Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,382)

Search Parameters:
Keywords = latencies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4591 KiB  
Article
Minimization of Resource Consumption with URLLC Constraints for Relay-Assisted IIoT
by Yujie Zhao, Tao Peng, Yichen Guo, Yijing Niu and Wenbo Wang
Sensors 2025, 25(15), 4846; https://doi.org/10.3390/s25154846 (registering DOI) - 6 Aug 2025
Abstract
In relay-assisted Industrial Internet of Things (IIoT) systems with ultra-reliable low-latency communication (uRLLC) requirements, finite blocklength coding imposes stringent resource constraints. In this work, the packet error probability (PEP) and blocklength allocation across two-hop links are jointly optimized to minimize total blocklength (resource [...] Read more.
In relay-assisted Industrial Internet of Things (IIoT) systems with ultra-reliable low-latency communication (uRLLC) requirements, finite blocklength coding imposes stringent resource constraints. In this work, the packet error probability (PEP) and blocklength allocation across two-hop links are jointly optimized to minimize total blocklength (resource consumption) while satisfying reliability, latency, and throughput requirements. The original multi-variable problem is decomposed into two tractable subproblems. In the first subproblem, for a fixed total blocklength, the achievable rate is maximized. A near-optimal PEP is first derived via theoretical analysis. Subsequently, theoretical analysis proves that blocklength must be optimized to equalize the achievable rates between the two hops to maximize system performance. Consequently, the closed-form solution to optimal blocklength allocation is derived. In the second subproblem, the total blocklength is minimized via a bisection search method. Simulation results show that by adopting near-optimal PEPs, our approach reduces computation time by two orders of magnitude while limiting the achievable rate loss to within 1% compared to the exhaustive search method. At peak rates, the hop with superior channel conditions requires fewer resources. Compared with three baseline algorithms, the proposed algorithm achieves average resource savings of 21.40%, 14.03%, and 17.18%, respectively. Full article
46 pages, 3093 KiB  
Review
Security and Privacy in the Internet of Everything (IoE): A Review on Blockchain, Edge Computing, AI, and Quantum-Resilient Solutions
by Haluk Eren, Özgür Karaduman and Muharrem Tuncay Gençoğlu
Appl. Sci. 2025, 15(15), 8704; https://doi.org/10.3390/app15158704 (registering DOI) - 6 Aug 2025
Abstract
The IoE forms the foundation of the modern digital ecosystem by enabling seamless connectivity and data exchange among smart devices, sensors, and systems. However, the inherent nature of this structure, characterized by high heterogeneity, distribution, and resource constraints, renders traditional security approaches insufficient [...] Read more.
The IoE forms the foundation of the modern digital ecosystem by enabling seamless connectivity and data exchange among smart devices, sensors, and systems. However, the inherent nature of this structure, characterized by high heterogeneity, distribution, and resource constraints, renders traditional security approaches insufficient in areas such as data privacy, authentication, access control, and scalable protection. Moreover, centralized security systems face increasing fragility due to single points of failure, various AI-based attacks, including adversarial learning, model poisoning, and deepfakes, and the rising threat of quantum computers to encryption protocols. This study systematically examines the individual and integrated solution potentials of technologies such as Blockchain, Edge Computing, Artificial Intelligence, and Quantum-Resilient Cryptography within the scope of IoE security. Comparative analyses are provided based on metrics such as energy consumption, latency, computational load, and security level, while centralized and decentralized models are evaluated through a multi-layered security lens. In addition to the proposed multi-layered architecture, the study also structures solution methods and technology integrations specific to IoE environments. Classifications, architectural proposals, and the balance between performance and security are addressed from both theoretical and practical perspectives. Furthermore, a future vision is presented regarding federated learning-based privacy-preserving AI solutions, post-quantum digital signatures, and lightweight consensus algorithms. In this context, the study reveals existing vulnerabilities through an interdisciplinary approach and proposes a holistic framework for sustainable, scalable, and quantum-compatible IoE security. Full article
Show Figures

Figure 1

29 pages, 2766 KiB  
Article
(H-DIR)2: A Scalable Entropy-Based Framework for Anomaly Detection and Cybersecurity in Cloud IoT Data Centers
by Davide Tosi and Roberto Pazzi
Sensors 2025, 25(15), 4841; https://doi.org/10.3390/s25154841 - 6 Aug 2025
Abstract
Modern cloud-based Internet of Things (IoT) infrastructures face increasingly sophisticated and diverse cyber threats that challenge traditional detection systems in terms of scalability, adaptability, and explainability. In this paper, we present (H-DIR)2, a hybrid entropy-based framework designed to detect and mitigate [...] Read more.
Modern cloud-based Internet of Things (IoT) infrastructures face increasingly sophisticated and diverse cyber threats that challenge traditional detection systems in terms of scalability, adaptability, and explainability. In this paper, we present (H-DIR)2, a hybrid entropy-based framework designed to detect and mitigate anomalies in large-scale heterogeneous networks. The framework combines Shannon entropy analysis with Associated Random Neural Networks (ARNNs) and integrates semantic reasoning through RDF/SPARQL, all embedded within a distributed Apache Spark 3.5.0 pipeline. We validate (H-DIR)2 across three critical attack scenarios—SYN Flood (TCP), DAO-DIO (RPL), and NTP amplification (UDP)—using real-world datasets. The system achieves a mean detection latency of 247 ms and an AUC of 0.978 for SYN floods. For DAO-DIO manipulations, it increases the packet delivery ratio from 81.2% to 96.4% (p < 0.01), and for NTP amplification, it reduces the peak load by 88%. The framework achieves vertical scalability across millions of endpoints and horizontal scalability on datasets exceeding 10 TB. All code, datasets, and Docker images are provided to ensure full reproducibility. By coupling adaptive neural inference with semantic explainability, (H-DIR)2 offers a transparent and scalable solution for cloud–IoT cybersecurity, establishing a robust baseline for future developments in edge-aware and zero-day threat detection. Full article
(This article belongs to the Special Issue Privacy and Cybersecurity in IoT-Based Applications)
34 pages, 3002 KiB  
Article
A Refined Fuzzy MARCOS Approach with Quasi-D-Overlap Functions for Intuitive, Consistent, and Flexible Sensor Selection in IoT-Based Healthcare Systems
by Mahmut Baydaş, Safiye Turgay, Mert Kadem Ömeroğlu, Abdulkadir Aydin, Gıyasettin Baydaş, Željko Stević, Enes Emre Başar, Murat İnci and Mehmet Selçuk
Mathematics 2025, 13(15), 2530; https://doi.org/10.3390/math13152530 - 6 Aug 2025
Abstract
Sensor selection in IoT-based smart healthcare systems is a complex fuzzy decision-making problem due to the presence of numerous uncertain and interdependent evaluation criteria. Traditional fuzzy multi-criteria decision-making (MCDM) approaches often assume independence among criteria and rely on aggregation operators that impose sharp [...] Read more.
Sensor selection in IoT-based smart healthcare systems is a complex fuzzy decision-making problem due to the presence of numerous uncertain and interdependent evaluation criteria. Traditional fuzzy multi-criteria decision-making (MCDM) approaches often assume independence among criteria and rely on aggregation operators that impose sharp transitions between preference levels. These assumptions can lead to decision outcomes with insufficient differentiation, limited discriminatory capacity, and potential issues in consistency and sensitivity. To overcome these limitations, this study proposes a novel fuzzy decision-making framework by integrating Quasi-D-Overlap functions into the fuzzy MARCOS (Measurement of Alternatives and Ranking According to Compromise Solution) method. Quasi-D-Overlap functions represent a generalized extension of classical overlap operators, capable of capturing partial overlaps and interdependencies among criteria while preserving essential mathematical properties such as associativity and boundedness. This integration enables a more intuitive, flexible, and semantically rich modeling of real-world fuzzy decision problems. In the context of real-time health monitoring, a case study is conducted using a hybrid edge–cloud architecture, involving sensor tasks such as heartrate monitoring and glucose level estimation. The results demonstrate that the proposed method provides greater stability, enhanced discrimination, and improved responsiveness to weight variations compared to traditional fuzzy MCDM techniques. Furthermore, it effectively supports decision-makers in identifying optimal sensor alternatives by balancing critical factors such as accuracy, energy consumption, latency, and error tolerance. Overall, the study fills a significant methodological gap in fuzzy MCDM literature and introduces a robust fuzzy aggregation strategy that facilitates interpretable, consistent, and reliable decision making in dynamic and uncertain healthcare environments. Full article
Show Figures

Figure 1

35 pages, 2799 KiB  
Article
GAPO: A Graph Attention-Based Reinforcement Learning Algorithm for Congestion-Aware Task Offloading in Multi-Hop Vehicular Edge Computing
by Hongwei Zhao, Xuyan Li, Chengrui Li and Lu Yao
Sensors 2025, 25(15), 4838; https://doi.org/10.3390/s25154838 - 6 Aug 2025
Abstract
Efficient task offloading for delay-sensitive applications, such as autonomous driving, presents a significant challenge in multi-hop Vehicular Edge Computing (VEC) networks, primarily due to high vehicle mobility, dynamic network topologies, and complex end-to-end congestion problems. To address these issues, this paper proposes a [...] Read more.
Efficient task offloading for delay-sensitive applications, such as autonomous driving, presents a significant challenge in multi-hop Vehicular Edge Computing (VEC) networks, primarily due to high vehicle mobility, dynamic network topologies, and complex end-to-end congestion problems. To address these issues, this paper proposes a graph attention-based reinforcement learning algorithm, named GAPO. The algorithm models the dynamic VEC network as an attributed graph and utilizes a graph neural network (GNN) to learn a network state representation that captures the global topological structure and node contextual information. Building on this foundation, an attention-based Actor–Critic framework makes joint offloading decisions by intelligently selecting the optimal destination and collaboratively determining the ratios for offloading and resource allocation. A multi-objective reward function, designed to minimize task latency and to alleviate link congestion, guides the entire learning process. Comprehensive simulation experiments and ablation studies show that, compared to traditional heuristic algorithms and standard deep reinforcement learning methods, GAPO significantly reduces average task completion latency and substantially decreases backbone link congestion. In conclusion, by deeply integrating the state-aware capabilities of GNNs with the decision-making abilities of DRL, GAPO provides an efficient, adaptive, and congestion-aware solution to the resource management problems in dynamic VEC environments. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

19 pages, 2135 KiB  
Article
Development of an Automotive Electronics Internship Assistance System Using a Fine-Tuned Llama 3 Large Language Model
by Ying-Chia Huang, Hsin-Jung Tsai, Hui-Ting Liang, Bo-Siang Chen, Tzu-Hsin Chu, Wei-Sho Ho, Wei-Lun Huang and Ying-Ju Tseng
Systems 2025, 13(8), 668; https://doi.org/10.3390/systems13080668 (registering DOI) - 6 Aug 2025
Abstract
This study develops and validates an artificial intelligence (AI)-assisted internship learning platform for automotive electronics based on the Llama 3 large language model, aiming to enhance pedagogical effectiveness within vocational training contexts. Addressing critical issues such as the persistent theory–practice gap and limited [...] Read more.
This study develops and validates an artificial intelligence (AI)-assisted internship learning platform for automotive electronics based on the Llama 3 large language model, aiming to enhance pedagogical effectiveness within vocational training contexts. Addressing critical issues such as the persistent theory–practice gap and limited innovation capability prevalent in existing curricula, we leverage the natural language processing (NLP) capabilities of Llama 3 through fine-tuning based on transfer learning to establish a specialized knowledge base encompassing fundamental circuit principles and fault diagnosis protocols. The implementation employs the Hugging Face Transformers library with optimized hyperparameters, including a learning rate of 5 × 10−5 across five training epochs. Post-training evaluations revealed an accuracy of 89.7% on validation tasks (representing a 12.4% improvement over the baseline model), a semantic comprehension precision of 92.3% in technical question-and-answer assessments, a mathematical computation accuracy of 78.4% (highlighting this as a current limitation), and a latency of 6.3 s under peak operational workloads (indicating a system bottleneck). Although direct trials involving students were deliberately avoided, the platform’s technical feasibility was validated through multidimensional benchmarking against established models (BERT-base and GPT-2), confirming superior domain adaptability (F1 = 0.87) and enhanced error tolerance (σ2 = 1.2). Notable limitations emerged in numerical reasoning tasks (Cohen’s d = 1.15 compared to human experts) and in real-time responsiveness deterioration when exceeding 50 concurrent users. The study concludes that Llama 3 demonstrates considerable promise for automotive electronics skills development. Proposed future enhancements include integrating symbolic AI modules to improve computational reliability, implementing Kubernetes-based load balancing to ensure latency below 2 s at scale, and conducting longitudinal pedagogical validation studies with trainees. This research provides a robust technical foundation for AI-driven vocational education, especially suited to mechatronics fields that require close integration between theoretical knowledge and practical troubleshooting skills. Full article
Show Figures

Figure 1

17 pages, 665 KiB  
Article
Optimization of Delay Time in ZigBee Sensor Networks for Smart Home Systems Using a Smart-Adaptive Communication Distribution Algorithm
by Igor Medenica, Miloš Jovanović, Jelena Vasiljević, Nikola Radulović and Dragan Lazić
Electronics 2025, 14(15), 3127; https://doi.org/10.3390/electronics14153127 - 6 Aug 2025
Abstract
As smart homes and Internet of Things (IoT) ecosystems continue to expand, the need for energy-efficient and low-latency communication has become increasingly critical. One of the key challenges in these systems is minimizing delay time while ensuring reliable and efficient communication between devices. [...] Read more.
As smart homes and Internet of Things (IoT) ecosystems continue to expand, the need for energy-efficient and low-latency communication has become increasingly critical. One of the key challenges in these systems is minimizing delay time while ensuring reliable and efficient communication between devices. This study focuses on optimizing delay time in ZigBee sensor networks used in smart-home systems. A Smart–Adaptive Communication Distribution Algorithm is proposed, which dynamically adjusts the communication between network nodes based on real-time network conditions. Experimental measurements were conducted under various scenarios to evaluate the performance of the proposed algorithm, with a particular focus on reducing delay and enhancing overall network efficiency. The results demonstrate that the proposed algorithm significantly reduces delay times compared to traditional methods, making it a promising solution for delay-sensitive IoT applications. Furthermore, the findings highlight the importance of adaptive communication strategies in improving the performance of ZigBee-based sensor networks. Full article
(This article belongs to the Special Issue Energy-Efficient Wireless Sensor Networks for IoT Applications)
Show Figures

Figure 1

20 pages, 589 KiB  
Article
Intelligent Queue Scheduling Method for SPMA-Based UAV Networks
by Kui Yang, Chenyang Xu, Guanhua Qiao, Jinke Zhong and Xiaoning Zhang
Drones 2025, 9(8), 552; https://doi.org/10.3390/drones9080552 - 6 Aug 2025
Abstract
Static Priority-based Multiple Access (SPMA) is an emerging and promising wireless MAC protocol which is widely used in Unmanned Aerial Vehicle (UAV) networks. UAV (Unmanned Aerial Vehicle) networks, also known as drone networks, refer to a system of interconnected UAVs that communicate and [...] Read more.
Static Priority-based Multiple Access (SPMA) is an emerging and promising wireless MAC protocol which is widely used in Unmanned Aerial Vehicle (UAV) networks. UAV (Unmanned Aerial Vehicle) networks, also known as drone networks, refer to a system of interconnected UAVs that communicate and collaborate to perform tasks autonomously or semi-autonomously. These networks leverage wireless communication technologies to share data, coordinate movements, and optimize mission execution. In SPMA, traffic arriving at the UAV network node can be divided into multiple priorities according to the information timeliness, and the packets of each priority are stored in the corresponding queues with different thresholds to transmit packet, thus guaranteeing the high success rate and low latency for the highest-priority traffic. Unfortunately, the multi-priority queue scheduling of SPMA deprives the packet transmitting opportunity of low-priority traffic, which results in unfair conditions among different-priority traffic. To address this problem, in this paper we propose the method of Adaptive Credit-Based Shaper with Reinforcement Learning (abbreviated as ACBS-RL) to balance the performance of all-priority traffic. In ACBS-RL, the Credit-Based Shaper (CBS) is introduced to SPMA to provide relatively fair packet transmission opportunity among multiple traffic queues by limiting the transmission rate. Due to the dynamic situations of the wireless environment, the Q-learning-based reinforcement learning method is leveraged to adaptively adjust the parameters of CBS (i.e., idleslope and sendslope) to achieve better performance among all priority queues. The extensive simulation results show that compared with traditional SPMA protocol, the proposed ACBS-RL can increase UAV network throughput while guaranteeing Quality of Service (QoS) requirements of all priority traffic. Full article
Show Figures

Figure 1

18 pages, 404 KiB  
Article
Deterministic Scheduling for Asymmetric Flows in Future Wireless Networks
by Haie Dou, Taojie Zhu, Fei Li, Chen Liu and Lei Wang
Symmetry 2025, 17(8), 1246; https://doi.org/10.3390/sym17081246 - 6 Aug 2025
Abstract
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the [...] Read more.
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the coexistence of periodic and burst flows with varying latency, jitter, and deadline constraints, posing new challenges for deterministic transmission. Traditional time-sensitive networking (TSN) is well-suited for periodic flows but lacks the flexibility to effectively handle dynamic, asymmetric traffi. To address this limitation, we propose a two-stage asymmetric flow scheduling framework with dynamic deadline control, termed A-TSN. In the first stage, we design a Deep Q-Network-based Dynamic Injection Time Slot algorithm (DQN-DITS) to optimize slot allocation for periodic flows under varying network loads. In the second stage, we introduce the Dynamic Deadline Online (DDO) scheduling algorithm, which enables real-time scheduling for asymmetric flows while satisfying flow deadlines and capacity constraints. Simulation results demonstrate that our approach significantly reduces end-to-end latency, improves scheduling efficiency, and enhances adaptability to high-volume asymmetric traffic, offering a scalable solution for future deterministic wireless networks. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Future Wireless Networks)
Show Figures

Figure 1

24 pages, 2345 KiB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
19 pages, 1881 KiB  
Article
Fault Detection in MV Switchgears Through Unsupervised Learning of Temperature Conditions
by Grazia Iadarola, Alessandro Mingotti, Virginia Negri and Susanna Spinsante
Sensors 2025, 25(15), 4818; https://doi.org/10.3390/s25154818 - 5 Aug 2025
Abstract
This paper presents a distributed measurement system intended to effectively monitor the health status of switchgears under varying temperature conditions. In particular, thermocouples are deployed as temperature sensors for the continuous monitoring of a medium-voltage (MV) switchgear. Then, by integrating a low-cost microcontroller [...] Read more.
This paper presents a distributed measurement system intended to effectively monitor the health status of switchgears under varying temperature conditions. In particular, thermocouples are deployed as temperature sensors for the continuous monitoring of a medium-voltage (MV) switchgear. Then, by integrating a low-cost microcontroller unit, the proposed system can implement previously trained unsupervised learning techniques for health status evaluation. This approach enables the early detection of potential faults by identifying anomalous temperature patterns, thus supporting predictive maintenance and extending the lifespan of switchgears. The results show strong clustering performance with low execution times, highlighting the suitability of the method for resource-constrained hardware. Furthermore, onboard temperature processing eliminates the need for data transmission to remote servers, reducing latency and communication overhead while improving system responsiveness. The paper includes a numerical analysis on synthetic data as well as a validation on real measurements. Overall, the presented distributed measurement system offers a scalable and cost-effective solution to enhance the reliability and safety of MV switchgears. Full article
(This article belongs to the Special Issue Sensors Technology Applied in Power Systems and Energy Management)
23 pages, 1815 KiB  
Review
Recent Progress on Underwater Wireless Communication Methods and Applications
by Zhe Li, Weikun Li, Kai Sun, Dixia Fan and Weicheng Cui
J. Mar. Sci. Eng. 2025, 13(8), 1505; https://doi.org/10.3390/jmse13081505 - 5 Aug 2025
Abstract
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication [...] Read more.
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication (UWOC), each designed to address specific challenges posed by complex underwater environments. Acoustic communication, while effective for long-range transmission, is constrained by ambient noise and high latency; recent innovations in noise reduction and data rate enhancement have notably improved its reliability. RF communication offers high-speed, short-range capabilities in shallow waters, but still faces challenges in hardware miniaturization and accurate channel modeling. UWOC has emerged as a promising solution, enabling multi-gigabit data rates over medium distances through advanced modulation techniques and turbulence mitigation. Additionally, bio-inspired approaches such as electric field communication provide energy-efficient and robust alternatives under turbid conditions. This paper further examines the practical integration of these technologies in underwater platforms, including autonomous underwater vehicles (AUVs), highlighting trade-offs between energy efficiency, system complexity, and communication performance. By synthesizing recent advancements, this review outlines the advantages and limitations of current underwater communication methods and their real-world applications, offering insights to guide the future development of underwater communication systems for robotic and vehicular platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 1669 KiB  
Article
Guinea Pig X Virus Is a Gammaherpesvirus
by Vy Ngoc Yen Truong, Robert Ellis and Brent A. Stanfield
Viruses 2025, 17(8), 1084; https://doi.org/10.3390/v17081084 - 5 Aug 2025
Abstract
The Guinea Pig X Virus (GPXV), a newly identified gammaherpesvirus, provides an opportunity to study viral evolution and host–virus dynamics. This study characterizes the GPXV genome and investigates its phylogenetic relationships and divergence from related viruses through comparative genomic and phylogenetic analyses. Virus [...] Read more.
The Guinea Pig X Virus (GPXV), a newly identified gammaherpesvirus, provides an opportunity to study viral evolution and host–virus dynamics. This study characterizes the GPXV genome and investigates its phylogenetic relationships and divergence from related viruses through comparative genomic and phylogenetic analyses. Virus propagation was conducted in Vero cells, followed by genomic DNA extraction and pan-herpesvirus nested PCR. Sanger sequencing filled gaps in the initial genome assembly, and whole-genome sequencing was performed using the Illumina MiSeq platform. Phylogenetic analyses focused on ORF8 (glycoprotein B), ORF9 (DNA polymerase catalytic subunit), ORF50 (RTA: replication and transcription activator), and ORF73 (LANA: latency-associated nuclear antigen). Results showed that GPXV ORFs showed variable evolutionary relationships with other gammaherpesviruses, including divergence from primate-associated viruses and clustering with bovine and rodent viruses. In addition to phylogenetics, a comprehensive comparative analysis of protein-coding genes between GPXV and the previously described Guinea Pig Herpes-Like Virus (GPHLV) revealed divergence. Twenty-four non-ORF genomic features were unique to GPXV, while 62 shared ORFs exhibited low to high sequence divergence. These findings highlight GPXV’s distinct evolutionary trajectory and its potential role as a model for studying host-specific adaptations and gammaherpesvirus diversity. Full article
(This article belongs to the Special Issue Animal Herpesvirus 2025)
Show Figures

Graphical abstract

21 pages, 2068 KiB  
Article
A Comparison of Approaches for Motion Artifact Removal from Wireless Mobile EEG During Overground Running
by Patrick S. Ledwidge, Carly N. McPherson, Lily Faulkenberg, Alexander Morgan and Gordon C. Baylis
Sensors 2025, 25(15), 4810; https://doi.org/10.3390/s25154810 - 5 Aug 2025
Abstract
Electroencephalography (EEG) is the only brain imaging method light enough and with the temporal precision to assess electrocortical dynamics during human locomotion. However, head motion during whole-body movements produces artifacts that contaminate the EEG and reduces ICA decomposition quality. We compared commonly used [...] Read more.
Electroencephalography (EEG) is the only brain imaging method light enough and with the temporal precision to assess electrocortical dynamics during human locomotion. However, head motion during whole-body movements produces artifacts that contaminate the EEG and reduces ICA decomposition quality. We compared commonly used motion artifact removal approaches for reducing the motion artifact from the EEG during running and identifying stimulus-locked ERP components during an adapted flanker task. EEG was recorded from young adults during dynamic jogging and static standing versions of the Flanker task. Motion artifact removal approaches were evaluated based on their ICA’s component dipolarity, power changes at the gait frequency and harmonics, and ability to capture the expected P300 ERP congruency effect. Preprocessing the EEG using either iCanClean with pseudo-reference noise signals or artifact subspace reconstruction (ASR) led to the recovery of more dipolar brain independent components. In our analyses, iCanClean was somewhat more effective than ASR. Power was significantly reduced at the gait frequency after preprocessing with ASR and iCanClean. Finally, preprocessing using ASR and iCanClean also produced ERP components similar in latency to those identified in the standing flanker task. The expected greater P300 amplitude to incongruent flankers was identified when preprocessing using iCanClean. ASR and iCanClean may provide effective preprocessing methods for reducing motion artifacts in human locomotion studies during running. Full article
Show Figures

Figure 1

11 pages, 686 KiB  
Article
Influence of Remimazolam and Propofol on Intraoperative Motor Evoked Potentials During Spinal Surgery: A Randomized Crossover Trial
by Bo Rim Kim, Hye-Bin Kim, Moo Soo Kim, Byung Gun Lim and Seok Kyeong Oh
J. Clin. Med. 2025, 14(15), 5491; https://doi.org/10.3390/jcm14155491 - 4 Aug 2025
Abstract
Background/Objectives: Total intravenous anesthesia (TIVA) typically combines propofol and remifentanil. Remifentanil exerts minimal influence on motor evoked potential (MEP), whereas propofol partially reduces MEP amplitude. Remimazolam, a novel agent, is a component of TIVA. However, evidence of remimazolam on MEP is limited. We [...] Read more.
Background/Objectives: Total intravenous anesthesia (TIVA) typically combines propofol and remifentanil. Remifentanil exerts minimal influence on motor evoked potential (MEP), whereas propofol partially reduces MEP amplitude. Remimazolam, a novel agent, is a component of TIVA. However, evidence of remimazolam on MEP is limited. We aimed to compare the effects of propofol and remimazolam, combined with remifentanil, on relative MEP depression. Methods: Using a crossover design, 18 patients undergoing spine surgery were randomly assigned to receive either propofol or remimazolam as the first agent. In the propofol first sequence, anesthesia was induced and maintained with propofol, which was then switched to remimazolam 60 min after surgery. In the remimazolam first sequence, remimazolam was used first and then switched to propofol. The primary outcomes measured were the MEP amplitude and latency. Results: MEP amplitude and latency during propofol and remimazolam infusions were as follows: amplitude (mean (SD); 635.3 (399.1) vs. 738.4 (480.4) μV, p = 0.047) and latency (median [IQR]; 22.4 [20.3–24.6] vs. 21.4 [19.6–23.5] ms, p = 0.070), indicating propofol caused greater depression in amplitude than remimazolam. However, an incident of severe body movement disrupting surgery occurred under remimazolam anesthesia in a young, healthy male patient, although bispectral index remained below 60. This suggests that remimazolam, at hypnotic levels similar to propofol, may result in reduced akinesia in major surgeries, such as spinal surgery, when neuromuscular blockade is not employed. Conclusions: Remimazolam demonstrated comparable or superior effects to propofol on MEP latency and amplitude when combined with remifentanil during spinal surgery, rendering it a potential alternative to propofol for MEP monitoring. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Figure 1

Back to TopTop