Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (218)

Search Parameters:
Keywords = layer chicken

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1764 KiB  
Article
Surface Display of Avian H5 and H9 Hemagglutinin Antigens on Non-Genetically Modified Lactobacillus Cells for Bivalent Oral AIV Vaccine Development
by Fuyi Liu, Jingbo Chang, Jingqi Huang, Yuping Liao, Xiaonan Deng, Tingting Guo, Jian Kong and Wentao Kong
Microorganisms 2025, 13(7), 1649; https://doi.org/10.3390/microorganisms13071649 - 11 Jul 2025
Viewed by 310
Abstract
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus [...] Read more.
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus K313, expressed in Escherichia coli, and purified. Wild-type Lactobacillus johnsonii H31, isolated from chicken intestine, served as a delivery vehicle by adsorbing and stably displaying the HA1 proteins on its surface. This approach eliminates the need for bacterial engineering while utilizing lactobacilli’s natural capacity to protect surface-displayed antigens, as evidenced by HA1’s protease resistance. Mouse immunization studies demonstrated induction of strong systemic IgG and mucosal IgA responses against both H5N1 and H9N2 HA1. The system offers several advantages, including safety through non-GMO probiotics, potential for multivalent vaccine expansion, and intrinsic antigen protection by lactobacilli. These findings suggest this platform could enable development of cost-effective, multivalent AIV vaccines. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

18 pages, 4359 KiB  
Article
Deep Learning Methods for Automatic Identification of Male and Female Chickens in a Cage-Free Flock
by Bidur Paneru, Ramesh Bahadur Bist, Xiao Yang, Anjan Dhungana, Samin Dahal and Lilong Chai
Animals 2025, 15(13), 1862; https://doi.org/10.3390/ani15131862 - 24 Jun 2025
Viewed by 525
Abstract
Rooster behavior and activity are critical for egg fertility and hatchability in broiler and layer breeder houses. Desirable roosters are expected to have good leg health, reach sexual maturity, be productive, and show less aggression toward females during mating. However, not all roosters [...] Read more.
Rooster behavior and activity are critical for egg fertility and hatchability in broiler and layer breeder houses. Desirable roosters are expected to have good leg health, reach sexual maturity, be productive, and show less aggression toward females during mating. However, not all roosters are desirable, and low-productive roosters should be removed and replaced. The objectives of this study were to apply an object detection model based on deep learning to identify hens and roosters based on phenotypic characteristics, such as comb size and body size, in a cage-free (CF) environment, and to compare the performance metrics among the applied models. Six roosters were mixed with 200 Lohmann LSL Lite hens during the pre-peak phase in a CF research facility and were marked with different identifications. Deep learning methods, such as You Only Look Once (YOLO) models, were innovated and trained (based on a comb size of up to 2500 images) for the identification of male and female chickens based on comb size and body features. The performance matrices of the YOLOv5u and YOLOv11 models, including precision, recall, mean average precision (mAP), and F1 score, were statistically compared for hen and rooster detection using a one-way ANOVA test at a significance level of p < 0.05. For rooster detection based on comb size, YOLOv5lu, and YOLOv11x variants performed the best among the five variants of each model, with YOLOv5lu achieving a precision of 87.7%, recall of 56.3%, and mAP@0.50 of 60.1%, while YOLOv11x achieved a precision of 86.7%, recall of 65.3%, and mAP@0.50 of 61%. For rooster detection based on body size, YOLOv5xu, and YOLOv11m outperformed other variants, with YOLOv5xu achieving a precision of 88.9%, recall of 77.7%, and mAP@0.50 of 82.3%, while YOLOv11m achieved a precision of 89.0%, recall of 78.8%, and mAP@0.50 of 82.6%. This study provides a reference for automatic rooster monitoring based on comb and body size and offers further opportunities for tracking the activities of roosters in a poultry breeder farm for performance evaluation and genetic selection in the future. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

16 pages, 767 KiB  
Article
Male Layer-Type Birds (Lohmann Brown Classic Hybrid) as a Meat Source for Chicken Pâtés
by Nikolay Kolev, Desislav Balev, Stefan Dragoev, Teodora Popova, Evgeni Petkov, Krasimir Dimov, Surendranath Suman, Ana Paula Salim and Desislava Vlahova-Vangelova
Appl. Sci. 2025, 15(12), 6702; https://doi.org/10.3390/app15126702 - 14 Jun 2025
Viewed by 426
Abstract
The valorisation of underutilized male layer-type chickens offers a sustainable and ethically aligned opportunity for the poultry industry. This study evaluated the feasibility of male layer-type chicken meat in the production of chicken pâtés and compared the effects of different meat sources—commercial broiler [...] Read more.
The valorisation of underutilized male layer-type chickens offers a sustainable and ethically aligned opportunity for the poultry industry. This study evaluated the feasibility of male layer-type chicken meat in the production of chicken pâtés and compared the effects of different meat sources—commercial broiler (CP), and 5 (5wP) and 9-week-old (9wP) male layer-type chickens—on product quality during refrigerated storage using the general linear model with the Tukey–Kramer post-hoc test. Pâtés made from 5wP meat exhibited the most favourable technological properties, including the lowest (p < 0.05) total expressible fluid (TEF), highest (p < 0.05) water retention (TEFWater), and lowest (p < 0.05) fat content (TEFFat) than CP and 9wP indicating superior emulsion stability. The 5wP pâtés also presented the lowest (p < 0.05) TBARS values on day 1, along with reduced colour deterioration (ΔE) over 7 days of storage. CP samples demonstrated the greatest (p < 0.05) hardness, cohesiveness, and gumminess, but lower (p < 0.05) springiness and resilience compared to 5wP and 9wP, yielding softer and elastic pâtés. Overall, pâtés formulated with 5wP can be a promising option for the development of value-added poultry products. The incorporation of male layer-type chicken meat into commercial formulations will encourage further research of their market potential. Full article
Show Figures

Figure 1

9 pages, 205 KiB  
Article
Effect of MHC Haplotype on Mortality Due to Marek’s Disease in Commercial Laying Hens
by Janet E. Fulton, Jesus Arango and Anna Wolc
Animals 2025, 15(11), 1647; https://doi.org/10.3390/ani15111647 - 3 Jun 2025
Viewed by 477
Abstract
Mortality from Marek’s disease virus (MDV) infection results in economic loss for the poultry industry. It is controlled by vaccination, but the virus mutates and becomes more virulent. Variation within the MHC is well known to impact the outcomes following MDV infection from [...] Read more.
Mortality from Marek’s disease virus (MDV) infection results in economic loss for the poultry industry. It is controlled by vaccination, but the virus mutates and becomes more virulent. Variation within the MHC is well known to impact the outcomes following MDV infection from research performed utilizing the White Leghorn breed, with laboratory strains of the virus. The effect of the MHC haplotype following MDV challenge was determined from six lines of commercial elite (White Plymouth Rock (two), White Leghorn (three), and Rhode Island Red (one)) egg layer lines, challenged with vv+ virus. Mortality was recorded as sire daughter averages at 16–18 weeks of age from 19 generations of data. Sires were genotyped using a set of MHC-specific SNPs, encompassing 210,000 bp. Across all lines, there was a total of 23 unique MHC haplotypes, of which 15 were found at a frequency greater than 5% and used for further analysis. A significant impact on mortality was found for 16 of the haplotypes, with 9 haplotypes associated with decreased mortality and 7 haplotypes with increased mortality. There were three haplotypes identified in more than one line, allowing cross-line comparisons. The effect of these common haplotypes was consistent (either negative, positive or neutral) between lines. Full article
13 pages, 5576 KiB  
Article
Ribosome Incorporation Transdifferentiates Chick Primary Cells and Induces Their Proliferation by Secreting Growth Factors
by Shota Inoue, Arif Istiaq, Anamika Datta, Mengxue Lu, Shintaro Nakayama, Kousei Takashi, Nobushige Nakajo, Shigehiko Tamura, Ikko Kawashima and Kunimasa Ohta
J. Dev. Biol. 2025, 13(2), 19; https://doi.org/10.3390/jdb13020019 - 1 Jun 2025
Viewed by 3523
Abstract
Previously, we reported that mammalian cells, specifically human dermal fibroblasts (HDFs), could be transdifferentiated by lactic acid bacteria (LAB). Later, we observed that HDFs incorporated LAB-derived ribosomes, forming the ribosome-induced cell clusters (RICs) and transdifferentiating into cells derived from all three germ layers. [...] Read more.
Previously, we reported that mammalian cells, specifically human dermal fibroblasts (HDFs), could be transdifferentiated by lactic acid bacteria (LAB). Later, we observed that HDFs incorporated LAB-derived ribosomes, forming the ribosome-induced cell clusters (RICs) and transdifferentiating into cells derived from all three germ layers. Based on this insight, we hypothesized that incorporating ribosomes into non-mammalian cells could reveal the universality of this mechanism and open the door to commercial applications. Our current study demonstrates that ribosome incorporation can transdifferentiate chick primary muscle-derived cells (CMCs) into adipocytes, osteoblasts, and chondrocytes. Furthermore, the culture medium supernatant from ribosome-incorporated CMCs was found to significantly enhance CMC’s proliferation. RNA-seq analysis revealed that RICs-CMC exhibit increased expression of genes related to multi-lineage cell growth. In addition, we developed a novel technological shift in meat production—the “CulNet System”—which replicates organ interactions within mechanical systems for cell-cultured meat production. While significant efforts are still required to implement this technology in a cost-effective manner, we believe that combining the “CulNet System” with ribosome-incorporated multipotent cells that have prolonged culture capability could substantially improve the scalability and cost-effectiveness of cultured chicken meat production. This report highlights a promising approach for cell-culture-based meat production, offering a sustainable alternative to traditional methods. Full article
Show Figures

Figure 1

21 pages, 9038 KiB  
Article
Deep Learning-Based Detection and Digital Twin Implementation of Beak Deformities in Caged Layer Chickens
by Hengtai Li, Hongfei Chen, Jinlin Liu, Qiuhong Zhang, Tao Liu, Xinyu Zhang, Yuhua Li, Yan Qian and Xiuguo Zou
Agriculture 2025, 15(11), 1170; https://doi.org/10.3390/agriculture15111170 - 29 May 2025
Viewed by 770
Abstract
With the increasing urgency for digital transformation in large-scale caged layer farms, traditional methods for monitoring the environment and chicken health, which often rely on human experience, face challenges related to low efficiency and poor real-time performance. In this study, we focused on [...] Read more.
With the increasing urgency for digital transformation in large-scale caged layer farms, traditional methods for monitoring the environment and chicken health, which often rely on human experience, face challenges related to low efficiency and poor real-time performance. In this study, we focused on caged layer chickens and proposed an improved abnormal beak detection model based on the You Only Look Once v8 (YOLOv8) framework. Data collection was conducted using an inspection robot, enhancing automation and consistency. To address the interference caused by chicken cages, an Efficient Multi-Scale Attention (EMA) mechanism was integrated into the Spatial Pyramid Pooling-Fast (SPPF) module within the backbone network, significantly improving the model’s ability to capture fine-grained beak features. Additionally, the standard convolutional blocks in the neck of the original model were replaced with Grouped Shuffle Convolution (GSConv) modules, effectively reducing information loss during feature extraction. The model was deployed on edge computing devices for the real-time detection of abnormal beak features in layer chickens. Beyond local detection, a digital twin remote monitoring system was developed, combining three-dimensional (3D) modeling, the Internet of Things (IoT), and cloud-edge collaboration to create a dynamic, real-time mapping of physical layer farms to their virtual counterparts. This innovative approach not only improves the extraction of subtle features but also addresses occlusion challenges commonly encountered in small target detection. Experimental results demonstrate that the improved model achieved a detection accuracy of 92.7%. In terms of the comprehensive evaluation metric (mAP), it surpassed the baseline model and YOLOv5 by 2.4% and 3.2%, respectively. The digital twin system also proved stable in real-world scenarios, effectively mapping physical conditions to virtual environments. Overall, this study integrates deep learning and digital twin technology into a smart farming system, presenting a novel solution for the digital transformation of poultry farming. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

16 pages, 1105 KiB  
Review
Assessing the Genetic and Environmental Factors on Egg Amino Acid Traits in Chickens: A Review
by Dipson Gyawali and Tatsuhiko Goto
Animals 2025, 15(11), 1554; https://doi.org/10.3390/ani15111554 - 26 May 2025
Viewed by 486
Abstract
Eggs are good sources of animal proteins. Methods for creating designer eggs are attractive to scientists and producers of the eggs, in order to fulfill customers’ demands. We review and summarize the current understanding of how genetic and environmental factors influence chicken egg [...] Read more.
Eggs are good sources of animal proteins. Methods for creating designer eggs are attractive to scientists and producers of the eggs, in order to fulfill customers’ demands. We review and summarize the current understanding of how genetic and environmental factors influence chicken egg components, specifically, amino acid contents of yolk and albumen. Genetically diverse breeds of chicken enable us to obtain a wide variety of egg amino acids. Moreover, the use of fermented feed and different rearing systems (barn and deep litter) has impacts on egg amino acids, which may be mediated through changes in the intestinal environment, including the microbiota. To overcome the future food crisis, the combinations of breeds, feeds, and rearing systems will be important for producing designer eggs. In the future, not only long-term selected layer strains will be required, but also many kinds of indigenous chicken breeds, which have already adapted to each local environment in the world, should be investigated under the continental levels of climate environment using different fermented feed materials. To better understand the interplay between genetic and environmental factors, we will offer valuable insights for both egg producers and consumers, potentially guiding future efforts to optimize egg amino acid contents in chickens. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

21 pages, 2546 KiB  
Article
Genome-Wide Association Studies and Candidate Genes for Egg Production Traits in Layers from an F2 Crossbred Population Produced Using Two Divergently Selected Chicken Breeds, Russian White and Cornish White
by Natalia A. Volkova, Michael N. Romanov, Alan Yu. Dzhagaev, Polina V. Larionova, Ludmila A. Volkova, Alexandra S. Abdelmanova, Anastasia N. Vetokh, Darren K. Griffin and Natalia A. Zinovieva
Genes 2025, 16(5), 583; https://doi.org/10.3390/genes16050583 - 15 May 2025
Viewed by 743
Abstract
Background/Objectives: Finding single nucleotide polymorphisms (SNPs) and candidate genes that influence the expression of key traits is essential for genomic selection and helps improve the efficiency of poultry production. Here, we aimed to conduct a genome-wide association study (GWAS) for egg production [...] Read more.
Background/Objectives: Finding single nucleotide polymorphisms (SNPs) and candidate genes that influence the expression of key traits is essential for genomic selection and helps improve the efficiency of poultry production. Here, we aimed to conduct a genome-wide association study (GWAS) for egg production traits in an F2 resource population of chickens (Gallus gallus). Methods: The examined F2 population was produced by crossing two divergently selected breeds with contrasting phenotypes for egg performance traits, namely Russian White (of higher egg production) and Cornish White (of lower egg production). Sampled birds (n = 142) were genotyped using the Illumina Chicken 60K SNP iSelect BeadChip. Results: In the course of the GWAS analysis, we were able to clarify significant associations with phenotypic traits of interest and economic value by using 47,432 SNPs after the genotype dataset was filtered. At the threshold p < 1.06 × 10−6, we found 23 prioritized candidate genes (PCGs) associated with egg weight at the age of 42–52 weeks (FGF14, GCK), duration of egg laying (CNTN4), egg laying cycle (SAMD12) and egg laying interval (PHF5A, AKR1B1, CALD1, ATP7B, PIK3R4, PTK2, PRKCE, FAT1, PCM1, CC2D2A, BMS1, SEMA6D, CDH13, SLIT3, ATP10B, ISCU, LRRC75A, LETM2, ANKRD24). Moreover, two SNPs were co-localized within the FGF14 gene. Conclusions: Based on our GWAS findings, the revealed SNPs and candidate genes can be used as genetic markers for egg weight and other performance characteristics in chickens to attain genetic enhancement in production and for further genomic selection. Full article
(This article belongs to the Special Issue Genetic Breeding of Poultry)
Show Figures

Figure 1

15 pages, 6102 KiB  
Article
Study on Optimization of Mapping Method for Multi-Layer Cage Chicken House Environment
by Zhaobo Zhang, Yanwei Yuan, Xin Dong, Yulong Yuan, Sa An, Yue Cao, Yang Li and Yuefeng Chen
Sensors 2025, 25(9), 2822; https://doi.org/10.3390/s25092822 - 30 Apr 2025
Cited by 1 | Viewed by 374
Abstract
This study delves into the mapping method for the navigation system of a chicken coop disinfection robot. It systematically analyzes the problems of insufficient effective particle count, high particle repetition rate in environmental map information, and penetration phenomenon in traditional SLAM laser point [...] Read more.
This study delves into the mapping method for the navigation system of a chicken coop disinfection robot. It systematically analyzes the problems of insufficient effective particle count, high particle repetition rate in environmental map information, and penetration phenomenon in traditional SLAM laser point cloud mapping technology in chicken coop environments containing multiple layers of chicken cages. To address these issues, this paper proposes an optimized mapping method based on an improved ICP algorithm, significantly improving the laser point clouds’ registration performance. At the same time, by limiting the sampling of environmental map information particles within a specific range and optimizing the screening based on the predicted distribution of particle poses and the matching degree of the map, the diversity of particles and the accuracy of map information have been effectively improved. The field experiment results show that the maximum error of this method on the chicken coop environment map does not exceed 3.5 cm. The environmental characteristics of the chicken coop are maximally preserved, which verifies the effectiveness and robustness of this method and provides a scientific basis for the mapping method of the livestock and poultry breeding robot navigation system. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

14 pages, 2511 KiB  
Article
Antioxidant Peptide Production Using Keratin from Feather Waste: Effect of Extraction and Thiol Blocking Method
by Mehrnaz Sheikh Hosseini, Zahra Moosavi-Nejad, Fatemeh Rezaei Sadrabadi and Hamid Hosano
Int. J. Mol. Sci. 2025, 26(9), 4149; https://doi.org/10.3390/ijms26094149 - 27 Apr 2025
Cited by 1 | Viewed by 650
Abstract
Keratin-made biomaterials, including feathers, are considered a protein-rich bioresource due to their intrinsic properties, including biocompatibility, biodegradability, mechanical resistance, and biological abundance. Beta-keratin exists as an insoluble stringy protein due to the high presence of disulfide cross-links, and as a result, it is [...] Read more.
Keratin-made biomaterials, including feathers, are considered a protein-rich bioresource due to their intrinsic properties, including biocompatibility, biodegradability, mechanical resistance, and biological abundance. Beta-keratin exists as an insoluble stringy protein due to the high presence of disulfide cross-links, and as a result, it is mechanically stable and resistant to enzymatic digestion. Because of this, it is not easily decomposed, and this has made the application of feathers difficult. In this study, after dissolving feathers in NaOH, sodium sulfide, and 2-Mercaptoethanol (2-ME), the relative molecular mass of beta-keratin was calculated. Thin-layer chromatography was also used to display proteins with lower molecular weights. The antioxidant activities of the samples were evaluated by Fe-chelating and free radical scavenging tests with 2,2-diphenyl-1-picrylhydrazyl (DPPH). To investigate the effect of blocking thiol groups on the antioxidant activity of dissolved keratin, iodoacetamide and H2O2 were used. According to the three methods—(A) sodium hydroxide, (B) sodium sulfide, and (C) urea and 2-ME—used to extract and dissolve the feathers, method C caused the least change in the chemical structure of keratin molecules. Method A destroyed the primary structure of keratin and drastically reduced its molecular mass, but method B caused a drastic increase in the molecular mass from 9.6 kDa to higher masses, due to intermolecular bonds. For the keratin molecules dissolved by method C, the Fe-chelating activity was 93.18% and free radical scavenging was 77.45%. Blocking the thiol group with iodoacetamide initially reduced the free radical scavenging activity with DPPH by 42%, but blocking it with H2O2 did not affect this activity. Also, blocking of the thiol group did not initially affect Fe-chelating activity and free radical scavenging activity. After a kinetic study of the activities, an interesting observation was that both blocking agents had negative effects on radical scavenging activity, but had positive effects on Fe-chelating activity. This indicates the complexity of the role of disulfide bonds in keratin’s antioxidant behavior types. According to the observed antioxidant activities, it can be expected that beta-keratin extracted from chicken feathers is a suitable candidate for application in industrial, pharmaceutical, and health applications. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

21 pages, 1634 KiB  
Article
Effects of Dietary Supplementation Using Phytobiotics with Different Functional Properties on Expression of Immunity Genes, Intestinal Histology, Growth, and Meat Productivity of Broiler Chickens
by Marina I. Selionova, Vladimir I. Trukhachev, Artem Yu. Zagarin, Egor I. Kulikov and Nina P. Belyaeva
Vet. Sci. 2025, 12(4), 302; https://doi.org/10.3390/vetsci12040302 - 25 Mar 2025
Cited by 1 | Viewed by 882
Abstract
The aim of this study was to investigate the expression of immunity-related genes and morpho-histological features of the intestines, and the growth and meat production of broiler chickens when fed plant extracts with different functional components. Chickens in the control group received a [...] Read more.
The aim of this study was to investigate the expression of immunity-related genes and morpho-histological features of the intestines, and the growth and meat production of broiler chickens when fed plant extracts with different functional components. Chickens in the control group received a basic diet. The feed in the experimental groups contained plant extracts standardized to various biologically active components such as the extract of common chicory with inulin (INUL), St. John’s wort with flavonoids (FLAV), maral root with ecdysterone (ECDS), and extracts of creeping thyme with flavonoids and tannins (FLAV-TANN). The results of this study showed that the application of the studied phytobiotics increased the expression of the pro-inflammatory gene IL8, with the 2−ΔΔCT value ranging from 2.66 to 4.63. In the case of the antimicrobial peptide gene AvBD9, the 2−ΔΔCT value ranged from 1.66 to 8.16, depending on the group. AvBD10 gene expression increased (2−ΔΔCT = 2.19) when the chickens were fed the chicory extract and decreased when thyme extract was used (2−ΔΔCT = 0.33). The study also found that using biologically active components in the diets of broiler chickens was accompanied by a significant decrease in the height of epithelial cells in the cecum mucous membrane in the INUL group (61.3%, p ≤ 0.001), FLAV group (60.0%, p ≤ 0.001), ECDS group (48.2%, p ≤ 0.001), and FLAV + TANN group (67.6%, p ≤ 0.001). It also caused a reduction in the depth of crypts in the INUL (38.4%, p ≤ 0.001), FLAV (32.3%, p ≤ 0.001), ECDS (50.9%, p ≤ 0.001), and FLAV + TANN (53.4%, p ≤ 0.001) groups. The use of all extracts, except creeping thyme, caused changes in the size of muscular elements in the intestinal walls; thus, the thickness of the muscular layer increased 1.5–2.0 times under the influence of flavonoids in St. John’s wort and of inulin in chicory, to 430.99 and 579.87 μm, respectively (p ≤ 0.001), and decreased 1.9 times under the influence of ecdysterone in maral root to 151.59 μm (p ≤ 0.001). The use of phytobiotics increased feed consumption and stock safety, leading to an increase of 4.1–7.5% in the live weights of broiler chickens at the end of the rearing period, thus contributing to the higher slaughter quality of poultry; in particular, the weights of breast muscles in cockerels in the INUL group increased by 16.9% (p ≤ 0.05), while the weights in the ECDS and FLAV + TANN groups increased by 18.1% (p ≤ 0.05) and 23.1% (p ≤ 0.01), respectively. Thus, the use of the studied phytobiotics in the broiler chicken diet increases meat production and activates immunity, which indicates the possibility of replacing antibacterial drugs with natural nutraceuticals. Full article
(This article belongs to the Special Issue Nutritional Health of Monogastric Animals)
Show Figures

Figure 1

15 pages, 521 KiB  
Article
Effects of Dandelion Flavonoid Extract on the Accumulation of Flavonoids in Layer Hen Meat, Slaughter Performance and Blood Antioxidant Indicators of Spent Laying Hens
by Yuyu Wei, Jingwen Zhang, Yiming Zhang, Dingkuo Liu, Chunxue You, Wenjuan Zhang, Chaoqi Ren, Xin Zhao, Liu’an Li and Xiaoxue Yu
Animals 2025, 15(6), 886; https://doi.org/10.3390/ani15060886 - 20 Mar 2025
Cited by 2 | Viewed by 716
Abstract
This study aimed to investigate the effects of different supplemental amounts of dandelion flavonoid extracts (DFE) in diets on nutrients in chicken, slaughtering performance, blood biochemical indexes and antioxidant capacity of spent laying hens. A total of 180 560-day-old spent Hy-Line Brown laying [...] Read more.
This study aimed to investigate the effects of different supplemental amounts of dandelion flavonoid extracts (DFE) in diets on nutrients in chicken, slaughtering performance, blood biochemical indexes and antioxidant capacity of spent laying hens. A total of 180 560-day-old spent Hy-Line Brown laying hens were randomly divided into five groups. The control group was fed the basal diet, while the experimental groups were supplemented with DFE at levels of 1000, 2000, 4000, and 8000 mg/kg (as T1, T2, T3, and T4 group) in the basal diet, respectively. The variables measured included the content of dandelion flavonoids in layer hen thigh meat and breast meat, slaughter performance, blood biochemical indexes, and antioxidant capacity. Data were subjected to a one-way analysis of variance (one-way ANOVA) to assess the impact of DFE supplementation compared to the control group on study outcomes. The results showed that dietary supplementation with DFE can increase the content of dandelion flavonoids in layer hen meat. The contents of rutin in layer hen breast meat of groups T1, T2, T3, and T4 were 1.37, 4.41, 16.26, and 36.03 ng/g, respectively, and the contents of quercetin was 2.58, 1.36, 4.98, 12.48 ng/g. In layer hen thigh meat of groups T1, T2, T3, and T4, the contents of rutin were 11.48, 15.98, 44.43, 122.32 ng/g, and the contents of quercetin were 9.96, 13.14, 23.15, 38.09 ng/g, respectively. The addition of DFE increased the total phenol content of the feed and highly significantly elevated the total phenol content of layer hen meat (p < 0.01), and the total phenol content of chicken meat was strongly and positively correlated with the total phenol content of the feed. DFE supplementation significantly decreased abdominal fat percentage (p < 0.05) and increased crude fat content in chicken (p < 0.05). The addition of DFE reduced aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities (p < 0.05), decreased triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL) cholesterol (LDL-C), glucose (GLU), and malondialdehyde (MDA) contents (p < 0.05), and increased the content of albumin (ALB), total antioxidant (T-AOC) capacity and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) activity (p < 0.05). Dietary supplementation of DFE at different concentrations could significantly increase the content of dandelion flavonoids in the muscle of spent laying hens, reduce the abdominal fat rate in hens, effectively reduce blood lipid levels, effectively increase crude fat content in thigh muscle, and enhance the body’s antioxidant capacity and liver function. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

22 pages, 11556 KiB  
Article
Enhanced Methodology and Experimental Research for Caged Chicken Counting Based on YOLOv8
by Zhenlong Wu, Jikang Yang, Hengyuan Zhang and Cheng Fang
Animals 2025, 15(6), 853; https://doi.org/10.3390/ani15060853 - 16 Mar 2025
Cited by 1 | Viewed by 957
Abstract
Accurately counting chickens in densely packed cages is a major challenge in large-scale poultry farms. Traditional manual counting methods are labor-intensive, costly, and prone to errors due to worker fatigue. Furthermore, current deep learning models often struggle with accuracy in caged environments because [...] Read more.
Accurately counting chickens in densely packed cages is a major challenge in large-scale poultry farms. Traditional manual counting methods are labor-intensive, costly, and prone to errors due to worker fatigue. Furthermore, current deep learning models often struggle with accuracy in caged environments because they are not well-equipped to handle occlusions. In response, we propose the You Only Look Once-Chicken Counting Algorithm (YOLO-CCA). YOLO-CCA improves the YOLOv8-small model by integrating the CoordAttention mechanism and the Reversible Column Networks backbone. This enhancement improved the YOLOv8-small model’s F1 score to 96.7% (+3%) and average precision50:95 to 80.6% (+2.8%). Additionally, we developed a threshold-based continuous frame inspection method that records the maximum number of chickens per cage with corresponding timestamps. The data are stored in a cloud database for reliable tracking during robotic inspections. The experiments were conducted in an actual poultry farming environment, involving 80 cages with a total of 493 chickens, and showed that YOLO-CCA raised the chicken recognition rate to 90.9% (+13.2%). When deployed on a Jetson AGX Orin industrial computer using TensorRT, the detection speed increased to 90.9 FPS (+57.6 FPS), although the recognition rate slightly decreased to 93.2% (−2.9%). In summary, YOLO-CCA reduces labor costs, improves counting efficiency, and supports intelligent poultry farming transformation. Full article
(This article belongs to the Special Issue Real-Time Sensors and Their Applications in Smart Animal Agriculture)
Show Figures

Figure 1

20 pages, 2678 KiB  
Article
Low-Temperature Slow Pyrolysis: Exploring Biomass-Specific Biochar Characteristics and Potential for Soil Applications
by Matheus Antonio da Silva, Adibe Luiz Abdalla Filho, Ruan Carnier, Juliana de Oliveira Santos Marcatto, Marcelo Saldanha, Aline Renee Coscione, Thaís Alves de Carvalho, Gabriel Rodrigo Merlotto and Cristiano Alberto de Andrade
Technologies 2025, 13(3), 100; https://doi.org/10.3390/technologies13030100 - 3 Mar 2025
Cited by 1 | Viewed by 1897
Abstract
The pyrolysis process of residues has emerged as a sustainable method for managing organic waste, producing biochars that offer significant benefits for agriculture and the environment. These benefits depend on the properties of the raw biomass and the pyrolysis conditions, such as washing [...] Read more.
The pyrolysis process of residues has emerged as a sustainable method for managing organic waste, producing biochars that offer significant benefits for agriculture and the environment. These benefits depend on the properties of the raw biomass and the pyrolysis conditions, such as washing and drying. This study investigated biochar production through slow pyrolysis at 300 °C, using eight biomass types, four being plant residues (PBR)—sugarcane bagasse, filter cake, sawdust, and stranded algae—and four non-plant-based residues (NPBR)—poultry litter, sheep manure, layer chicken manure, and sewage sludge. The physicochemical properties assessed included yield, carbon (C) and nitrogen (N) content, electrical conductivity, pH, macro- and micronutrients, and potentially toxic metals. Pyrolysis generally increased pH and concentrated C, N, phosphorus (P), and other nutrients while reducing electrical conductivity, C/N ratio, potassium (K), and sulfur (S) contents. The increases in the pH of the biochars in relation to the respective biomasses were between 0.3 and 1.9, with the greatest differences observed for the NPBR biochars. Biochars from sugarcane bagasse and sawdust exhibited high C content (74.57–77.67%), highlighting their potential use for C sequestration. Filter cake biochar excelled in P (14.28 g kg⁻1) and micronutrients, while algae biochar showed elevated N, calcium (Ca), and boron (B) levels. NPBR biochars were rich in N (2.28–3.67%) and P (20.7–43.4 g kg⁻1), making them ideal fertilizers. Although sewage sludge biochar contained higher levels of potentially toxic metals, these remained within regulatory limits. This research highlights variations in the composition of biochars depending on the characteristics of the original biomass and the pyrolysis process, to contribute to the production of customized biochars for the purposes of their application in the soil. Biochars derived from exclusively plant biomasses showed important aspects related to the recovery of carbon from biomass and can be preferred as biochar used to sequester carbon in the soil. On the other hand, biochars obtained from residues with some animal contributions are more enriched in nutrients and should be directed to the management of soil fertility. Full article
(This article belongs to the Special Issue Recent Advances in Applied Activated Carbon Research)
Show Figures

Figure 1

15 pages, 6575 KiB  
Article
Analysis of Risk Factors of Feather Pecking Injurious Behavior in Experimentally Raised Yangzhou Goslings in China
by Mingfeng Wang, Guoyao Wang, Wang Gu, Zhengfeng Cao, Yu Zhang, Yang Zhang, Qi Xu, Guohong Chen and Yang Chen
Animals 2025, 15(5), 616; https://doi.org/10.3390/ani15050616 - 20 Feb 2025
Cited by 2 | Viewed by 642
Abstract
Feather pecking can influence the welfare and health concerns of all farmed poultry and affect production and economic aspects. Although some information is available about feather pecking behavior in chickens and ducks, the risk factors of feather pecking in goslings have not been [...] Read more.
Feather pecking can influence the welfare and health concerns of all farmed poultry and affect production and economic aspects. Although some information is available about feather pecking behavior in chickens and ducks, the risk factors of feather pecking in goslings have not been fully demonstrated. In this study, 3-day-old Yangzhou goslings were chosen, and risk factors of feather pecking injurious behavior were investigated, including stocking density, rearing method, flock uniformity, and environmental enrichment. The gosling performed three different pecking behaviors in starter barns from 3d of age to 10d, including gentle feather pecking (GFP), severe feather pecking (SFP), and aggressive pecking (AGP), and the corresponding proportions were 82.16%, 17.02%, and 0.82%, respectively, with peak aggressive feather pecking at 4–5 days of age. The pecked gosling also led to further pecking by conspecifics. Goslings preferred to peck the back (77.32%) and head (11.14%), which caused skin damage to the epidermal and dermal layers, accompanied by a decrease in feather follicle number and diameter. In addition, the effect of the stocking density and population uniformity on the occurrence of feather pecking was determined. The higher feather pecking frequencies and poorer feather quality of goslings were observed under high-density conditions than those of lower-density environments. Importantly, the lower population uniformity resulted in more aggressive pecking, potentially linked to the establishment of a social hierarchy. Finally, environment-related changes in pecking behavior were investigated. The results showed that damp and dirty housing conditions deteriorated plumage conditions and the occurrence of feather pecking, and environment enrichment (the grass section) could significantly reduce the incidence of pecking. Taken together, lower stocking density, higher population uniformity, and the provision of enrichment can reduce the prevalence of feather pecking. Meanwhile, feather pecking in goslings, with the back being the most commonly targeted area, can lead to the loss of back feathers and even skin damage. These results help to develop effective management and prevention strategies to reduce the negative effects of pecking behavior on goose health and performance. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

Back to TopTop