Effect of MHC Haplotype on Mortality Due to Marek’s Disease in Commercial Laying Hens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds
2.2. Genotyping
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marek, J. Multiple Nervenentzundung (Polyneuritis) bei Huhnern. Dtsch. Tieraerztl. Wochenschr. 1907, 15, 417–421. [Google Scholar]
- Calnek, B.W.; Ubertini, T.; Adldinger, H.K. Viral antigen, virus particles, and infectivity of tissues from chickens with Marek’s disease. J. Natl. Cancer Inst. 1970, 45, 341–351. [Google Scholar] [PubMed]
- Witter, R.L. Increased virulence of Marek’s disease virus field isolates. Avian Dis. 1997, 41, 149–163. [Google Scholar] [CrossRef]
- Yu, Z.H.; Zhang, Y.P.; Lan, X.G.; Wang, Y.N.; Guo, R.R.; Li, K.; Gao, L.; Qi, X.L.; Cui, H.Y.; Wang, X.M.; et al. Differences in Pathogenicity and Vaccine Resistance Discovered between Two Epidemic Strains of Marek’s Disease Virus in China. Viruses 2023, 15, 945. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.M.; Izumiya, Y.; Lupiani, B. Marek’s disease vaccines: Current status, and strategies for improvement and development of vector vaccines. Vet. Microbiol. 2017, 206, 113–120. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, M.; Hao, X.; Qin, A.; Shang, S. Revisiting cellular immune response to oncogenic Marek’s disease virus: The rising of avian T-cell immunity. Cell Mol. Life Sci. 2020, 77, 3103–3116. [Google Scholar] [CrossRef]
- Witter, R.L. The changing landscape of Marek’s disease. Avian Pathol. 1998, 27, S46–S53. [Google Scholar] [CrossRef]
- Read, A.F.; Baigent, S.J.; Powers, C.; Kgosana, L.B.; Blackwell, L.; Smith, L.P.; Kennedy, D.A.; Walkden-Brown, S.W.; Nair, V.K. Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens. PLoS Biol. 2015, 13, e1002198. [Google Scholar] [CrossRef]
- Fulton, J.E.; Arango, J.; Arthur, J.A.; Settar, P.; Kreager, K.S.; O’Sullivan, N.P. Improving the outcome of a Marek’s disease challenge in multiple lines of egg type chickens. Avian Dis. 2013, 57, 519–522. [Google Scholar] [CrossRef]
- Hansen, M.P.; van Zandt, J.N.; Law, G.R.J. Differences in susceptibility to Marek’s disease in chickens carrying different B blood group alleles. Poult. Sci. 1967, 46, 1268. [Google Scholar]
- Briles, W.E.; Stone, H.A.; Cole, R.K. Marek’s disease: Effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science 1977, 195, 193–195. [Google Scholar] [CrossRef]
- Schierman, L.W.; Nordskog, A.W. Relationship of blood type to histocompatibility in chickens. Science 1961, 134, 1008–1009. [Google Scholar] [CrossRef] [PubMed]
- Bacon, L.D. Influence of the major histocompatibility complex on disease resistance and productivity. Poult. Sci. 1987, 66, 802–811. [Google Scholar] [CrossRef]
- Bacon, L.D.; Hunt, H.D.; Cheng, H.H. A review of the development of chicken lines to resolve genes determining resistance to diseases. Poult. Sci. 2000, 79, 1082–1093. [Google Scholar] [CrossRef]
- Stone, H.A. Use of highly inbred chickens in research. In USDA Agricultural Research Service Technical Bulletin; Washington, DC, USA, 1975; p. 1514. [Google Scholar]
- Bertzbach, L.D.; Tregaskes, C.A.; Martin, R.J.; Deumer, U.S.; Huynh, L.; Kheimar, A.M.; Conradie, A.M.; Trimpert, J.; Kaufman, J.; Kaufer, B.B. The Diverse Major Histocompatibility Complex Haplotypes of a Common Commercial Chicken Line and Their Effect on Marek’s Disease Virus Pathogenesis and Tumorigenesis. Front. Immunol. 2022, 13, 908305. [Google Scholar] [CrossRef] [PubMed]
- Fulton, J.E.; McCarron, A.M.; Lund, A.R.; Pinegar, K.N.; Wolc, A.; Chazara, O.; Bed’Hom, B.; Berres, M.; Miller, M.M. A high-density SNP panel reveals extensive diversity, frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex B region between BG2 and CD1A1. Genet. Sel. Evol. 2016, 48, 1. [Google Scholar] [CrossRef]
- Wolc, A.; Arango, J.; Jankowski, T.; Settar, P.; Fulton, J.E.; O’Sullivan, N.P.; Fernando, R.; Garrick, D.J.; Dekkers, J.C. Genome-wide association study for Marek’s disease mortality in layer chickens. Avian Dis. 2013, 57, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Lipkin, E.; Soller, M.; Fulton, J.E.; Burt, D.W. Mapping QTL Associated with Resistance to Avian Oncogenic Marek’s Disease Virus (MDV) Reveals Major Candidate Genes and Variants. Genes 2020, 11, 1019. [Google Scholar] [CrossRef]
- Lipkin, E.; Smith, J.; Soller, M.; Burt, D.W.; Fulton, J.E. Sex Differences in Response to Marek’s Disease: Mapping Quantitative Trait Loci Regions (QTLRs) to the Z Chromosome. Genes 2022, 14, 20. [Google Scholar] [CrossRef]
- Bai, H.; He, Y.; Ding, Y.; Chu, Q.; Lian, L.; Heifetz, E.M.; Yang, N.; Cheng, H.H.; Zhang, H.; Chen, J.; et al. Genome-wide characterization of copy number variations in the host genome in genetic resistance to Marek’s disease using next generation sequencing. BMC Genet. 2020, 21, 77. [Google Scholar] [CrossRef]
- Xu, L.; He, Y.; Ding, Y.; Liu, G.E.; Zhang, H.; Cheng, H.H.; Taylor, R.L.; Song, J. Genetic assessment of inbred chicken lines indicates genomic signatures of resistance to Marek’s disease. J. Anim. Sci. Biotechnol. 2018, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Fulton, J.E. Advances in methodologies for detecting MHC-B variability in chickens. Poult. Sci. 2020, 99, 1267–1274. [Google Scholar] [CrossRef]
- Fulton, J.E.; Young, E.E.; Bacon, L.D. Chicken Mhc alloantiserum cross-reactivity analysis by hemagglutination and flow cytometry. Immunogenetics 1996, 43, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Briles, W.E.; Briles, R.W.; Pollock, D.L.; Pattison, M. Marek’s disease resistance of B (MHC) heterozygotes in a cross of purebred Leghorn lines. Poult. Sci. 1982, 61, 205–211. [Google Scholar] [CrossRef]
- Fulton, J.E.; Juul-Madsen, H.R.; Ashwell, C.M.; McCarron, A.M.; Arthur, J.A.; O’Sullivan, N.P.; Taylor, R.L. Molecular genotype identification of the Gallus gallus major histocompatibility complex. Immunogenetics 2006, 58, 407–421. [Google Scholar] [CrossRef]
- Semagn, K.; Babu, R.; Hearne, S.; Olsen, M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Mol. Breed. 2014, 33, 1–14. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Hunt, H.D.; Jadhao, S.; Swayne, D.E. Major histocompatibility complex and background genes in chickens influence susceptibility to high pathogenicity avian influenza virus. Avian Dis. 2010, 54, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Hunt, H.D.; Dunn, J.R. The influence of host genetics on Marek’s disease virus evolution. Avian Dis. 2013, 57, 474–482. [Google Scholar] [CrossRef]
- Abplanalp, H.; Schat, K.A.; Calnek, B.W. Resistance to Marek’s disease of congenic lines differing in major histocompatibility haplotypes to 3 virus strains. In International Symposium on Marek’s Disease; Calnek, B.W., Spencer, J.L., Eds.; American Association of Avian Pathologist: Kennett Square, PA, USA, 1985; pp. 347–358. [Google Scholar]
- Bacon, L.D.; Crittenden, L.B.; Witter, R.L.; Fadly, A.; Motta, J. B5 and B15 associated with progressive Marek’s disease, Rous sarcoma, and avian leukosis virus-induced tumors in inbred 15I4 chickens. Poult. Sci. 1983, 62, 573–578. [Google Scholar] [CrossRef]
- Fulton, J.E.; Lund, A.R.; McCarron, A.M.; Pinegar, K.N.; Korver, D.R.; Classen, H.L.; Aggrey, S.; Utterbach, C.; Anthony, N.B.; Berres, M.E. MHC variability in heritage breeds of chickens. Poult. Sci. 2016, 95, 393–399. [Google Scholar] [CrossRef]
- Miller, M.M.; Bacon, L.D.; Hala, K.; Hunt, H.D.; Ewald, S.J.; Kaufman, J.; Zoorob, R.; Briles, W.E. 2004 Nomenclature for the chicken major histocompatibility (B and Y) complex. Immunogenetics 2004, 56, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Bacon, L.D.; Hunt, H.D.; Cheng, H.H. Genetic resistance to Marek’s disease. Curr. Top. Microbiol. Immunol. 2001, 255, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Briles, W.E.; Allen, C.P.; Millen, T.W. The B Blood Group System of Chickens. I. Heterozygosity in Closed Populations. Genetics 1957, 42, 631–648. [Google Scholar] [CrossRef] [PubMed]
Line | N | Mean % mort. | SD | Tukey Test |
---|---|---|---|---|
WL1 | 891 | 28.1 | 14.52 | ab |
WL2 | 1113 | 29.5 | 18.25 | bc |
WL3 | 1011 | 27.3 | 16.97 | a |
WPR1 | 798 | 31.1 | 16.83 | c |
WPR2 | 884 | 45.3 | 16.75 | e |
RIR1 | 1127 | 35.2 | 16.45 | d |
Line | MHC Type | Frequency | Effect on % MD Mortality 1 | SE | p Value | FDR 2 |
---|---|---|---|---|---|---|
WL1 WL1 | BSNP-D04(B13) | 0.58 | −2.4 | 0.53 | 4.49 × 10−6 | 7.48 × 10−6 |
BSNP-A04(B21) | 0.42 | 2.4 | 0.53 | 4.49 × 10−6 | 7.48 × 10−6 | |
WL2 WL2 | BSNP-E01(B61) | 0.30 | −6.7 | 0.66 | 6.44 × 10−23 | 4.29 × 10−22 |
BSNP-O03(B10) | 0.14 | −6.2 | 0.90 | 1.18 × 10−11 | 2.95 × 10−11 | |
WL2 | BSNP-K03(B2) | 0.54 | 10.4 | 0.55 | 1.09 × 10−68 | 2.18 × 10−67 |
WL3 WL3 | BSNP-V01(B63) | 0.07 | −5.9 | 0.93 | 2.68 × 10−10 | 5.36 × 10−10 |
BSNP-J06(B12, B71) a | 0.42 | −0.6 | 0.47 | 2.43 × 10−1 | 2.70 × 10−1 | |
WL3 | BSNP-L01(B15) | 0.51 | 1.9 | 0.46 | 2.58 × 10−5 | 3.68 × 10−5 |
WPR1 | BSNP-M01(B72, B78) b | 0.84 | −11.8 | 0.84 | 2.91 × 10−40 | 2.91 × 10−39 |
WPR1 | BSNP-A09(BQ) c | 0.07 | 9.4 | 1.35 | 7.93 × 10−12 | 2.27 × 10−11 |
WPR1 | BSNP-A02(B75) | 0.08 | 9.5 | 1.13 | 1.77 × 10−16 | 5.90 × 10−16 |
WPR2 | BSNP-M01(B72, B78) b | 0.15 | −7.1 | 0.81 | 9.59 × 10−18 | 4.79 × 10−17 |
WPR2 | BSNP-Rec21 | 0.23 | −0.2 | 0.78 | 7.58 × 10−1 | 7.58 × 10−1 |
WPR2 | BSNP-J06(B12, B71) a | 0.28 | 1.1 | 0.68 | 1.05 × 10−1 | 1.32 × 10−1 |
WPR2 | BSNP-P03(B74) | 0.05 | 1.8 | 1.39 | 1.99 × 10−1 | 2.34 × 10−1 |
WPR2 | BSNP-A09(BQ) c | 0.18 | 3.6 | 0.82 | 1.16 × 10−5 | 1.79 × 10−5 |
WPR2 | BSNP-B03(B22) | 0.06 | 3.7 | 1.30 | 4.31 × 10−3 | 5.74 × 10−3 |
RIR1 | BSNP-M01(B72, B78) b | 0.36 | −3.7 | 0.56 | 1.23 × 10−10 | 2.72 × 10−10 |
RIR1 | BSNP-O02(B24) | 0.51 | −0.4 | 0.55 | 5.12 × 10−1 | 5.39 × 10−1 |
RIR1 | BSNP-A09(BQ) c | 0.11 | 7.4 | 0.85 | 1.24 × 10−17 | 4.97 × 10−17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fulton, J.E.; Arango, J.; Wolc, A. Effect of MHC Haplotype on Mortality Due to Marek’s Disease in Commercial Laying Hens. Animals 2025, 15, 1647. https://doi.org/10.3390/ani15111647
Fulton JE, Arango J, Wolc A. Effect of MHC Haplotype on Mortality Due to Marek’s Disease in Commercial Laying Hens. Animals. 2025; 15(11):1647. https://doi.org/10.3390/ani15111647
Chicago/Turabian StyleFulton, Janet E., Jesus Arango, and Anna Wolc. 2025. "Effect of MHC Haplotype on Mortality Due to Marek’s Disease in Commercial Laying Hens" Animals 15, no. 11: 1647. https://doi.org/10.3390/ani15111647
APA StyleFulton, J. E., Arango, J., & Wolc, A. (2025). Effect of MHC Haplotype on Mortality Due to Marek’s Disease in Commercial Laying Hens. Animals, 15(11), 1647. https://doi.org/10.3390/ani15111647