed conditions, KCl application at 80–250 kg ha−1 did not induce Cl accumulation in the primary potato root zone (15–30 cm), suggesting a low risk of toxicity. In loam soil, the safe application range for KCl was determined to be 115–164 kg ha−1, while in sandy loam soil, the safe KCl application range was 214–237 kg ha−1. Furthermore, a predictive model for estimating Cl residuals in loam and sandy loam soils was validated on the basis of rainfall amount, soil clay content, and chlorine application rate. The model validation results demonstrated an exceptional goodness-of-fit between the predicted and measured values, with R2 > 0.9 and NRMSE < 0.1, providing science-based recommendations for Cl-containing fertilizer application to chlorine-sensitive crops, supporting both agronomic performance and environmental sustainability in rain-fed systems. Full article
(This article belongs to the Special Issue Fertilizer and Abiotic Stress)
Show Figures

Figure 1

48 pages, 5755 KiB  
Review
Accelerated Carbonation of Waste Incineration Residues: Reactor Design and Process Layout from Laboratory to Field Scales—A Review
by Quentin Wehrung, Davide Bernasconi, Fabien Michel, Enrico Destefanis, Caterina Caviglia, Nadia Curetti, Meissem Mezni, Alessandro Pavese and Linda Pastero
Clean Technol. 2025, 7(3), 58; https://doi.org/10.3390/cleantechnol7030058 - 11 Jul 2025
Viewed by 809
Abstract
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching [...] Read more.
Municipal solid waste (MSW) and refuse-derived fuel (RDF) incineration generate over 20 million tons of residues annually in the EU. These include bottom ash (IBA), fly ash (FA), and air pollution control residues (APCr), which pose significant environmental challenges due to their leaching potential and hazardous properties. While these residues contain valuable metals and reactive mineral phases suitable for carbonation or alkaline activation, chemical, techno-economic, and policy barriers have hindered the implementation of sustainable, full-scale management solutions. Accelerated carbonation technology (ACT) offers a promising approach to simultaneously sequester CO2 and enhance residue stability. This review provides a comprehensive assessment of waste incineration residue carbonation, covering 227 documents ranging from laboratory studies to field applications. The analysis examines reactor designs and process layouts, with a detailed classification based on material characteristics, operating conditions, investigated parameters, and the resulting pollutant stabilization, CO2 uptake, or product performance. In conclusion, carbonation-based approaches must be seamlessly integrated into broader waste management strategies, including metal recovery and material repurposing. Carbonation should be recognized not only as a CO2 sequestration process, but also as a binding and stabilization strategy. The most critical barrier remains chemical: the persistent leaching of sulfates, chromium(VI), and antimony(V). We highlight what we refer to as the antimony problem, as this element can become mobilized by up to three orders of magnitude in leachate concentrations. The most pressing research gap hindering industrial deployment is the need to design stabilization approaches specifically tailored to critical anionic species, particularly Sb(V), Cr(VI), and SO42−. Full article
(This article belongs to the Collection Review Papers in Clean Technologies)
Show Figures

Figure 1

19 pages, 15843 KiB  
Article
Hydrochemical Characteristics and Formation Mechanisms of Groundwater in the Nanmiao Emergency Groundwater Source Area, Yichun, Western Jiangxi, China
by Shengpin Yu, Tianye Wang, Ximin Bai, Gongxin Chen, Pingqiang Wan, Shifeng Chen, Qianqian Chen, Haohui Wan and Fei Deng
Water 2025, 17(14), 2063; https://doi.org/10.3390/w17142063 - 10 Jul 2025
Viewed by 278
Abstract
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, [...] Read more.
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, isotopic tracing, and hydrochemical modeling to reveal the hydrochemical characteristics and origins of groundwater in the region. The results indicate that Na+ and Ca2+ dominate the cations, while HCO3 and Cl dominate the anions. Groundwater from descending springs is characterized by low mineralization and weak acidity, with hydrochemical types of primarily HCO3–Na·Mg and HCO3–Mg·Na·Ca. Groundwater from boreholes is weakly mineralized and neutral, with dominant hydrochemical types of HCO3–Ca·Na and HCO3–Ca·Na·Mg, suggesting a deep circulation hydrogeochemical process. Hydrogen and oxygen isotope analysis indicates that atmospheric precipitation is the primary recharge source. The chemical composition of groundwater is mainly controlled by rock weathering, silicate mineral dissolution, and cation exchange processes. During groundwater flowing, water and rock interactions, such as leaching, cation exchange, and mixing, occur. This study identifies the recharge sources and circulation mechanisms of regional groundwater, offering valuable insights for the sustainable development and protection of the emergency water source area. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

25 pages, 3005 KiB  
Review
Non-Ferrous Metal Smelting Slags for Thermal Energy Storage: A Mini Review
by Meichao Yin, Yaxuan Xiong, Aitonglu Zhang, Xiang Li, Yuting Wu, Cancan Zhang, Yanqi Zhao and Yulong Ding
Buildings 2025, 15(13), 2376; https://doi.org/10.3390/buildings15132376 - 7 Jul 2025
Viewed by 435
Abstract
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. [...] Read more.
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. This study comprehensively sums up the composition and fundamental characteristics of metallurgical waste slag. It delves into the application potential of non-ferrous metal smelting waste slag, such as copper slag, nickel slag, and lead slag, in both sensible and latent heat storage. In sensible heat storage, copper slag, with its low cost and high thermal stability, is suitable as a storage material. After appropriate treatment, it can be combined with other materials to produce composite phase change energy storage materials, thus expanding its role into latent heat storage. Nickel slag, currently mainly used in infrastructure materials, still needs in-depth research to confirm its suitability for sensible heat storage. Nevertheless, in latent heat storage, it has been utilized in making the support framework of composite phase change materials. While there are no current examples of lead slag being used in sensible heat storage, the low leaching concentration of lead and zinc in lead slag concrete under alkaline conditions offers new utilization ideas. Given the strong nucleation effect of iron and impurities in lead slag, it is expected to be used in the skeleton preparation of composite phase change materials. Besides the aforementioned waste slags, other industrial waste slags also show potential as sensible heat storage materials. This paper aims to evaluate the feasibility of non-ferrous metal waste slag as energy storage materials. It analyses the pros and cons of their practical applications, elaborates on relevant research progress, technical hurdles, and future directions, all with the goal of enhancing their effective use in heat storage. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies for Low-Carbon Buildings)
Show Figures

Figure 1

31 pages, 859 KiB  
Review
A Review of Persistent Soil Contaminants: Assessment and Remediation Strategies
by António Alberto S. Correia and Maria Graça Rasteiro
Environments 2025, 12(7), 229; https://doi.org/10.3390/environments12070229 - 5 Jul 2025
Viewed by 1191
Abstract
The presence of persistent contaminants in soils is of growing concern around the world. Contaminated soils can affect numerous ecological environments and lead to significant health risks to humans, affecting soil biodiversity, structure and geomechanical behaviour and agricultural sustainability. Additionally, soil contaminants can [...] Read more.
The presence of persistent contaminants in soils is of growing concern around the world. Contaminated soils can affect numerous ecological environments and lead to significant health risks to humans, affecting soil biodiversity, structure and geomechanical behaviour and agricultural sustainability. Additionally, soil contaminants can also leach into water flows, which is another concern. In general, soil contamination can be attributed to natural sources or to anthropogenic sources associated with human activity. Soil contaminants are usually classified in the following categories: biological, radioactive, organic and inorganic contaminants. State of the art information regarding some of the most common persistent soil contaminants, including possible sources and prevalence, and monitoring approaches and information about their effects on soil characteristics, including usability, as well as information on possible mobility to other environmental media is presented in this review paper. Finally, a comprehensive overview of remediation strategies which are being developed, including the more traditional ones as well as novel strategies that have been proposed lately by the scientific community, is provided. This includes physicochemical and biological technologies, as well as mixed remediation technologies aimed at enhancing remediation efficiency. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil)
Show Figures

Figure 1

20 pages, 6245 KiB  
Article
Purification and Preparation of Graphene-like Nanoplates from Natural Graphite of Canindé, CE, Northeast-Brazil
by Lucilene Santos, Alejandro Ayala, Raul Silva, Thiago Moura, João Farias, Augusto Nobre, Bruno Araújo, Francisco Vasconcelos and Janaína Rocha
Materials 2025, 18(13), 3162; https://doi.org/10.3390/ma18133162 - 3 Jul 2025
Viewed by 515
Abstract
In this study, flotation tests were conducted on a laboratory scale using a sample of microcrystalline graphite ore from the Canindé region, Ceará, Brazil. The objective was to investigate the grinding time, reagent dosage, and purification process for obtaining graphene-based nanomaterials. Natural graphite [...] Read more.
In this study, flotation tests were conducted on a laboratory scale using a sample of microcrystalline graphite ore from the Canindé region, Ceará, Brazil. The objective was to investigate the grinding time, reagent dosage, and purification process for obtaining graphene-based nanomaterials. Natural graphite has a stacked planar structure and exhibits polymorphism with rhombohedral, hexagonal, and turbostratic geometries, characteristics that directly influence its properties and technological applications. The results demonstrated that it was possible to obtain rougher concentrate with a graphite carbon content of 23.4% and a recovery of 86.4%, using a grinding time of 7.5 min and reagent dosages of 150 g/t of kerosene and 100 g/t of Flotanol D-25. This flotation process resulted in a graphite concentrate with 76.6% graphite carbon content. To increase the purity of the concentrate and expand its industrial applications, the graphite was purified in an alkaline autoclave using the hydrothermal method. In the next stage, acid leaching was performed, and this chemical treatment destabilized the regular stacking of the graphite layers, promoting the formation of graphene-like nanoplates, including monolayer graphene. Thus, the nanomaterials obtained through the process developed in this study have potential for various innovative applications, such as lithium-ion batteries, electric vehicles, and two-dimensional graphene-based materials. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Multifunctional Applications)
Show Figures

Figure 1

34 pages, 6019 KiB  
Article
Deploying a Wireless Sensor Network to Track Pesticide Pollution in Kiu Wetland Wells: A Field Study
by Titus Mutunga, Sinan Sinanovic, Funmilayo B. Offiong and Colin Harrison
Sensors 2025, 25(13), 4149; https://doi.org/10.3390/s25134149 - 3 Jul 2025
Viewed by 597
Abstract
Water pollution from pesticides is a major concern for regulatory agencies worldwide due to expensive detecting mechanisms, delays in the processing of results, and the complexity of the chemical analysis. However, the deployment of monitoring systems utilising the internet of things (IoT) and [...] Read more.
Water pollution from pesticides is a major concern for regulatory agencies worldwide due to expensive detecting mechanisms, delays in the processing of results, and the complexity of the chemical analysis. However, the deployment of monitoring systems utilising the internet of things (IoT) and machine-to-machine communication technologies (M2M) holds promise in overcoming this major global challenge. In this current research, an IoT-based wireless sensor network (WSN) is successfully deployed in rural Kenya at the Kiu watershed, providing in situ pesticide detections and a real-time data visualisation of shallow wells. Kiu is an off-grid community located in an area of intensive agriculture, where residents face a high exposure to pesticides due to farming activities and a reliance on shallow wells for domestic water. The evaluation of path loss models utilising channel characteristics obtained from this study indicate a marked departure from the continuous signal decay with distance. Transmitted packets from deployed sensor nodes indicate minimal mutations of payloads, underscoring systems reliability and data transmission integrity. Additionally, the proposed design significantly reduces the time taken to deliver pesticide measurement results to relevant stakeholders. For the entire monitoring period, pesticide residues were not detected in the selected wells, an outcome validated with lab procedures. These results are attributed to prevailing dry weather conditions which limited the leaching of pesticides to lower layers reaching the water table. Full article
(This article belongs to the Collection Sensing Technology in Smart Agriculture)
Show Figures

Figure 1

14 pages, 1552 KiB  
Article
Effect of Oxidative Roasting on Selective Leaching of Lithium from Industrially Shredded Lithium Iron Phosphate Blackmass
by Ayesha Tasawar, Daniel Dotto Munchen, Alexander Birich, Rungsima Yeetsorn and Bernd Friedrich
Metals 2025, 15(7), 739; https://doi.org/10.3390/met15070739 - 30 Jun 2025
Viewed by 343
Abstract
The increasing need-based demand for lithium iron phosphate (LFP) batteries in electric vehicles and energy storage systems necessitates the development of efficient and sustainable recycling methods. This study investigates the effect of oxidative roasting on lithium extraction from industrially sourced LiFePO4 (LFP) [...] Read more.
The increasing need-based demand for lithium iron phosphate (LFP) batteries in electric vehicles and energy storage systems necessitates the development of efficient and sustainable recycling methods. This study investigates the effect of oxidative roasting on lithium extraction from industrially sourced LiFePO4 (LFP) blackmass containing high graphite content (~46%) and mixed electrode materials. Roasting at 650 °C for one hour converted LiFePO4 into water-soluble Li3Fe2(PO4)3 and Fe2O3, while reducing carbon and fluorine levels. However, contrary to expectations, mild-acid leaching (pH 2, 40 g/L, 20 °C) of roasted blackmass did not improve lithium recovery compared to unroasted material, yielding approximately 33% extraction efficiency. Strong-acid leaching (pH 0, H2SO4/H2O2) achieved over 95% lithium recovery but also resulted in significant co-dissolution of iron and other impurities. Our XRD and SEM analyses showed that some lithium-containing phases remained in the residue after water leaching, while acid leaching left mainly iron oxide and graphite. These results suggest that, for complex and graphite-rich industrial blackmass, roasting may not always deliver the expected boost in lithium recovery. Our findings highlight the need to tailor recycling processes to the specific characteristics of battery waste and suggest that direct hydrometallurgical methods could be more effective for complex, impurity-rich LFP blackmass streams. Full article
Show Figures

Figure 1

Back to TopTop