Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (535)

Search Parameters:
Keywords = layered nanosheet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 24500 KiB  
Article
Ambient to Elevated Temperature: Ecotribology of Water-Based Lubricants Incorporating hBN/TiO2 Nanoadditives
by Afshana Morshed, Fei Lin, Hui Wu, Zhao Xing, Sihai Jiao and Zhengyi Jiang
Lubricants 2025, 13(8), 344; https://doi.org/10.3390/lubricants13080344 (registering DOI) - 1 Aug 2025
Abstract
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In [...] Read more.
Ecotribology focuses on both saving energy resources and reducing environmental pollution. Considering environmental concerns, water-based nanolubricants have gained significant attention over conventional oil-based ones. Non-ecotoxic and highly environmentally friendly nanoadditives were chosen for nanolubricant synthesis, especially considering their use at elevated temperatures. In this study, hexagonal boron nitride nanosheets (hBNNSs) and titanium dioxide nanoparticles (TiO2 NPs) were used to prepare water-based lubricants with glycerol and surfactant sodium dodecyl benzene sulfonate (SDBS) in water under ultrasonication. An Rtec ball-on-disk tribometer was used to investigate the tribological performance of the synthesised water-based lubricants containing different nano-hBN/TiO2 concentrations, with dry and water conditions used as benchmarks. The results indicated that the water-based nanolubricant containing 0.5 wt% hBN and 0.5 wt% TiO2 exhibited the best tribological performance at both ambient (25 °C) and elevated (500 °C) temperatures. This optimal concentration leads to a reduction in the coefficient of friction (COF) by 72.9% and 37.5%, wear of disk by 62.5% and 49%, and wear of ball by 74% and 69% at ambient and elevated temperatures, respectively, compared to that of distilled water. Lubrication mechanisms were attributed to the rolling, mending, tribofilm, solid layer formation, and synergistic effects of hBNNSs and TiO2 NPs. Full article
(This article belongs to the Special Issue Tribology in Manufacturing Engineering)
Show Figures

Figure 1

24 pages, 5021 KiB  
Article
Enhanced Mechanical and Electromagnetic Shielding Properties of Mg Matrix Layered Composites Reinforced with Hybrid Graphene Nanosheet (GNS)–Carbon Nanotube (CNT) Networks
by Hailong Shi, Jiancheng Zhao, Zhenming Sun, Xiaojun Wang, Xiaoshi Hu, Xuejian Li, Chao Xu, Weimin Gan and Chao Ding
Materials 2025, 18(15), 3455; https://doi.org/10.3390/ma18153455 - 23 Jul 2025
Viewed by 287
Abstract
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of [...] Read more.
The development of lightweight composites with superior mechanical properties and electromagnetic interference (EMI) shielding performance is essential for various structural and functional applications. This study investigates the effect of hybrid nanocarbon (graphene nanosheet (GNS) and carbon nanotube (CNT)) reinforcements on the properties of magnesium (Mg) matrix composites. Specifically, the GNS-CNT hybrid, which forms a three-dimensional interconnected network structure, was analyzed and compared to composites reinforced with only GNSs or CNTs. The objective was to determine the benefits of hybrid reinforcements on the mechanical strength and EMI shielding capability of the composites. The results indicated that the GNS-CNT/Mg composite, at a nanocarbon content of 0.5 wt.% and a GNS-CNT ratio of 1:2, achieved optimal performance, with a 55% increase in tensile strength and an EMI shielding effectiveness of 70 dB. The observed enhancements can be attributed to several key mechanisms: effective load transfer, which promotes tensile twinning, along with improved impedance matching and multiple internal reflections within the GNS-CNT network, which enhance absorption loss. These significant improvements position the composite as a promising candidate for advanced applications requiring high strength, toughness, and efficient electromagnetic shielding, providing valuable insights into the design of high-performance lightweight materials. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

13 pages, 2300 KiB  
Article
A Hierarchically Structured Ni-NOF@ZIF-L Heterojunction Using Van Der Waals Interactions for Electrocatalytic Reduction of CO2 to HCOOH
by Liqun Wu, Xiaojun He and Jian Zhou
Appl. Sci. 2025, 15(14), 8095; https://doi.org/10.3390/app15148095 - 21 Jul 2025
Viewed by 226
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion [...] Read more.
The electrocatalytic CO2 reduction reaction (CO2RR) offers an energy-saving and environmentally friendly approach to producing hydrocarbon fuels. The use of a gas diffusion electrode (GDE) flow cell has generally improved the rate of CO2RR, while the gas diffusion layer (GDL) remains a significant challenge. In this study, we successfully engineered a novel metal–organic framework (MOF) heterojunction through the controlled coating of zeolitic imidazolate framework (ZIF-L) on ultrathin nickel—metal–organic framework (Ni-MOF) nanosheets. This innovative architecture simultaneously integrates GDL functionality and exposes abundant solid–liquid–gas triple-phase boundaries. The resulting Ni-MOF@ZIF-L heterostructure demonstrates exceptional performance, achieving a formate Faradaic efficiency of 92.4% while suppressing the hydrogen evolution reaction (HER) to 6.7%. Through computational modeling of the optimized heterojunction configuration, we further elucidated its competitive adsorption behavior and electronic modulation effects. The experimental and theoretical results demonstrate an improvement in electrochemical CO2 reduction activity with suppressed hydrogen evolution for the heterojunction because of its hydrophobic interface, good electron transfer capability, and high CO2 adsorption at the catalyst interface. This work provides a new insight into the rational design of porous crystalline materials in electrocatalytic CO2RR. Full article
Show Figures

Figure 1

22 pages, 5400 KiB  
Article
Polyaniline/Ti3C2 MXene Composites with Artificial 3D Biomimetic Surface Structure of Natural Macaw Feather Applied for Anticorrosion Coatings
by Chen-Cheng Chien, Yu-Hsuan Liu, Kun-Hao Luo, Ting-Yun Liu, Yi-Ting Kao, Shih-Harn Yang and Jui-Ming Yeh
Biomimetics 2025, 10(7), 465; https://doi.org/10.3390/biomimetics10070465 - 15 Jul 2025
Viewed by 319
Abstract
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D [...] Read more.
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D Ti3C2 MXene nanosheets were prepared by treating the Ti3AlC2 using the optimized minimally intensive layer delamination (MILD) method, followed by characterization via XRD and SEM. Subsequently, the PMC was prepared by the oxidative polymerization of aniline monomers in the presence of Ti3C2 MXene nanosheets, followed by characterization via FTIR, XRD, SEM, TEM, CV, and UV–Visible. Eventually, the PMC coatings with the artificial biomimetic surface structure of a macaw feather were prepared by the nano-casting technique. The corrosion resistance of the PMC coatings, evaluated via Tafel polarization and Nyquist impedance measurements, shows that increasing the MXene loading up to 5 wt % shifts the corrosion potential (Ecorr) on steel from −588 mV to −356 mV vs. SCE, reduces the corrosion current density (Icorr) from 1.09 µA/cm2 to 0.035 µA/cm2, and raises the impedance modulus at 0.01 Hz from 67 kΩ to 3794 kΩ. When structured with the hierarchical feather topography, the PMC coating (Bio-PA-MX-5) further advances the Ecorr to +103.6 mV, lowers the Icorr to 7.22 × 10−4 µA/cm2, and boosts the impedance to 96,875 kΩ. Compared to neat coatings without biomimetic structuring, those with engineered biomimetic surfaces showed significantly improved corrosion protection performance. These enhancements arise from three synergistic mechanisms: (i) polyaniline’s redox catalysis accelerates the formation of a dense passive oxide layer; (ii) MXene nanosheets create a tortuous gas barrier that cuts the oxygen permeability from 11.3 Barrer to 0.9 Barrer; and (iii) the biomimetic surface traps air pockets, raising the water contact angle from 87° to 135°. This integrated approach delivers one of the highest combined corrosion potentials and impedance values reported for thin-film coatings, pointing to a general strategy for durable steel protection. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

18 pages, 4672 KiB  
Article
Tailoring Porosity and CO2 Capture Performance of Covalent Organic Frameworks Through Hybridization with Two-Dimensional Nanomaterials
by Hani Nasser Abdelhamid
Inorganics 2025, 13(7), 237; https://doi.org/10.3390/inorganics13070237 - 11 Jul 2025
Viewed by 396
Abstract
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity [...] Read more.
This study reported covalent organic frameworks (COFs) and their hybrid composites with two-dimensional materials, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and boron nitride (BN), to examine their structural, textural, and gas adsorption properties. Material characterization confirmed the crystallinity of COF-1 and the preservation of framework integrity after integrating the 2D nanomaterials. FT-IR spectra exhibited pronounced vibrational fingerprints of imine linkages and validated the functional groups from the COF and the integrated nanomaterials. TEM images revealed the integration of the two components, porous, layered structures with indications of interfacial interactions between COF and 2D nanosheets. Nitrogen adsorption–desorption isotherms revealed the microporous characteristics of the COFs, with hysteresis loops evident, indicating the development of supplementary mesopores at the interface between COF-1 and the 2D materials. The BET surface area of pristine COF-1 was maximal at 437 m2/g, accompanied by significant micropore and Langmuir surface areas of 348 and 1290 m2/g, respectively, offering enhanced average pore widths and hierarchical porous strcuture. CO2 adsorption tests were investigated showing maximum adsorption capacitiy of 1.47 mmol/g, for COF-1, closely followed by COF@BN at 1.40 mmol/g, underscoring the preserved sorption capabilities of these materials. These findings demonstrate the promise of designed COF-based hybrids for gas capture, separation, and environmental remediation applications. Full article
Show Figures

Graphical abstract

12 pages, 2279 KiB  
Article
Electrostatic Self-Assembly of Heterostructured In2O3/Ti3C2Tx Nanocomposite for High-Selectivity NO2 Gas Sensing at Room Temperature
by Yongjing Guo, Zhengxin Zhang, Hangshuo Feng, Qingfu Dai, Qiuni Zhao, Zaihua Duan, Shenghui Guo, Li Yang, Ming Hou and Yi Xia
Chemosensors 2025, 13(7), 249; https://doi.org/10.3390/chemosensors13070249 - 10 Jul 2025
Viewed by 359
Abstract
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O [...] Read more.
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O3) decorated on titanium carbide (Ti3C2Tx) nanosheets by electrostatic self-assembly and develop it for high-selectivity NO2 gas sensing at room temperature. Self-assembly formation of multiple heterojunctions in the In2O3/Ti3C2Tx composite provide abundant NO2 gas adsorption sites and high electron transfer activity, which is conducive to improving the gas-sensing response of the In2O3/Ti3C2Tx gas sensor. Assisted by rich adsorption sites and hetero interface, the as-fabricated In2O3/Ti3C2Tx gas sensor exhibits the highest response to NO2 among various interference gases. Meanwhile, a detection limit of 0.3 ppm, and response/recovery time (197.62/93.84 s) is displayed at room temperature. Finally, a NO2 sensing mechanism of In2O3/Ti3C2Tx gas sensor is constructed based on PN heterojunction enhancement and molecular adsorption. This work not only expands the gas-sensing application of MXenes, but also demonstrates an avenue for the rational design and construction of NO2-sensing materials. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

16 pages, 2468 KiB  
Article
Multi-Bit Resistive Random-Access Memory Based on Two-Dimensional MoO3 Layers
by Kai Liu, Wengui Jiang, Liang Zhou, Yinkang Zhou, Minghui Hu, Yuchen Geng, Yiyuan Zhang, Yi Qiao, Rongming Wang and Yinghui Sun
Nanomaterials 2025, 15(13), 1033; https://doi.org/10.3390/nano15131033 - 3 Jul 2025
Viewed by 357
Abstract
Two-dimensional (2D) material-based resistive random-access memory (RRAM) has emerged as a promising solution for neuromorphic computing and computing-in-memory architectures. Compared to conventional metal-oxide-based RRAM, the novel 2D material-based RRAM devices demonstrate lower power consumption, higher integration density, and reduced performance variability, benefiting from [...] Read more.
Two-dimensional (2D) material-based resistive random-access memory (RRAM) has emerged as a promising solution for neuromorphic computing and computing-in-memory architectures. Compared to conventional metal-oxide-based RRAM, the novel 2D material-based RRAM devices demonstrate lower power consumption, higher integration density, and reduced performance variability, benefiting from their atomic-scale thickness and ultra-flat surfaces. Remarkably, 2D layered metal oxides retain these advantages while preserving the merits of traditional metal oxides, including their low cost and high environmental stability. Through a multi-step dry transfer process, we fabricated a Pd-MoO3-Ag RRAM device featuring 2D α-MoO3 as the resistive switching layer, with Pd and Ag serving as inert and active electrodes, respectively. Resistive switching tests revealed an excellent operational stability, low write voltage (~0.5 V), high switching ratio (>106), and multi-bit storage capability (≥3 bits). Nevertheless, the device exhibited a limited retention time (~2000 s). To overcome this limitation, we developed a Gr-MoO3-Ag heterostructure by substituting the Pd electrode with graphene (Gr). This modification achieved a fivefold improvement in the retention time (>104 s). These findings demonstrate that by controlling the type and thickness of 2D materials and resistive switching layers, RRAM devices with both high On/Off ratios and long-term data retention may be developed. Full article
Show Figures

Figure 1

14 pages, 2652 KiB  
Article
Rational Construction of Nano-Scaled FeOOH/NiFe-LDH for Efficient Water Splitting
by Juan Yu, Xiubing Fu, Haoqi Wang, Shun Lu and Bing Li
Nanomaterials 2025, 15(12), 949; https://doi.org/10.3390/nano15120949 - 18 Jun 2025
Viewed by 410
Abstract
In this paper, we use the facile approach for preparing novel, low-cost, efficient electrocatalysts for electrocatalytic water splitting. Interfacial engineering can significantly enhance the intrinsic performance of electrocatalysts. Herein, self-supporting FeOOH/NiFe-layered double hydroxide (LDH) nanosheet arrays were synthesized via hydrothermal and impregnation methods. [...] Read more.
In this paper, we use the facile approach for preparing novel, low-cost, efficient electrocatalysts for electrocatalytic water splitting. Interfacial engineering can significantly enhance the intrinsic performance of electrocatalysts. Herein, self-supporting FeOOH/NiFe-layered double hydroxide (LDH) nanosheet arrays were synthesized via hydrothermal and impregnation methods. The resulting FeOOH/NiFe-LDH can provide more active regions, which provide more active regions for co-reaction to proceed and accelerates electron transmit processes. Additionally, the amorphous FeOOH provides abundant active sites with low coordination, leading to excellent activity. The FeOOH/NiFe-LDH demonstrates remarkable two half-reaction electrocatalytic activity, along with excellent overpotentials of 168 mV (OER) and 155 mV (HER). This research introduces a sophisticated and scalable methodology for the creation of remarkably efficient and resilient alkaline conditions specifically designed for the HER and OER. Full article
Show Figures

Graphical abstract

14 pages, 3101 KiB  
Article
Construction of CuCo2O4@NiFe-LDH Core–Shell Heterostructure for High-Performance Hybrid Supercapacitors
by Yang Chen, Man Li, Chengyu Xue and Fuxiang Wei
Metals 2025, 15(6), 659; https://doi.org/10.3390/met15060659 - 13 Jun 2025
Viewed by 455
Abstract
Transition metal oxides (TMOs) are considered to be highly promising materials for supercapacitor electrodes due to their low cost, multiple convertible valence states, and excellent electrochemical properties. However, inherent limitations, including restricted specific surface area and low electrical conductivity, have largely restricted their [...] Read more.
Transition metal oxides (TMOs) are considered to be highly promising materials for supercapacitor electrodes due to their low cost, multiple convertible valence states, and excellent electrochemical properties. However, inherent limitations, including restricted specific surface area and low electrical conductivity, have largely restricted their application in supercapacitors. In this paper, core–shell heterostructures of nickel–iron layered double hydroxide (NiFe-LDH) nanosheets uniformly grown on CuCo2O4 nanoneedles were synthesized by hydrothermal and calcination methods. It is found that the novel core–shell structure of CuCo2O4@NiFe-LDH improves the electrical conductivity of the electrode materials and optimizes the charge transport path. Under the synergistic effect of the two components and the core–shell heterostructure, the CuCo2O4@NiFe-LDH electrode achieves an ultra-high specific capacity of 323.4 mAh g−1 at 1 A g−1. And the capacity retention after 10,000 cycles at 10 A g−1 is 90.66%. In addition, the assembled CuCo2O4@NiFe-LDH//RGO asymmetric supercapacitor device achieved a considerable energy density (68.7 Wh kg−1 at 856.3 W kg−1). It also has 89.36% capacity retention after 10,000 cycles at 10 A g−1. These properties indicate the great potential application of CuCo2O4@NiFe-LDH in the field of high-performance supercapacitors. Full article
Show Figures

Figure 1

23 pages, 6315 KiB  
Article
BiOBr@PZT Nanocomposite Membranes via Electrospinning-SILAR Technology: A Sustainable Green Material for Photocatalytic Degradation in Coloration-Related Wastewater Remediation
by Zhengyu Ding, Jun Zhang, Zheyao Xia, Binjie Xin, Jiali Yu and Xiaoyuan Lei
Sustainability 2025, 17(11), 4984; https://doi.org/10.3390/su17114984 - 29 May 2025
Viewed by 614
Abstract
The textile industry encounters serious environmental challenges from wastewater with persistent organic pollutants, demanding sustainable solutions for remediation. Herein, we report a novel green synthesis of flexible BiOBr@PZT nanocomposite membranes via electrospinning and successive ionic layer adsorption and reaction (SILAR) for visible-light-driven photocatalytic [...] Read more.
The textile industry encounters serious environmental challenges from wastewater with persistent organic pollutants, demanding sustainable solutions for remediation. Herein, we report a novel green synthesis of flexible BiOBr@PZT nanocomposite membranes via electrospinning and successive ionic layer adsorption and reaction (SILAR) for visible-light-driven photocatalytic degradation. The hierarchical structure integrates leaf-like BiOBr nanosheets with PAN/ZnO/TiO2 (PZT) nanofibers, forming a Z-scheme heterojunction. This enhances the separation of photogenerated carriers while preserving mechanical integrity. SILAR-enabled low temperature deposition ensures eco-friendly fabrication by avoiding toxic precursors and cutting energy use. Optimized BiOBr@PZT-5 shows exceptional photocatalytic performance, achieving 97.6% tetracycline hydrochloride (TCH) degradation under visible light in 120 min. It also has strong tensile strength (4.29 MPa) and cycling stability. Mechanistic studies show efficient generation of O2 and OH radicals through synergistic light absorption, charge transfer, and turbulence-enhanced mass diffusion. The material’s flexibility allows reusable turbulent flow applications, overcoming rigid catalyst limitations. Aligning with green chemistry and UN SDGs, this work advances multifunctional photocatalytic systems for scalable, energy-efficient wastewater treatment, offering a paradigm that integrates environmental remediation with industrial adaptability. Full article
Show Figures

Figure 1

11 pages, 1671 KiB  
Article
The Preparation of Stable MoS2 Dispersions by Using Well-Defined Polymers with Pendant Sulfide Moieties
by Jin Motoyanagi, Kohei Kawade and Masahiko Minoda
Chemistry 2025, 7(3), 84; https://doi.org/10.3390/chemistry7030084 - 23 May 2025
Viewed by 573
Abstract
The preparation of stable dispersions of MoS2 by ultrasonic aqueous and/or organic media containing amphiphilic molecules is an attractive and widely applicable method to form MoS2 fine particles while suppressing its aggregation. In this study, we developed a series of polymers [...] Read more.
The preparation of stable dispersions of MoS2 by ultrasonic aqueous and/or organic media containing amphiphilic molecules is an attractive and widely applicable method to form MoS2 fine particles while suppressing its aggregation. In this study, we developed a series of polymers with pendant sulfide moieties as a new dispersant, under the hypothesis that it would interact with sulfur atoms on MoS2 surfaces. First, we designed a sulfide group-substituted methacrylate derivative (ESMA) with the hypothesis that it would interact with the MoS2 surface through sulfur-sulfur interactions. Then, we synthesized well-defined polymers with pendant sulfide groups by living radical polymerization (ATRP). Next, 0.5 wt% MoS2 was added to a DMSO solution containing 1 wt% of the obtained polymer (polyESMA), and the mixture was treated with a bath-type ultrasonicator for 3 h to obtain a MoS2 dispersion. We found that stable dispersions of MoS2 in a fine particle state, although not in the form of single-layer or few-layer nanosheets, could be readily formed in DMSO using polyESMA as a polymeric dispersant. Furthermore, we synthesized polymeric dispersants with different molecular weights and investigated the relationship between the structure of the dispersant and the dispersion stability. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Figure 1

26 pages, 6337 KiB  
Article
Facile Synthesis and Characterization of Novel Analcime@Calcium Aluminate@Polyethylene Glycol 400 Nanocomposite for Efficient Removal of Zn(II) Ions from Aqueous Media
by Ehab A. Abdelrahman, Abdulrahman G. Alhamzani, Mortaga M. Abou-Krisha, Fawaz A. Saad and Abdalla M. Khedr
Inorganics 2025, 13(5), 174; https://doi.org/10.3390/inorganics13050174 - 20 May 2025
Viewed by 827
Abstract
Excessive Zn(II) ions in aquatic environments pose significant risks to both human health and ecological systems due to their toxic effects, bioaccumulation potential, and interference with essential biological processes. To address this issue, a novel analcime@calcium aluminate@polyethylene glycol 400 (ACP) nanocomposite was fabricated [...] Read more.
Excessive Zn(II) ions in aquatic environments pose significant risks to both human health and ecological systems due to their toxic effects, bioaccumulation potential, and interference with essential biological processes. To address this issue, a novel analcime@calcium aluminate@polyethylene glycol 400 (ACP) nanocomposite was fabricated using the hydrothermal technique, alongside an analcime@calcium aluminate (AC) nanocomposite for the efficient elimination of Zn(II) ions from aqueous media. X-ray diffraction (XRD) analysis affirmed the successful formation of crystalline phases, revealing average crystallite sizes of 72.93 nm for AC and 63.60 nm for ACP. Energy-dispersive X-ray spectroscopy (EDX) confirmed the elemental composition of the nanocomposites, showing that AC primarily contained oxygen, sodium, aluminum, silicon, and calcium, whereas ACP incorporated 19.3% carbon due to the polyethylene glycol 400. Field emission scanning electron microscopy (FE-SEM) revealed that AC exhibited hexagonal and platelet-like structures, whereas ACP displayed more dispersed and layered morphologies. High-resolution transmission electron microscopy (HR-TEM) confirmed the presence of stacked platelet-like structures in AC and more defined, separated nanosheets in ACP. The maximum adsorption capacities of AC and ACP were 149.93 and 230.95 mg/g, respectively. The adsorption pathway of Zn(II) ions onto ACP nanocomposite involved three primary interactions: electrostatic attraction facilitated by calcium aluminate, ion exchange provided by analcime, and complexation promoted by polyethylene glycol 400. Thermodynamic analysis indicated that the adsorption process was exothermic, spontaneous, and primarily chemical in nature. Kinetic modeling confirmed that adsorption followed the pseudo-second-order model, while isotherm studies demonstrated adherence to the Langmuir model, indicating monolayer adsorption on homogeneous sites. Full article
Show Figures

Figure 1

12 pages, 2424 KiB  
Article
Growth of Two-Dimensional Edge-Rich Screwed WS2 with High Active Site Density for Accelerated Hydrogen Evolution
by Dengchao Hu, Chaocheng Sun, Yida Wang, Fade Zhao, Yubao Li, Limei Song, Cuncai Lv, Weihao Zheng and Honglai Li
Catalysts 2025, 15(5), 496; https://doi.org/10.3390/catal15050496 - 20 May 2025
Viewed by 660
Abstract
Two-dimensional transition metal dichalcogenides have attracted considerable attention in electrocatalytic hydrogen evolution due to their unique layered structures and tunable electronic properties. However, prior research has predominantly focused on the intrinsic catalytic activity of planar few-layer structures, which offer limited exposure of edge-active [...] Read more.
Two-dimensional transition metal dichalcogenides have attracted considerable attention in electrocatalytic hydrogen evolution due to their unique layered structures and tunable electronic properties. However, prior research has predominantly focused on the intrinsic catalytic activity of planar few-layer structures, which offer limited exposure of edge-active sites due to their restricted two-dimensional geometry. Moreover, van der Waals interactions between layers impose substantial barriers to electron transport, significantly hindering charge transfer efficiency. To overcome these limitations, this study presents the innovative synthesis of high-quality single-screw WS2 with a 5° dislocation angle via physical vapor deposition. Second harmonic generation measurements revealed a pronounced asymmetric polarization response, while the selected area electron diffractionand atomic force microscopy elucidated the material’s distinctive screwed dislocation configuration. In contrast to planar monolayer WS2, the conical/screw-structured WS2—formed through screw-dislocation-mediated growth—exhibits a higher density of exposed edge-active catalytic sites and enhanced electron transport capabilities. Electrochemical performance tests revealed that in an alkaline medium, the screwed WS2 nanosheets exhibited an overpotential of 310 mV at a current density of −10 mA/cm2, with a Tafel slope of 204 mV/dec. Additionally, under a current density of 18 mA/cm2, the screwed WS2 can sustain this current density for at least 30 h. These findings offer valuable insights into the design of low-cost, high-efficiency, non-precious metal catalysts for hydrogen evolution reactions. Full article
(This article belongs to the Special Issue Two-Dimensional (2D) Materials in Catalysis)
Show Figures

Graphical abstract

22 pages, 4250 KiB  
Article
Synthesis and Photocatalytic Properties of Manganese-Substituted Layered Perovskite-like Titanates A′2La2MnxTi3−xO10 (A′ = Na, H)
by Sergei A. Kurnosenko, Anastasiya I. Ustinova, Iana A. Minich, Vladimir V. Voytovich, Oleg I. Silyukov, Dmitrii V. Pankin, Olga V. Volina, Alina V. Kulagina and Irina A. Zvereva
Solids 2025, 6(2), 23; https://doi.org/10.3390/solids6020023 - 12 May 2025
Viewed by 1387
Abstract
The search for effective and reliable methods of photosensitization of oxide-based semiconductor materials is of great significance for their use in photocatalytic reactions of hydrogen production and environmental remediation under natural sunlight. The present study is focused on partial substitution of titanium with [...] Read more.
The search for effective and reliable methods of photosensitization of oxide-based semiconductor materials is of great significance for their use in photocatalytic reactions of hydrogen production and environmental remediation under natural sunlight. The present study is focused on partial substitution of titanium with manganese in the structure of layered perovskite-like titanate Na2La2Ti3O10, which was employed to yield a series of photocatalytically active materials, Na2La2MnxTi3−xO10 (x = 0.002–1.0), as well as their protonated forms H2La2MnxTi3−xO10 and nanosheets. It was established that the manganese cations Mn4+ are embedded in the middle sublayer of oxygen octahedra in the perovskite slabs La2MnxTi3−xO102− and that the maximum achievable manganese content x in the products is ≈0.9. The partial cationic substitution in the perovskite sublattice led to a pronounced contraction of the optical band gap from 3.20 to 1.35 eV (depending on x) and, therefore, allowed the corresponding photocatalysts to utilize not only ultraviolet, but also visible and near-infrared light with wavelengths up to ≈920 nm. The materials obtained were tested as photocatalysts of hydrogen evolution from aqueous methanol, and the greatest activity in this reaction was demonstrated by the samples with low manganese contents (x = 0.002–0.01). However, the materials with greater substitution degrees may be of high interest for use in other photocatalytic processes and, especially, in thermophotocatalysis due to their improved ability to absorb the near-infrared part of solar radiation. Full article
Show Figures

Figure 1

14 pages, 5866 KiB  
Article
Core-Sheath Structured Yarn for Biomechanical Sensing in Health Monitoring
by Wenjing Fan, Cheng Li, Bingping Yu, Te Liang, Junrui Li, Dapeng Wei and Keyu Meng
Biomimetics 2025, 10(5), 304; https://doi.org/10.3390/biomimetics10050304 - 9 May 2025
Viewed by 660
Abstract
The rapidly evolving field of functional yarns has garnered substantial research attention due to their exceptional potential in enabling next-generation electronic textiles for wearable health monitoring, human–machine interfaces, and soft robotics. Despite notable advancements, the development of yarn-based strain sensors that simultaneously achieve [...] Read more.
The rapidly evolving field of functional yarns has garnered substantial research attention due to their exceptional potential in enabling next-generation electronic textiles for wearable health monitoring, human–machine interfaces, and soft robotics. Despite notable advancements, the development of yarn-based strain sensors that simultaneously achieve high flexibility, stretchability, superior comfort, extended operational stability, and exceptional electrical performance remains a critical challenge, hindered by material limitations and structural design constraints. Here, we present a bioinspired, hierarchically structured core-sheath yarn sensor (CSSYS) engineered through an efficient dip-coating process, which synergistically integrates the two-dimensional conductive MXene nanosheets and one-dimensional silver nanowires (AgNWs). Furthermore, the sensor is encapsulated using a yarn-based protective layer, which not only preserves its inherent flexibility and wearability but also effectively mitigates oxidative degradation of the sensitive materials, thereby significantly enhancing long-term durability. Drawing inspiration from the natural architecture of plant stems—where the inner core provides structural integrity while a flexible outer sheath ensures adaptive protection—the CSSYS exhibits outstanding mechanical and electrical performance, including an ultralow strain detection limit (0.05%), an ultrahigh gauge factor (up to 744.45), rapid response kinetics (80 ms), a broad sensing range (0–230% strain), and exceptional cyclic stability (>20,000 cycles). These remarkable characteristics enable the CSSYS to precisely capture a broad spectrum of physiological signals, ranging from subtle arterial pulsations and respiratory rhythms to large-scale joint movements, demonstrating its immense potential for next-generation wearable health monitoring systems. Full article
(This article belongs to the Special Issue Bio-Inspired Flexible Sensors)
Show Figures

Graphical abstract

Back to TopTop