Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,108)

Search Parameters:
Keywords = layered plate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5449 KiB  
Article
Comparisons of the Effects of Polymer and Alcohol Varnishes on Norway Spruce Wood Surface Modifications
by Mariana Domnica Stanciu, Maria Cristina Timar, Mircea Mihalcica, Mihaela Cosnita and Florin Dinulică
Polymers 2025, 17(15), 2131; https://doi.org/10.3390/polym17152131 (registering DOI) - 1 Aug 2025
Abstract
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, [...] Read more.
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, but also to protect the wood from dirt. The varnishes used both to protect the wood from resonance and to ensure a special aesthetic appearance are either polymeric varnishes (nitrocellulose, oil-based) or volatile solvents (spirit). In this study, the color changes, the surface morphology and the chemical spectrum produced by three types of varnishes, applied in 5, 10 and 15 layers, on resonance spruce plates were analyzed. The results revealed significant changes in the color parameters: the lightness decreased by approximately 17% after the first layer, by 50% after 5 layers, by 65% after 10 layers and by 70% after 15 layers. The color parameters are most influenced by the anatomical quality of spruce wood (annual ring width and earlywood/latewood ratio) in the case of oil-based varnishes and least influenced in the case of nitrocellulose varnishes. The chemical fingerprint was determined by FTIR spectrum analysis, which revealed that the most pronounced absorptions were the double band 2926–2858 cm−1, corresponding to aliphatic methylene and methyl groups (asymmetric and symmetrical C-H stretch), and the bands at 1724 cm−1 (oil-based varnish), 1722 cm−1 (nitrocellulose varnish) and 1708 cm−1 (spirit varnish), all assigned to non-conjugated carbonyl groups in either carboxylic acids, esters aldehydes or ketones. The novelty of the study lies in the comparative analysis of three types of varnishes used in the musical instrument industry, applied to samples of spruce resonance wood with different macroscopic characteristics in three different layer thicknesses. Full article
(This article belongs to the Special Issue Advances in Wood Based Composites, 2nd Edition)
Show Figures

Figure 1

20 pages, 3578 KiB  
Article
Performance Improvement of Proton Exchange Membrane Fuel Cell by a New Coupling Channel in Bipolar Plate
by Qingsong Song, Shuochen Yang, Hongtao Li, Yunguang Ji, Dajun Cai, Guangyu Wang and Yuan Liufu
Energies 2025, 18(15), 4068; https://doi.org/10.3390/en18154068 (registering DOI) - 31 Jul 2025
Viewed by 90
Abstract
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The [...] Read more.
The geometric design of flow channels in bipolar plates is one of the critical features of proton exchange membrane fuel cells (PEMFCs), as it determines the power output of the fuel cell and has a significant impact on its performance and durability. The function of the bipolar plate is to guide the transfer of reactant gases to the gas diffusion layer and catalytic layer inside the PEMFC, while removing unreacted gases and gas–liquid byproducts. Therefore, the design of the bipolar plate flow channel is directly related to the water and thermal management of the PEMFC. In order to improve the comprehensive performance of PEMFCs and ensure their safe and stable operation, it is necessary to design the flow channels in bipolar plates rationally and effectively. This study addresses the limitations of existing bipolar plate flow channels by proposing a new coupling of serpentine and radial channels. The distribution of oxygen, water concentrations, and temperature inside the channel is simulated using the multi-physics simulation software COMSOL Multiphysics 6.0. The performance of this novel design is compared with conventional flow channels, with a particular focus on the pressure drop and current density to evaluate changes in the output performance of the PEMFC. The results show that the maximum current density of this novel design is increased by 67.36% and 10.43% compared to straight channel and single serpentine channels, respectively. The main contribution of this research is the innovative design of a new coupling of serpentine and radial channels in bipolar plates, which improves the overall performance of the PEMFC. This study provides theoretical support for the design of bipolar plate flow channels in PEMFCs and holds significant importance for the green development of energy. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies)
Show Figures

Figure 1

22 pages, 8767 KiB  
Article
Experimental and Numerical Investigation of Shear Performance of RC Deep Beams Strengthened with Engineered Cementitious Composites
by Hamsavathi Kannan, Sathish Kumar Veerappan and Madappa V. R. Sivasubramanian
Constr. Mater. 2025, 5(3), 51; https://doi.org/10.3390/constrmater5030051 (registering DOI) - 31 Jul 2025
Viewed by 60
Abstract
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to [...] Read more.
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to confine the strut area. This study investigates the structural performance of RC deep beams with low-strength concrete, strengthened externally using an Engineered Cementitious Composite (ECC) layer. To ensure effective confinement and uniform shear distribution, shear reinforcement was provided at equal intervals with configurations of zero, one, and two vertical shear reinforcements. Four-point bending tests revealed that the ECC layer significantly enhanced the shear capacity, increasing load-carrying capacity by 51.6%, 54.7%, and 46.7% for beams with zero, one, and two shear reinforcements, respectively. Failure analysis through non-linear finite element modeling corroborated experimental observations, confirming shear–compression failure characterized by damage in the concrete struts. The strut-and-tie method, modified to incorporate the tensile strength of ECC and shear reinforcement actual stress values taken from the FE analysis, was used to predict the shear capacity. The predicted values were within 10% of the experimental results, underscoring the reliability of the analytical approach. Overall, this study demonstrates the effectiveness of ECC in improving shear performance and mitigating strut failure in RC deep beams made with low-strength concrete. Full article
Show Figures

Figure 1

18 pages, 4253 KiB  
Article
Testing Using the DCP Probe of a Subgrade Modeled from Difficult-to-Compact Sand in a Calibration Chamber
by Dariusz Tymosiak, Maria Jolanta Sulewska, Wanda Kokoszka, Marta Słowik, Ewa Błazik-Borowa, Dominik Ożóg and Monika Puchlik
Materials 2025, 18(15), 3548; https://doi.org/10.3390/ma18153548 - 29 Jul 2025
Viewed by 198
Abstract
The aim of the article is to analyze the possibilities of using a lightweight dynamic cone probe DCP to determine the quality of compaction of surface layers of embankments (from 0.10 m to approx. 0.80 m below ground level). For this purpose, comparative [...] Read more.
The aim of the article is to analyze the possibilities of using a lightweight dynamic cone probe DCP to determine the quality of compaction of surface layers of embankments (from 0.10 m to approx. 0.80 m below ground level). For this purpose, comparative tests of non-cohesive soil used for the construction of embankments were carried out using the DCP test and direct tests of the degree of compaction IS in a calibration chamber with the following dimensions: height 1.10 m and diameter 0.75 m. The subsoil was prepared from difficult-to-compact sand (Sa) with a uniformity coefficient of CU = 3.10 and curvature coefficient of CC = 0.99. The soil in the laboratory in the calibration chamber was compacted in layers using a vibratory plate compactor. A database for statistical analysis was obtained, n = 68 cases described by seven variables: z, ρ, w, ρd, IS, PI, N10(DCP). It was found that the DCP probe can be used to assess the degree of compaction of embankments made of non-cohesive soil, using the developed relationship IS = f(z, N10(DCP)). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

29 pages, 20260 KiB  
Review
Geodynamic, Tectonophysical, and Structural Comparison of the South Caspian and Levant Basins: A Review
by Lev Eppelbaum, Youri Katz, Fakhraddin Kadirov, Ibrahim Guliyev and Zvi Ben-Avraham
Geosciences 2025, 15(8), 281; https://doi.org/10.3390/geosciences15080281 - 24 Jul 2025
Viewed by 270
Abstract
The Paratethyan South Caspian and Mediterranean Levant basins relate to the significant hydrocarbon provinces of Eurasia. The giant hydrocarbon reserves of the SCB are well-known. Within the LB, so far, only a few commercial gas fields have been found. Both the LB and [...] Read more.
The Paratethyan South Caspian and Mediterranean Levant basins relate to the significant hydrocarbon provinces of Eurasia. The giant hydrocarbon reserves of the SCB are well-known. Within the LB, so far, only a few commercial gas fields have been found. Both the LB and SCB contain some geological peculiarities. These basins are highly complex tectonically and structurally, requiring a careful, multi-component geological–geophysical analysis. These basins are primarily composed of oceanic crust. The oceanic crust of both the South Caspian and Levant basins formed within the complex Neotethys ocean structure. However, this crust is allochthonous in the Levant Basin (LB) and autochthonous in the South Caspian Basin (SCB). This study presents a comprehensive comparison of numerous tectonic, geodynamic, morphological, sedimentary, and geophysical aspects of these basins. The Levant Basin is located directly above the middle part of the massive, counterclockwise-rotating mantle structure and rotates accordingly in the same direction. To the north of this basin is located the critical latitude 35° of the Earth, with the vast Cyprus Bouguer gravity anomaly. The LB contains the most ancient block of oceanic crust on Earth, which is related to the Kiama paleomagnetic hyperzone. On the western boundary of the SCB, approximately 35% of the world’s mud volcanoes are located; the geological reasons for this are still unclear. The low heat flow values and thick sedimentary layers in both basins provide opportunities to discover commercial hydrocarbon deposits at great depths. The counterclockwise-rotating mantle structure creates an indirect geodynamic influence on the SCB. The lithospheric blocks situated above the eastern branch of the mantle structure trigger a north–northeastward movement of the western segment of the Iranian Plate, which exhibits a complex geometric configuration. Conversely, the movement of the Iranian Plate induced a clockwise rotation of the South Caspian Basin, which lies to the east of the plate. This geodynamic ensemble creates an unstable geodynamic situation in the region. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

18 pages, 3036 KiB  
Article
Modelling and Simulation of a New π-Gate AlGaN/GaN HEMT with High Voltage Withstand and High RF Performance
by Jun Yao, Xianyun Liu, Chenglong Lu, Di Yang and Wulong Yuan
Electronics 2025, 14(15), 2947; https://doi.org/10.3390/electronics14152947 - 24 Jul 2025
Viewed by 202
Abstract
Aiming at the problems of low withstand voltage and poor RF performance of traditional HEMT devices, a new AlGaN/GaN high electron mobility transistor device with a π-gate (NπGS HEMT) is designed in this paper. The new structure incorporates a π-gate design along with [...] Read more.
Aiming at the problems of low withstand voltage and poor RF performance of traditional HEMT devices, a new AlGaN/GaN high electron mobility transistor device with a π-gate (NπGS HEMT) is designed in this paper. The new structure incorporates a π-gate design along with a PN-junction field plate and an AlGaN back-barrier layer. The device is modeled and simulated in Silvaco TCAD 2015 software and compared with traditional t-gate HEMT devices. The results show that the NπGS HEMT has a significant improvement in various characteristics. The new structure has a higher peak transconductance of 336 mS·mm−1, which is 13% higher than that of the traditional HEMT structure. In terms of output characteristics, the new structure has a higher saturation drain current of 0.188 A/mm. The new structure improves the RF performance of the device with a higher maximum cutoff frequency of about 839 GHz. The device also has a better performance in terms of voltage withstand, exhibiting a higher breakdown voltage of 1817 V. These results show that the proposed new structure could be useful for future research on high voltage withstand and high RF HEMT devices. Full article
Show Figures

Figure 1

18 pages, 5521 KiB  
Article
Design and TCAD Simulation of GaN P-i-N Diode with Multi-Drift-Layer and Field-Plate Termination Structures
by Zhibo Yang, Guanyu Wang, Yifei Wang, Pandi Mao and Bo Ye
Micromachines 2025, 16(8), 839; https://doi.org/10.3390/mi16080839 - 22 Jul 2025
Viewed by 293
Abstract
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work [...] Read more.
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work systematically evaluates multiple edge termination techniques, including deep-etched mesa, beveled mesa, and field-plate configurations with both vertical and inclined mesa structures. We present an optimized multi-drift-layer GaN P-i-N diode incorporating field-plate termination and analyze its electrical performance in detail. This study covers forward conduction characteristics including on-state voltage, on-resistance, and their temperature dependence, reverse breakdown behavior examining voltage capability and electric field distribution under different temperatures, and switching performance addressing both forward recovery phenomena, i.e., voltage overshoot and carrier injection dynamics, and reverse recovery characteristics including peak current and recovery time. The comprehensive analysis offers practical design guidelines for developing high-performance GaN power devices. Full article
Show Figures

Figure 1

22 pages, 10576 KiB  
Article
Numerical Simulation of Double-Layer Nanoplates Based on Fractional Model and Shifted Legendre Algorithm
by Qianqian Fan, Qiumei Liu, Yiming Chen, Yuhuan Cui, Jingguo Qu and Lei Wang
Fractal Fract. 2025, 9(7), 477; https://doi.org/10.3390/fractalfract9070477 - 21 Jul 2025
Viewed by 292
Abstract
This study focuses on the numerical solution and dynamics analysis of fractional governing equations related to double-layer nanoplates based on the shifted Legendre polynomials algorithm. Firstly, the fractional governing equations of the complicated mechanical behavior for bilayer nanoplates are constructed by combining the [...] Read more.
This study focuses on the numerical solution and dynamics analysis of fractional governing equations related to double-layer nanoplates based on the shifted Legendre polynomials algorithm. Firstly, the fractional governing equations of the complicated mechanical behavior for bilayer nanoplates are constructed by combining the Fractional Kelvin–Voigt (FKV) model with the Caputo fractional derivative and the theory of nonlocal elasticity. Then, the shifted Legendre polynomial is used to approximate the displacement function, and the governing equations are transformed into algebraic equations to facilitate the numerical solution in the time domain. Moreover, the systematic convergence analysis is carried out to verify the convergence of the ternary displacement function and its fractional derivatives in the equation, ensuring the rigor of the mathematical model. Finally, a dimensionless numerical example is given to verify the feasibility of the proposed algorithm, and the effects of material parameters on plate displacement are analyzed for double-layer plates with different materials. Full article
Show Figures

Figure 1

13 pages, 3341 KiB  
Article
Design and Experimentation of Variable-Density Damping Materials Based on Topology Optimization
by Xiangkun Zeng, Biaojie Han, Ziheng Kuang, Han Ding, Kaixin Wang, Canyi Du, Wei Wu, Hongluo Li and Jiangang Wang
Processes 2025, 13(7), 2276; https://doi.org/10.3390/pr13072276 - 17 Jul 2025
Viewed by 259
Abstract
In engineering structures, damping materials are an effective way to improve vibration characteristics, but they can significantly increase the weight and cost of the structure. In this study, based on the variable density topology optimization algorithm, combined with finite element simulation and experimental [...] Read more.
In engineering structures, damping materials are an effective way to improve vibration characteristics, but they can significantly increase the weight and cost of the structure. In this study, based on the variable density topology optimization algorithm, combined with finite element simulation and experimental validation, the vibration damping performance of a composite structure with steel plate and damping material is optimized. With the objective of minimizing the resonance response and the constraint of damping material volume, the material distribution of the damping layer is optimized, and the amount of damping material used is successfully reduced by 31.2%. By building a test rig and comparing the vibration responses under the three working conditions of no damping, full damping coverage, and optimized damping, the effectiveness of the optimization strategy is verified, and a significant reduction in vibration response is achieved. This study provides an innovative solution for lightweight design and cost control in engineering. Full article
Show Figures

Figure 1

25 pages, 3861 KiB  
Article
Research on Acoustic and Parametric Coupling of Single-Layer Porous Plate–Lightweight Glass Wool Composite Structure Doors for Pure Electric Vehicles
by Jintao Su, Xue Li, Haibiao Yang and Ti Wu
World Electr. Veh. J. 2025, 16(7), 393; https://doi.org/10.3390/wevj16070393 - 14 Jul 2025
Viewed by 263
Abstract
Due to the absence of engine noise in new energy vehicles, road noise and wind noise become particularly noticeable. Therefore, studying the noise transmission through car doors is essential to effectively reduce the impact of these noises on the passenger compartment. To address [...] Read more.
Due to the absence of engine noise in new energy vehicles, road noise and wind noise become particularly noticeable. Therefore, studying the noise transmission through car doors is essential to effectively reduce the impact of these noises on the passenger compartment. To address the optimization of the sound absorption performance of single-layer porous plates combined with lightweight glass wool used in the doors of electric vehicles, this study established a microscopic acoustic performance analysis model based on the transfer matrix method and sound transmission loss theory. The effects of medium type, perforation rate, perforation radius, material thickness, and porosity on the sound absorption coefficient, impedance characteristics, and reflection coefficient were systematically investigated. Results indicate that in the high-frequency range (above 1200 Hz), the sound absorption coefficients of both rigid and flexible media can reach up to 0.9. When the perforation rate increases from 0.01 to 0.2, the peak sound absorption coefficient in the high-frequency band (1400–2000 Hz) rises from 0.45 to 0.85. Increasing the perforation radius to 0.03 m improves acoustic impedance matching. This research provides theoretical support and a parameter optimization basis for the design of acoustic packaging materials for electric vehicles, contributing significantly to enhancing the interior acoustic environment. Full article
Show Figures

Figure 1

22 pages, 11082 KiB  
Article
Exploring the Impact of Inter-Layer Structure on Glass Fiber-Poplar Composite Board: Mechanical and Thermal Properties Analysis
by Jiong Zhang, Shurui Liu, Jinpeng Li, Jixuan Wang, Haoyu Bai, Peng Wei and Tian Liu
Materials 2025, 18(14), 3284; https://doi.org/10.3390/ma18143284 - 11 Jul 2025
Viewed by 248
Abstract
This study presents the design and fabrication of a glass fiber–poplar veneer composite plate, investigating how varying interlayer configurations of glass fiber (single- and double-layer) and the arrangement of poplar veneer layers (odd and even) impact the mechanical and thermal insulation characteristics of [...] Read more.
This study presents the design and fabrication of a glass fiber–poplar veneer composite plate, investigating how varying interlayer configurations of glass fiber (single- and double-layer) and the arrangement of poplar veneer layers (odd and even) impact the mechanical and thermal insulation characteristics of these composite plates. Compared to plywood made from natural wood, glass fiber significantly improved the properties of fast-growing poplar plywood. The highest impact strength increased by 3.62 times, while the flexural strength increased by 26.22% and the tensile strength by 29.66%. The thermal diffusion coefficient of the experimental group decreased by 40.74%, indicating better insulation. Interestingly, single-layer glass fiber is superior to a double-layer structure in terms of thermal insulation. An optimal interlayer structure was identified, comprising one veneer layer between two layers of glass fiber cloth, repeated three times. Abaqus 2019 was used for finite element analysis (FEA). The simulation results agree with the experimental data to within 5%. These findings confirm the importance of structural configuration in determining the properties of composite materials, providing a theoretical basis for the structural design of fiber–reinforced composite materials. Full article
Show Figures

Figure 1

22 pages, 1654 KiB  
Review
A Review of Mechanical Performance Studies on Composite Concrete Beams and Slabs
by Xinhao Wang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Materials 2025, 18(14), 3259; https://doi.org/10.3390/ma18143259 - 10 Jul 2025
Viewed by 351
Abstract
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high [...] Read more.
This paper reviews the applications and performance advantages of ultra-high-performance concrete (UHPC), engineered cementitious composite (ECC), and recycled aggregate concrete (RAC) in composite flexural members. UHPC is characterized by its ultra-high strength, high toughness, excellent durability, and microcrack self-healing capability, albeit with high costs and complex production processes. ECC demonstrates superior tensile, flexural, and compressive strength and durability, yet it exhibits a lower elastic modulus and greater drying shrinkage strain. RAC, as an eco-friendly concrete, offers cost-effectiveness and environmental benefits, although it poses certain performance challenges. The focus of this review is on how to enhance the load-bearing capacity of composite beams or slabs by modifying the interface roughness, adjusting the thickness of the ECC or UHPC layer, and altering the cross-sectional form. The integration of diverse concrete materials improves the performance of beam and slab elements while managing costs. For instance, increasing the thickness of the UHPC or ECC layer typically enhances the load-bearing capacity of composite beams or plates by approximately 10% to 40%. Increasing the roughness of the interface can significantly improve the interfacial bond strength and further augment the ultimate load-bearing capacity of composite components. Moreover, the optimized design of material mix proportions and cross-sectional shapes can also contribute to enhancing the load-bearing capacity, crack resistance, and ductility of composite components. Nevertheless, challenges persist in engineering applications, such as the scarcity of long-term monitoring data on durability, fatigue performance, and creep effects. Additionally, existing design codes inadequately address the nonlinear behavior of multi-material composite structures, necessitating further refinement of design theories. Full article
(This article belongs to the Special Issue Advances in Concrete and Binders for Sustainable Engineering)
Show Figures

Figure 1

20 pages, 13326 KiB  
Article
Stress–Strain and Structural Evolution on the Localized Interface of Stainless Steel Clad Plate
by Yinpeng Wang, Bo Gao, Qiqing Tian, Chunhui Jiang, Lu Zhu, Yanguang Cao, Wei Wei and Zhaodong Li
Materials 2025, 18(14), 3255; https://doi.org/10.3390/ma18143255 - 10 Jul 2025
Viewed by 320
Abstract
By applying different heat treatment processes (furnace cooling, air cooling, and water cooling), the stress–strain behavior of the localized interfacial region in weathering steel–stainless steel clad plates was investigated using nanoindentation, along with an analysis of interfacial microstructure formation and strengthening mechanisms. The [...] Read more.
By applying different heat treatment processes (furnace cooling, air cooling, and water cooling), the stress–strain behavior of the localized interfacial region in weathering steel–stainless steel clad plates was investigated using nanoindentation, along with an analysis of interfacial microstructure formation and strengthening mechanisms. The results show that samples in the as-rolled (R), furnace-cooled (FC), air-cooled (AC), and water-cooled (WC) conditions exhibit distinct interfacial morphologies and local mechanical properties. A well-defined interfacial layer forms between the base and cladding materials, where a high density of dislocations, grain boundaries, precipitates, and nanoscale oxides significantly enhances interfacial strength, resulting in a yield strength (Rp0.2) much higher than that of either adjacent metal. Across the transition from weathering steel to stainless steel, the interfacial region consists of ferrite—interfacial layer—“new austenite”—stainless steel austenite. Its formation is predominantly governed by element diffusion, which is strongly influenced by the applied heat treatment. Variations in diffusion behavior significantly affect the microstructural evolution of the dual-phase transition zone at the interface, thereby altering the local mechanical response. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 7866 KiB  
Article
Asteroid and Meteorite Impacts as a Cause of Large Sedimentary Basins: A Case Study of the Transylvanian Depression
by Dumitru Ioane, Irina Stanciu and Mihaela Scradeanu
Geosciences 2025, 15(7), 267; https://doi.org/10.3390/geosciences15070267 - 9 Jul 2025
Viewed by 678
Abstract
Impact cratering determined by collisions with meteorites and asteroids is considered one of the main natural processes in the Solar System, modifying the planets and their satellites surface during time. The Earth includes in its impact record a small number of such events [...] Read more.
Impact cratering determined by collisions with meteorites and asteroids is considered one of the main natural processes in the Solar System, modifying the planets and their satellites surface during time. The Earth includes in its impact record a small number of such events due to active plate tectonics, sedimentation, and volcanism, with these geological processes destroying and burying their impact geomorphological signatures. To enlarge the Earth’s impacts database, new concepts and research methods are necessary, as well as the reinterpretation of old geological and geophysical models. Geomorphological, Geological, and Geophysical (3G) signatures in concealed impacted areas are discussed in this paper; the first offers the target characteristics, while the others give means for detecting their unseen remnants. The 3G signatures have been applied to the Transylvanian Depression, a fascinating geological structure, with difficulties in explaining the direct overlapping of regionally developed thick tuff and thick salt layers, and undecided interpretation of the regional magnetic anomaly. Large and deep sedimentary basins, such as the Precaspian, Alexandria and Transylvanian depressions, are interpreted to have started as impacted areas during the Permian or the Lower Neogene. Geophysical and geological existing information have been reinterpreted, offering a new way in understanding deeply located geological structures. Full article
Show Figures

Figure 1

17 pages, 1773 KiB  
Article
Electroosmotic Slip Flow of Powell–Eyring Fluid in a Parallel-Plate Microchannel
by Yuting Jiang
Symmetry 2025, 17(7), 1071; https://doi.org/10.3390/sym17071071 - 5 Jul 2025
Viewed by 260
Abstract
The electroosmotic flow (EOF) of non-Newtonian fluids plays a significant role in microfluidic systems. The EOF of Powell–Eyring fluid within a parallel-plate microchannel, under the influence of both electric field and pressure gradient, is investigated. Navier’s boundary condition is adopted. The velocity distribution’s [...] Read more.
The electroosmotic flow (EOF) of non-Newtonian fluids plays a significant role in microfluidic systems. The EOF of Powell–Eyring fluid within a parallel-plate microchannel, under the influence of both electric field and pressure gradient, is investigated. Navier’s boundary condition is adopted. The velocity distribution’s approximate solution is derived via the homotopy perturbation technique (HPM). Optimized initial guesses enable accurate second-order approximations, dramatically lowering computational complexity. The numerical solution is acquired via the modified spectral local linearization method (SLLM), exhibiting both high accuracy and computational efficiency. Visualizations reveal how the pressure gradient/electric field, the electric double layer (EDL) width, and slip length affect velocity. The ratio of pressure gradient to electric field exhibits a nonlinear modulating effect on the velocity. The EDL is a nanoscale charge layer at solid–liquid interfaces. A thinner EDL thickness diminishes the slip flow phenomenon. The shear-thinning characteristics of the Powell–Eyring fluid are particularly pronounced in the central region under high pressure gradients and in the boundary layer region when wall slip is present. These findings establish a theoretical base for the development of microfluidic devices and the improvement of pharmaceutical carrier strategies. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop