Facile Synthesis and Characterization of Novel Analcime@Calcium Aluminate@Polyethylene Glycol 400 Nanocomposite for Efficient Removal of Zn(II) Ions from Aqueous Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Adsorption of Zn(II) Ions from Aqueous Media
2.2.1. Effect of pH
2.2.2. Effect of Contact Time
2.2.3. Effect of Temperature
2.2.4. Effect of Concentration
2.2.5. Effect of Desorption and Reusability
2.2.6. Effect of Interference
3. Experiment
3.1. Materials
3.2. Synthesis of Analcime@Calcium Aluminate@Polyethylene Glycol 400 Nanocomposite
3.3. Instrumentation
3.4. Adsorption of Zn(II) Ions from Aqueous Solutions
3.5. Point of Zero Charge (pHPZC) of the Synthesized Nanocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, K.; Dong, Y.; Liu, J.; Xie, J.; Jin, Q.; Lu, Y.; Lin, H. Journal of Environmental Chemical Engineering Advances in Selective Heavy Metal Removal from Water Using Biochar: A Comprehensive Review of Mechanisms and Modifications. J. Environ. Chem. Eng. 2025, 13, 116099. [Google Scholar] [CrossRef]
- Shi, H.; Xu, M.; Wang, L.; Ma, Q.; Zhao, M.; Li, Q.; Xu, Z.; Ji, L.; Yu, F.; Ma, J. Application of Capacitive Deionization in Heavy Metal Ions Removal and Recovery: A Review. Sep. Purif. Technol. 2025, 364, 132027. [Google Scholar] [CrossRef]
- Mubarak, A.S.; Salih, S.S.; Kadhom, M.; Ghosh, T.K. Removal of Heavy Metals from Contaminated Water Using Metal-Organic Frameworks (MOFs): A Review on Techniques and Applications. Mater. Sci. Eng. B 2025, 315, 118105. [Google Scholar] [CrossRef]
- Aziz, K.H.H.; Mustafa, F.S.; Hamarawf, R.F.; Omer, K.M. Adsorptive Removal of Toxic Heavy Metals from Aquatic Environment by Metal Organic Framework (MOF): A Review. J. Water Process Eng. 2025, 70, 106867. [Google Scholar] [CrossRef]
- Baldev; Kumar, G.; Sharma, V.; Nemiwal, M. Biomass-Derived Zirconium Composite: An Adsorbent for Preferential Removal of Heavy Metals and Contaminants in Wastewater. J. Water Process Eng. 2025, 69, 106778. [Google Scholar] [CrossRef]
- Yu, K.; Yang, L.; Zhang, S.; Zhang, N. Nanocellulose-Based Aerogels for the Adsorption and Removal of Heavy-Metal Ions from Wastewater: A Review. Mater. Today Commun. 2025, 43, 111744. [Google Scholar] [CrossRef]
- Rana, P.; Kaur, B.; Poonia, K.; Soni, V.; Singh, P.; Thakur, S.; Huang, C.W.; Nguyen, V.H.; Raizada, P. Recent Advancements in Polythiophene-Based Adsorbents for Heavy Metal Ion Removal: Modification, Kinetics and Mechanistic Insights. Inorg. Chem. Commun. 2025, 172, 113657. [Google Scholar] [CrossRef]
- Oladimeji, T.E.; Oyedemi, M.; Emetere, M.E.; Agboola, O.; Adeoye, J.B.; Odunlami, O.A. Review on the Impact of Heavy Metals from Industrial Wastewater Effluent and Removal Technologies. Heliyon 2024, 10, e40370. [Google Scholar] [CrossRef]
- Jiao, H.; Cui, M.; Yuan, S.; Dong, B.; Xu, Z. Carbon Nanomaterials for Co-Removal of Antibiotics and Heavy Metals from Water Systems: An Overview. J. Hazard. Mater. 2025, 489, 137566. [Google Scholar] [CrossRef]
- Boughrara, L.; Sebba, F.Z.; Sebti, H.; Choukchou-Braham, E.; Bounaceur, B.; Kada, S.O.; Zaoui, F. Removal of Zn(II) and Ni(II) Heavy Metal Ions by New Alginic Acid-Ester Derivatives Materials. Carbohydr. Polym. 2021, 272, 118439. [Google Scholar] [CrossRef]
- Alnasra, O.A.; Khalili, F.I.; Alhnafat, F.A. Enhanced Removal of Pb(II), Zn(II) and Cd(II) Ions by Insolubilized Humic Acid: Characterization and Sorption Behaviors. Desalin. Water Treat. 2024, 320, 100604. [Google Scholar] [CrossRef]
- Islam, M.S.; Rahaman, M.S.; Barbeau, B. Removal of Pb (II), Zn (II), Cu (II), and As (III) Ions from Water Using Kraft Pulp-Based Carboxymethylated Cellulose in a Fixed-Bed Column Adsorption Process. J. Environ. Chem. Eng. 2023, 11, 111181. [Google Scholar] [CrossRef]
- Ajala, E.O.; Ayanshola, A.M.; Obodo, C.I.; Ajala, M.A.; Ajala, O.J. Simultaneous Removal of Zn(II) Ions and Pathogens from Pharmaceutical Wastewater Using Modified Sugarcane Bagasse as Biosorbents. Results Eng. 2022, 15, 100493. [Google Scholar] [CrossRef]
- Yuan, F.; Yan, D.; Song, S.; Zhang, J.; Yang, Y.; Chen, Z.; Lu, J.; Wang, S.; Sun, Y. Removal of Heavy Metals from Water by Adsorption on Metal Organic Frameworks: Research Progress and Mechanistic Analysis in the Last Decade. Chem. Eng. J. 2025, 506, 160063. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of Heavy Metal Removals from Aqueous Solutions by Chemical Precipitation and Characteristics of Precipitates. J. Water Process Eng. 2018, 26, 289–300. [Google Scholar] [CrossRef]
- Xiang, H.; Min, X.; Tang, C.J.; Sillanpää, M.; Zhao, F. Recent Advances in Membrane Filtration for Heavy Metal Removal from Wastewater: A Mini Review. J. Water Process Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Skotta, A.; Jmiai, A.; Elhayaoui, W.; El-Asri, A.; Tamimi, M.; Assabbane, A.; El Issami, S. Suspended Matter and Heavy Metals (Cu and Zn) Removal from Water by Coagulation/Flocculation Process Using a New Bio-Flocculant: Lepidium Sativum. J. Taiwan Inst. Chem. Eng. 2023, 145, 104792. [Google Scholar] [CrossRef]
- Benalla, S.; Bachiri, B.; Touir, J.; Tahaikt, M.; Taky, M.; Ebn Touhami, M.; Elmidaoui, A. Feasibility of Electrodialysis in Heavy Metals Removal from Brassware Wastewaters. Desalin. Water Treat. 2021, 240, 106–114. [Google Scholar] [CrossRef]
- Hussein, S.H.; Qurbani, K.; Ahmed, S.K.; Tawfeeq, W.; Hassan, M. Bioremediation of Heavy Metals in Contaminated Environments Using Comamonas Species: A Narrative Review. Bioresour. Technol. Rep. 2024, 25, 101711. [Google Scholar] [CrossRef]
- Rostami, M.S.; Khodaei, M.M. Recent Advances in Chitosan-Based Nanocomposites for Adsorption and Removal of Heavy Metal Ions. Int. J. Biol. Macromol. 2024, 270, 132386. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, M.; Cheng, Q.; Wang, C.; Li, H.; Han, X.; Fan, Z.; Su, G.; Pan, D.; Li, Z. Research Progress of Adsorption and Removal of Heavy Metals by Chitosan and Its Derivatives: A Review. Chemosphere 2021, 279, 130927. [Google Scholar] [CrossRef]
- Ibrahim, I.; Belessiotis, G.V.; Ahmed, A.; Boedicker, J.R.; Eliwa, E.M.; Moneam, I.A.; Mourtada Elseman, A.; Genidy Mohamed, G.; Mokhtar Mohamed, M.; Salama, T.M. Water Treatment by Perovskite Materials and Their Applications: A Comprehensive Review. J. Ind. Eng. Chem. 2024, 145, 20–32. [Google Scholar] [CrossRef]
- Devi, V.; Selvaraj, M.; Selvam, P.; Kumar, A.A.; Sankar, S.; Dinakaran, K. Preparation and Characterization of CNSR Functionalized Fe3O4 Magnetic Nanoparticles: An Efficient Adsorbent for the Removal of Cadmium Ion from Water. J. Environ. Chem. Eng. 2017, 5, 4539–4546. [Google Scholar] [CrossRef]
- Jiménez, A.; Trujillano, R.; Rives, V.; Vicente, M.A.; Gil, A. Removal of Heavy Metals from Aqueous Solutions by Adsorption on Zeolites Synthesized from Aluminum Saline Slags. Inorg. Chem. Commun. 2024, 170, 113440. [Google Scholar] [CrossRef]
- Mohamad Yusop, M.F.; Mohd Johan Jaya, E.; Ahmad, M.A. Single-Stage Microwave Assisted Coconut Shell Based Activated Carbon for Removal of Zn(II) Ions from Aqueous Solution—Optimization and Batch Studies. Arab. J. Chem. 2022, 15, 104011. [Google Scholar] [CrossRef]
- Bagdat, S.; Tokay, F.; Demirci, S.; Yilmaz, S.; Sahiner, N. Removal of Cd(II), Co(II), Cr(III), Ni(II), Pb(II) and Zn(II) Ions from Wastewater Using Polyethyleneimine (PEI) Cryogels. J. Environ. Manag. 2023, 329, 117002. [Google Scholar] [CrossRef] [PubMed]
- Fadhel, S.R. Chitosan-NiFe2O4 Nanocomposite Synthesis for Effective Removal of Pb(II) and Zn(II) from Aqueous Solution. Results Eng. 2024, 24, 103293. [Google Scholar] [CrossRef]
- Alnasrawi, F.A.; Mohammed, A.A.; Al-Musawi, T.J. Synthesis, Characterization and Adsorptive Performance of CuMgAl-Layered Double Hydroxides/Montmorillonite Nanocomposite for the Removal of Zn(II) Ions. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100771. [Google Scholar] [CrossRef]
- Abdelrahman, E.A.; Saad, F.A.; Abou-krisha, M.M.; Khedr, A.M. Straightforward Synthesis and Characterization of Analcime @ Nickel Orthosilicate Novel Nanocomposite for Efficient Removal of Rhodamine B Dye from Aqueous Media. Inorganics 2025, 13, 120. [Google Scholar] [CrossRef]
- Senniappan, S.; Palanisamy, S.; Manon Mani, V.; Umesh, M.; Govindasamy, C.; Khan, M.I.; Shanmugam, S. Exploring the Adsorption Efficacy of Cassia Fistula Seed Carbon for Cd (II) Ion Removal: Comparative Study of Isotherm Models. Environ. Res. 2023, 235, 116676. [Google Scholar] [CrossRef]
- Joseph, I.V.; Tosheva, L.; Doyle, A.M. Simultaneous Removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) Ions from Aqueous Solutions via Adsorption on FAU-Type Zeolites Prepared from Coal Fly Ash. J. Environ. Chem. Eng. 2020, 8, 103895. [Google Scholar] [CrossRef]
- Panayiotou, C.; Acree, W.E.; Zuburtikudis, I. COSMO-RS and LSER Models of Solution Thermodynamics: Towards a COSMO-LSER Equation of State Model of Fluids. J. Mol. Liq. 2023, 390, 122992. [Google Scholar] [CrossRef]
- Salih, S.S.; Shihab, M.A.; Mohammed, H.N.; Kadhom, M.; Albayati, N.; Ghosh, T.K. Chitosan-Vermiculite Composite Adsorbent: Preparation, Characterization, and Competitive Adsorption of Cu(II) and Cd(II) Ions. J. Water Process Eng. 2024, 59, 105044. [Google Scholar] [CrossRef]
- Al-kadhi, N.S.; Abdelrahman, E.A.; Alamro, F.S.; Saad, F.A.; Al-raimi, D.S. Innovative Nanocomposite and CdCO3 for Superior Crystal Violet Dye Adsorption: Synthesis, Characterization, and Regeneration Insights. Sci. Rep. 2025, 15, 5525. [Google Scholar] [CrossRef]
- Peng, X.; Yan, J.; He, C.; Liu, R.; Liu, Y. Sustainable Triethylenetetramine Modified Sulfonated Graphene Oxide/Chitosan Composite for Enhanced Adsorption of Pb(II), Cd(II), and Ni(II) Ions. Int. J. Biol. Macromol. 2024, 261, 129741. [Google Scholar] [CrossRef]
- Salama, A.; Hesemann, P. Guanylated Chitosan Derivatives for the Adsorption of Anionic Dyes: Performance and Mechanism. Int. J. Biol. Macromol. 2025, 311, 143852. [Google Scholar] [CrossRef]
- Chumee, J.; Javadi, B.; Peungsamran, N.; Kumpun, S.; Seekakee, J.; Hoonsuwan, T.; Ohama, P. Synthesis of Zeolite P-Metal Organic Composite Beads for Superior Cationic Dye Removal. Inorg. Chem. Commun. 2025, 177, 114344. [Google Scholar] [CrossRef]
- Al-Wasidi, A.S.; Naglah, A.M.; Saad, F.A.; Abdelrahman, E.A. Modification of Silica Nanoparticles with 1-Hydroxy-2-Acetonaphthone as a Novel Composite for the Efficient Removal of Ni(II), Cu(II), Zn(II), and Hg(II) Ions from Aqueous Media. Arab. J. Chem. 2022, 15, 104010. [Google Scholar] [CrossRef]
- Panahandeh, A.; Parvareh, A. Synthesis and Characterization of γ-MnO2/Chitosan/Fe3O4 Cross-Linked with EDTA and the Study of Its Efficiency for the Elimination of Zinc(II) and Lead(II) from Wastewater. Environ. Sci. Pollut. Res. 2021, 28, 9235–9254. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Yang, L.Q.; Ma, X.J.; Wang, L.Y.; Ye, Z.F. Characterization and Adsorption Mechanism of Zn2+ Removal by PVA/EDTA Resin in Polluted Water. J. Hazard. Mater. 2010, 178, 1046–1054. [Google Scholar] [CrossRef]
Sample | Atomic Percentages | |||||
---|---|---|---|---|---|---|
%C | %O | %Na | %Al | %Si | %Ca | |
AC | ---- | 62.5 | 7.2 | 2.3 | 16.0 | 12.0 |
ACP | 19.3 | 54.6 | 6.3 | 1.4 | 9.0 | 9.4 |
Sample | Surface Textures | ||
---|---|---|---|
BET Surface Area (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) | |
AC | 67.7 | 0.1160 | 4.5 |
ACP | 105.6 | 0.3561 | 13.7 |
Sample | QExp (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
K1 (1/min) | R2 | Qe (mg/g) | K2 (g/mg·min) | R2 | Qe (mg/g) | ||
AC | 141.52 | 0.02540 | 0.9654 | 83.38 | 0.000650 | 0.9999 | 143.47 |
ACP | 220.70 | 0.0448 | 0.9611 | 57.13 | 0.00195 | 0.9999 | 222.72 |
Sample | ΔS° (kJ/mol·K) | ΔH° (kJ/mol) | ΔG° (kJ/mol) | |||
---|---|---|---|---|---|---|
298 | 308 | 318 | 328 | |||
AC | 0.1418 | −43.78 | −86.05 | −87.46 | −88.88 | −90.30 |
ACP | 0.1381 | −45.54 | −86.69 | −88.08 | −89.46 | −90.84 |
Sample | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|
Qmax (mg/g) | R2 | K3 (L/mg) | K4 (mg/g) (L/mg)1/n | Qmax (mg/g) | 1/n | R2 | |
AC | 149.93 | 0.9998 | 0.1531 | 61.96 | 152.52 | 0.1700 | 0.8642 |
ACP | 230.95 | 0.9996 | 0.2406 | 83.63 | 258.17 | 0.2128 | 0.8076 |
Adsorbent | Qmax (mg/g) | Ref |
---|---|---|
Activated carbon | 7.87 | [25] |
Polyethyleneimine | 24.39 | [26] |
FAU zeolite | 36.77 | [31] |
Silica/1-hydroxy-2-acetonaphthone composite | 45.13 | [38] |
γ-MnO2/chitosan/Fe3O4/EDTA composite | 103.40 | [39] |
NiFe2O4/chitosan composite | 90.70 | [27] |
PVA/EDTA resin | 125.00 | [40] |
CuMgAl-layered double hydroxide/montmorillonite composite | 154.21 | [28] |
AC | 149.93 | This study |
ACP | 230.95 | This study |
Interfering Ions | Q of AC (mg/g) | Q of ACP (mg/g) | Reduction in Q of AC (mg/g) | Reduction in Q of ACP (mg/g) |
---|---|---|---|---|
None (Control) | 141.52 | 220.70 | ---- | ---- |
Na+ | 135.26 | 214.30 | 6.26 | 6.40 |
K+ | 134.10 | 212.85 | 7.42 | 7.85 |
Mg2+ | 127.35 | 205.40 | 14.17 | 15.30 |
Ca2+ | 125.80 | 202.60 | 15.72 | 18.10 |
Cl− | 138.90 | 218.50 | 2.62 | 2.20 |
NO3− | 139.15 | 217.80 | 2.37 | 2.90 |
Impact | V (L) | Co (mg/L) | W (mg) | T (K) | t (min) | pH |
---|---|---|---|---|---|---|
pH | 0.1 | 150 | 50 | 298 | 240 | 2.5–6.5 |
Contact time | 0.1 | 150 | 50 | 298 | 10–100 | 6.5 |
Solution temperature | 0.1 | 150 | 50 | 298–328 | 50 (ACP) 70 (AC) | 6.5 |
Concentration of Zn(II) ions | 0.1 | 50–300 | 50 | 298 | 50 (ACP) 70 (AC) | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahman, E.A.; Alhamzani, A.G.; Abou-Krisha, M.M.; Saad, F.A.; Khedr, A.M. Facile Synthesis and Characterization of Novel Analcime@Calcium Aluminate@Polyethylene Glycol 400 Nanocomposite for Efficient Removal of Zn(II) Ions from Aqueous Media. Inorganics 2025, 13, 174. https://doi.org/10.3390/inorganics13050174
Abdelrahman EA, Alhamzani AG, Abou-Krisha MM, Saad FA, Khedr AM. Facile Synthesis and Characterization of Novel Analcime@Calcium Aluminate@Polyethylene Glycol 400 Nanocomposite for Efficient Removal of Zn(II) Ions from Aqueous Media. Inorganics. 2025; 13(5):174. https://doi.org/10.3390/inorganics13050174
Chicago/Turabian StyleAbdelrahman, Ehab A., Abdulrahman G. Alhamzani, Mortaga M. Abou-Krisha, Fawaz A. Saad, and Abdalla M. Khedr. 2025. "Facile Synthesis and Characterization of Novel Analcime@Calcium Aluminate@Polyethylene Glycol 400 Nanocomposite for Efficient Removal of Zn(II) Ions from Aqueous Media" Inorganics 13, no. 5: 174. https://doi.org/10.3390/inorganics13050174
APA StyleAbdelrahman, E. A., Alhamzani, A. G., Abou-Krisha, M. M., Saad, F. A., & Khedr, A. M. (2025). Facile Synthesis and Characterization of Novel Analcime@Calcium Aluminate@Polyethylene Glycol 400 Nanocomposite for Efficient Removal of Zn(II) Ions from Aqueous Media. Inorganics, 13(5), 174. https://doi.org/10.3390/inorganics13050174