Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = laser-induced nanostructures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3793 KB  
Article
Controlled Nanopore Fabrication on Silicon via Surface Plasmon Polariton-Induced Laser Irradiation of Metal–Insulator–Metal Structured Films
by Sifan Huo, Sipeng Luo, Ruishen Wang, Jingnan Zhao, Wenfeng Miao, Zhiquan Guo and Yuanchen Cui
Coatings 2025, 15(10), 1187; https://doi.org/10.3390/coatings15101187 - 10 Oct 2025
Viewed by 911
Abstract
In this study, we present a cost-effective approach for fabricating nanopores on single-crystal silicon using a silver–alumina–silver (Ag/AAO/Ag) metal–insulator–metal (MIM) structured mask. Self-ordered porous anodic aluminum oxide (AAO) films were prepared via two-step anodization and coated with silver layers on both sides to [...] Read more.
In this study, we present a cost-effective approach for fabricating nanopores on single-crystal silicon using a silver–alumina–silver (Ag/AAO/Ag) metal–insulator–metal (MIM) structured mask. Self-ordered porous anodic aluminum oxide (AAO) films were prepared via two-step anodization and coated with silver layers on both sides to form the MIM structure. When irradiated with a 532 nm nanosecond laser, the MIM mask excites surface plasmon polaritons (SPPs), resulting in a localized field enhancement that enables the etching of nanopores into the silicon substrate. This method successfully produced nanopores with diameters as small as 50 nm and depths up to 28 nm. The laser-induced SPP-assisted machining significantly enhances the specific surface area of the processed surface, making it promising for applications in catalysis, biosensing, and microcantilever-based devices. For instance, an increased surface area can improve catalytic efficiency by providing more active sites, and enhance sensor sensitivity by amplifying response signals. Compared to conventional lithographic or focused ion beam techniques, this method offers simplicity, low cost, and scalability. The proposed technique demonstrates a practical and efficient route for the large-area subwavelength nanostructuring of silicon surfaces. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

17 pages, 5980 KB  
Article
Controlled Growth of Multifilament Structures with Deep Subwavelength Features in SiC via Ultrafast Laser Processing
by Xiaoyu Sun, Haojie Zheng, Qiannan Jia, Limin Qi, Zhiqi Zhang, Lijing Zhong, Wei Yan, Jianrong Qiu and Min Qiu
Photonics 2025, 12(10), 973; https://doi.org/10.3390/photonics12100973 - 30 Sep 2025
Viewed by 455
Abstract
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light [...] Read more.
Silicon carbide (SiC) is a promising semiconductor material for electronics and photonics. Ultrafast laser processing of SiC enables three-dimensional nanostructuring, enriching and expanding the functionalities of SiC devices. However, challenges arise in delivering uniform, high-aspect-ratio (length-to-width) nanostructures due to difficulties in confining light energy at the nanoscale while simultaneously regulating intense photo modifications. In this study, we report the controllable growth of long-distance, high-straightness, and high-parallelism multifilament structures in SiC using ultrafast laser processing. The mechanism is the formation of femtosecond multifilaments through the nonlinear effects of clamping equilibrium, which allow highly confined light to propagate without diffraction in parallel channels, further inducing high-aspect-ratio nanostripe-like photomodifications. By employing an elliptical Gaussian beam—rather than a circular one—and optimizing pulse durations to stabilize multifilaments with regular positional distributions, the induced multifilament structures can reach a length of approximately 90 μm with a minimum linewidth of only 28 nm, resulting in an aspect ratio of over 3200:1. Raman tests indicate that the photomodified regions consist of amorphous SiC, amorphous silicon, and amorphous carbon, and photoluminescence tests reveal that silicon vacancy color centers could be induced in areas with lower light power density. By leveraging femtosecond multifilaments for diffraction-less light confinement, this work proposes an effective method for manufacturing deep-subwavelength, high-aspect-ratio nanostructures in SiC. Full article
Show Figures

Figure 1

13 pages, 2327 KB  
Article
Single-Shot Sub-Picosecond Ultrafast Microscopic Imaging Utilizing Spatial-Frequency Multiplexing for Ultrafast Laser-Induced Plasma Visualization
by Hang Li, Yahui Li, Yang Shang, Mengmeng Yue, Duan Luo, Yanhua Xue, Guilong Gao and Jinshou Tian
Nanomaterials 2025, 15(18), 1410; https://doi.org/10.3390/nano15181410 - 12 Sep 2025
Viewed by 598
Abstract
Ultrafast laser processing can produce micro/nanostructures, which is of great interest in advanced manufacturing. Ultrafast laser-induced events include non-equilibrium dynamic phenomena, occurring on the femtosecond to picosecond time scale and nanometer to micron space scale. Single-shot ultrafast imaging can provide multiple time-correlated evolution [...] Read more.
Ultrafast laser processing can produce micro/nanostructures, which is of great interest in advanced manufacturing. Ultrafast laser-induced events include non-equilibrium dynamic phenomena, occurring on the femtosecond to picosecond time scale and nanometer to micron space scale. Single-shot ultrafast imaging can provide multiple time-correlated evolution frames in one non-repeatable event with a temporal resolution of sub-picoseconds. However, previous approaches suffer from degraded spatial resolution, which is a bottleneck in microscopic imaging. For the spatial-frequency multiplexing methods based on structured illumination, a reconstruction strategy was proposed utilizing the frames’ conjugate symmetry in the Fourier domain. The spatial resolution is double that of the traditional algorithm by evaluating with synthetic data, revealing that the reconstruction resolution can reach the diffraction limitation. A two-frame microscopic system was constructed with a frame interval of 300 fs and a maximum spatial resolution of 1.4 μm. The interaction between a femtosecond laser and a fused silica glass plate was captured in a single shot and the dynamic evolution of the induced plasma was observed, verifying the application feasibility in ultrafast laser processing, providing experimental observations for interaction mechanism research and theoretical model optimization. Full article
(This article belongs to the Special Issue Ultrafast Laser Micro-Nano Welding: From Principles to Applications)
Show Figures

Figure 1

33 pages, 15534 KB  
Article
Surface Microstructural Responses of Heterogeneous Green Schist to Femtosecond Laser Grooving with Varying Process Parameters
by Chengaonan Wang, Kai Li, Xianshi Jia, Cong Wang, Yansong Wang and Zheng Yuan
Materials 2025, 18(16), 3751; https://doi.org/10.3390/ma18163751 - 11 Aug 2025
Viewed by 506
Abstract
The Mount Wudang architectural complex, recognized as a UNESCO World Cultural Heritage site, extensively utilizes green schist as the building material in its rock temple structures. Due to prolonged exposure to weathering and moisture, effective surface protection of these stones is crucial for [...] Read more.
The Mount Wudang architectural complex, recognized as a UNESCO World Cultural Heritage site, extensively utilizes green schist as the building material in its rock temple structures. Due to prolonged exposure to weathering and moisture, effective surface protection of these stones is crucial for their preservation. Inspired by the lotus leaf, femtosecond laser fabrication of bioinspired micro/nanostructures offers a promising approach for imparting hydrophobicity to stone surfaces. However, green schist is a typical heterogeneous material primarily composed of quartz, chlorite, and muscovite, and it contains metal elements, such as Fe and Ni. These pronounced compositional differences complicate laser–material interactions, posing considerable challenges to the formation of stable and uniform micro/nanostructures. To address this issue, we performed systematic femtosecond laser scanning experiments on green schist surfaces using a 100 kHz, 40 μJ laser with a 30 μm spot diameter, fabricating microgrooves under various process conditions. Surface morphology and EDS mapping analyses were conducted to elucidate the ablation responses of quartz, chlorite, and muscovite under different groove spacings (100 μm, 80 μm, 60 μm, and 40 μm) and scan repetitions (1, 2, 4, 6, 8, 10). The results revealed distinct differences in energy absorption, material ejection, and surface reorganization among these minerals, significantly influencing the formation mechanisms of laser-induced structures. Based on optimized parameters (60 μm spacing, 2–6 passes), robust and repeatable micro/nanostructures were successfully produced, yielding superhydrophobic performance with contact angles exceeding 155°. This work offers a novel strategy for interface control in heterogeneous natural stone materials and provides a theoretical and technical foundation for the protection and functional modification of green schist in heritage conservation. Full article
(This article belongs to the Special Issue Application and Modification of Clay Minerals)
Show Figures

Figure 1

11 pages, 2169 KB  
Article
Numerical Investigation of the Optimal Structure for Dynamic Plasmonic Colors Generated via Photothermal Deformation of Metal Semi-Shell Structures
by Masaaki Magari and Ryushi Fujimura
Photonics 2025, 12(8), 753; https://doi.org/10.3390/photonics12080753 - 26 Jul 2025
Viewed by 1085
Abstract
Nanostructure-based coloration has been investigated extensively to overcome the limitations of conventional pigments and dyes. In this study, we focused on the dynamic coloration of plasmonic structures via the photothermal deformation of a metal semi-shell. However, identifying the optimal structure using this method [...] Read more.
Nanostructure-based coloration has been investigated extensively to overcome the limitations of conventional pigments and dyes. In this study, we focused on the dynamic coloration of plasmonic structures via the photothermal deformation of a metal semi-shell. However, identifying the optimal structure using this method typically requires considerable computational time. To address the high computational cost of structural optimization in dynamic plasmonic coloration, we propose an efficient method for estimating the optimal nanostructure geometry. The color gamut area was found to be influenced by both the nanosphere density and the thickness of the metal semi-shell. The optical response of deformed semi-shells, resulting from laser-induced local heating, was simulated across a range of semi-shell shapes. From these simulations, an empirical correlation was identified that links nanoparticle diameter, density, and semi-shell thickness. This correlation enables the rapid estimation of optimal parameters, thereby reducing computational demands and supporting the efficient fabrication of dynamic plasmonic color materials. Full article
Show Figures

Figure 1

15 pages, 14270 KB  
Article
Repetition Frequency-Dependent Formation of Oxidized LIPSSs on Amorphous Silicon Films
by Liye Xu, Wei Yan, Weicheng Cui and Min Qiu
Photonics 2025, 12(7), 667; https://doi.org/10.3390/photonics12070667 - 1 Jul 2025
Viewed by 663
Abstract
Laser-induced periodic surface structures (LIPSSs) produced via ultrafast laser-induced oxidation offer a promising route for high-quality nanostructuring, with reduced thermal damage compared to conventional ablation-based methods. However, the influence of laser repetition frequency on the formation and morphology of oxidized LIPSSs remains insufficiently [...] Read more.
Laser-induced periodic surface structures (LIPSSs) produced via ultrafast laser-induced oxidation offer a promising route for high-quality nanostructuring, with reduced thermal damage compared to conventional ablation-based methods. However, the influence of laser repetition frequency on the formation and morphology of oxidized LIPSSs remains insufficiently explored. In this study, we systematically investigate the effects of varying the femtosecond laser repetition frequency from 1 kHz to 100 kHz while keeping the total pulse number constant on the oxidation-induced LIPSSs formed on amorphous silicon films. Scanning electron microscopy and Fourier analysis reveal a transition between two morphological regimes with increasing repetition frequency: at low frequencies, the long inter-pulse intervals result in irregular, disordered oxidation patterns; at high frequencies, closely spaced pulses promote the formation of highly ordered, periodic surface structures. Statistical measurements show that the laser-modified area decreases with frequency, while the LIPSS period remains relatively stable and the ridge width exhibits a peak at 10 kHz. Finite-difference time-domain (FDTD) and finite-element simulations suggest that the observed patterns result from a dynamic balance between light-field modulation and oxidation kinetics, rather than thermal accumulation. These findings advance the understanding of oxidation-driven LIPSS formation dynamics and provide guidance for optimizing femtosecond laser parameters for precise surface nanopatterning. Full article
Show Figures

Figure 1

15 pages, 4096 KB  
Article
Fs-Laser-Induced Micro- and Nanostructures on Polycarbonate and Cellulose Acetate Butyrate for Cell Alignment
by Lukas Wagner, Werner Baumgartner, Agnes Weth, Sebastian Lifka and Johannes Heitz
Appl. Sci. 2025, 15(12), 6754; https://doi.org/10.3390/app15126754 - 16 Jun 2025
Viewed by 623
Abstract
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type [...] Read more.
Laser-generated structures have a huge potential to induce an alignment of biological cells, which may be important for various fields in medicine and biotechnology. We describe the formation of fs-laser-induced micro- and nanostructures for achieving the directed growth of Schwann cells, a type of glial cell that can support the regeneration of nerve pathways by guiding the neuronal axons in the direction of their alignment. Polymer surfaces, i.e., polycarbonate (PC) or cellulose acetate butyrate (CAB), were exposed to the beam of a 1040 nm Yb-based amplified fs-laser system with a pulse length of about 350 fs. With appropriate parameters, the laser exposure resulted in a surface topography with oriented micro-grooves, which, for PC, were covered with nano-ripples. Schwann cell growth on these substrates was inspected after 3 to 5 days of cultivation by means of scanning electron microscopy (SEM). We show that Schwann cells can grow in a certain direction, predetermined by micro-groove or nano-ripple orientation. In contrast, cells cultivated on randomly oriented nanofibers or unstructured surfaces show an omnidirectional growth behavior. This method may be used in the future to produce nerve conduits for the treatment of injuries to the peripheral nervous system. Full article
(This article belongs to the Special Issue Ultrafast and Nonlinear Laser Applications)
Show Figures

Figure 1

16 pages, 3337 KB  
Article
Fabrication of Palladium-Decorated Zinc Oxide Nanostructures for Non-Enzymatic Glucose Sensing
by Reagan Aviha, Anju Joshi and Gymama Slaughter
Chemosensors 2025, 13(6), 201; https://doi.org/10.3390/chemosensors13060201 - 1 Jun 2025
Cited by 2 | Viewed by 1754
Abstract
The growing global burden of diabetes necessitates the development of glucose sensors that are not only reliable and sensitive but also cost-effective and amenable to point-of-care use. In this work, we report a non-enzymatic electrochemical glucose sensor based on laser-induced graphene (LIG), functionalized [...] Read more.
The growing global burden of diabetes necessitates the development of glucose sensors that are not only reliable and sensitive but also cost-effective and amenable to point-of-care use. In this work, we report a non-enzymatic electrochemical glucose sensor based on laser-induced graphene (LIG), functionalized with zinc oxide (ZnO) and palladium (Pd) nanostructures. The ZnO nanostructures were systematically optimized on the LIG surface by varying electrochemical deposition parameters, including applied potential, temperature, and deposition time, to enhance the electrocatalytic oxidation of glucose in alkaline medium. Subsequent modification with Pd nanostructures further improved the electrocatalytic activity and sensitivity of the sensor. The performance of the LIG/ZnO/Pd sensor was investigated using chronoamperometric and cyclic voltammetric analysis in 0.1 M NaOH at an applied potential of 0.65 V. The sensor exhibited a wide dynamic range (2–10 mM; 10–24 mM) with a limit of detection of 130 μM, capturing hypo- and hyperglycemia conditions. Moreover, a sensitivity of 25.63 µA·mM−1·cm−2 was observed. Additionally, the sensor showcased selective response towards glucose in the presence of common interferents. These findings highlight the potential of the LIG/ZnO/Pd platform for integration into next-generation, non-enzymatic glucose monitoring systems for clinical and point-of-care applications. Full article
Show Figures

Figure 1

23 pages, 5205 KB  
Article
Femtosecond Laser-Engineered β-TCP Scaffolds: A Comparative Study of Green-Synthesized AgNPs vs. Ion Doping Against S. aureus for Bone Regeneration
by Marco Oliveira, Liliya Angelova, Georgi Avdeev, Liliana Grenho, Maria Helena Fernandes and Albena Daskalova
Int. J. Mol. Sci. 2025, 26(10), 4888; https://doi.org/10.3390/ijms26104888 - 20 May 2025
Viewed by 919
Abstract
Implant-associated infections, particularly those linked to Staphylococcus aureus (S. aureus), continue to compromise the clinical success of β-tricalcium phosphate (β-TCP) implants despite their excellent biocompatibility and osteoconductivity. This investigation aims to tackle these challenges by integrating femtosecond (fs)-laser surface processing with [...] Read more.
Implant-associated infections, particularly those linked to Staphylococcus aureus (S. aureus), continue to compromise the clinical success of β-tricalcium phosphate (β-TCP) implants despite their excellent biocompatibility and osteoconductivity. This investigation aims to tackle these challenges by integrating femtosecond (fs)-laser surface processing with two complementary strategies: ion doping and functionalization with green-synthesized silver nanoparticles (AgNPs). AgNPs were produced via fs-laser photoreduction using green tea leaf extract (GTLE), noted for its anti-inflammatory and antioxidant properties. Fs-laser processing was applied to modify β-TCP scaffolds by systematically varying scanning velocities, fluences, and patterns. Lower scanning velocities generated organized nanostructures with enhanced roughness and wettability, as confirmed by scanning electron microscopy (SEM), optical profilometry, and contact angle measurements, whereas higher laser energies induced significant phase transitions between hydroxyapatite (HA) and α-tricalcium phosphate (α-TCP), as revealed by X-ray diffraction (XRD). AgNP-functionalized scaffolds demonstrated markedly superior antibacterial activity against S. aureus compared to the ion-doped variants, attributed to the synergistic interplay of nanostructure-mediated surface disruption and AgNP-induced bactericidal mechanisms. Although ion-doped scaffolds exhibited limited direct antibacterial effects, they showed concentration-dependent activity in indirect assays, likely due to controlled ion release. Both strategies promoted osteogenic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) under defined conditions, albeit with transient cytotoxicity at higher fluences and excessive ion doping. Overall, this approach holds promise for markedly improving antibacterial efficacy and osteogenic compatibility, potentially transforming bone regeneration therapies. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science: 2nd Edition)
Show Figures

Figure 1

13 pages, 2316 KB  
Article
Laser Nanostructuring of Titanium Surfaces for Enhanced Bioactive Applications
by Angela De Bonis, Mariangela Curcio, Agostino Galasso, Nicola Caggiano, Antonio Lettino, Patrizia Dolce, Donato Mollica, Maria Lucia Pace and Antonio Santagata
Materials 2025, 18(10), 2362; https://doi.org/10.3390/ma18102362 - 19 May 2025
Viewed by 941
Abstract
Laser nanostructuring via Laser-Induced Periodic Surface Structures (LIPSS), generated using femtosecond laser pulses, has been investigated as a method for precisely modifying titanium surfaces. By adjusting parameters such as the fluence and pulse number of the laser beam, it is feasible to tailor [...] Read more.
Laser nanostructuring via Laser-Induced Periodic Surface Structures (LIPSS), generated using femtosecond laser pulses, has been investigated as a method for precisely modifying titanium surfaces. By adjusting parameters such as the fluence and pulse number of the laser beam, it is feasible to tailor the surface morphology, roughness, and oxidation states of species that can significantly influence the properties and surface bioactivity of the material. In this study, the LIPSS was applied to commercially pure titanium and evaluated for its ability to support calcium phosphate nucleation and growth in Simulated Body Fluid (SBF). Scanning Electron Microscopy (SEM) and Fast Fourier Transform (FFT) analysis confirmed the formation of well-defined periodic structures. Additional characterizations performed by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) revealed, after laser treatment of titanium, its increased surface roughness and oxidation levels, respectively. These features, when assessed after immersion in SBF, were associated with an improved potential biological performance of the nanostructured surface of the investigated material. The results demonstrated that LIPSS-treated titanium effectively promoted calcium phosphate growth, indicating its enhanced potential bioactivity. Overall, LIPSS nanostructuring presents a scalable and cost-effective strategy for engineering titanium surfaces with potential bioactive properties, supporting their promising application in advanced biomedical implants. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Engineered Nanomaterials)
Show Figures

Figure 1

12 pages, 26718 KB  
Article
Laser-Induced Periodic Nanostructure on Polyimide Film Surface Using 248 nm Excimer Laser
by Songqing Zhao, Xuan Xie, Mingyang Li, Limin Yang and Tongjing Liu
Nanomaterials 2025, 15(10), 742; https://doi.org/10.3390/nano15100742 - 15 May 2025
Cited by 3 | Viewed by 945
Abstract
In this study, nanoscale periodic surface structures were fabricated on polyimide (PI) films using a linearly polarized KrF excimer laser with a wavelength of 248 nm. The effects of laser energy density and pulse number on the morphology and surface roughness of laser-induced [...] Read more.
In this study, nanoscale periodic surface structures were fabricated on polyimide (PI) films using a linearly polarized KrF excimer laser with a wavelength of 248 nm. The effects of laser energy density and pulse number on the morphology and surface roughness of laser-induced periodic surface structures (LIPSSs) were systematically investigated. When the pulse width was 20 ns, the repetition rate was 10 Hz, and the beam incidence angle was normal (90°), periodic ripples with a spatial period of approximately 200 nm formed within an energy density range of 7–18 mJ/cm2 and pulse number range of 6000–18,000. The most uniform and well-defined structures were achieved at 14.01 mJ/cm2 and 12,000 pulses, with a ripple depth of 60 nm and surface roughness (Ra) approximately 26 times greater than that of pristine PI. The ripple orientation was consistently perpendicular to the laser polarization, consistent with low-spatial-frequency LIPSS (LSFL) formation mechanisms governed by interference-induced photothermal effects. In addition, surface wettability was found to be significantly enhanced due to changes in both surface chemistry and topography, with the water contact angle decreasing from 73.7° to 19.7°. These results demonstrate the potential of UV nanosecond laser processing for the scalable fabrication of functional nanostructures on polymer surfaces for applications in surface engineering and biointerfaces. Full article
Show Figures

Figure 1

38 pages, 9782 KB  
Review
Laser-Fabricated Micro/Nanostructures: Mechanisms, Fabrication Techniques, and Applications
by Andrei Teodor Matei, Anita Ioana Visan and Irina Negut
Micromachines 2025, 16(5), 573; https://doi.org/10.3390/mi16050573 - 13 May 2025
Cited by 5 | Viewed by 2235
Abstract
The rapid evolution of optoelectronic devices necessitates innovative fabrication techniques to improve their performance and functionality. This review explores the advancements in laser processing as a versatile method for creating micro- and nanostructured surfaces, tailored to enhance the efficiency of optoelectronic applications. We [...] Read more.
The rapid evolution of optoelectronic devices necessitates innovative fabrication techniques to improve their performance and functionality. This review explores the advancements in laser processing as a versatile method for creating micro- and nanostructured surfaces, tailored to enhance the efficiency of optoelectronic applications. We begin by elucidating the fundamental mechanisms underlying laser interactions with materials, which facilitate the precise engineering of surface topographies. Following this, we systematically review various micro/nanostructures fabricated by laser techniques, such as laser ablation, laser-induced periodic surface structures (LIPSS), and two-photon polymerization, highlighting their unique properties and fabrication parameters. The review also delves into the significant applications of these laser-fabricated surfaces in optoelectronic devices, including photovoltaics, photodetectors, and sensors, emphasizing how tailored surface structures can lead to improved light absorption, enhanced charge carrier dynamics, and optimized device performance. By synthesizing current knowledge and identifying emerging trends, this work aims to inspire future research directions in the design and application of laser-fabricated micro/nanostructures within the field of optoelectronics. Our findings underscore the critical role of laser technology in advancing the capabilities of next-generation optoelectronic devices, aligning with the scope of emerging trends in device engineering. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering)
Show Figures

Figure 1

17 pages, 15636 KB  
Article
Fabrication of Mechanically Robust Hydrophobic Surfaces Using Femtosecond Laser Shock Peening
by Chao Xu, Mengyu Jia, Yucheng Gu, Peishuo Wang, Zhen Zhang and Yulei Wang
Materials 2025, 18(9), 2154; https://doi.org/10.3390/ma18092154 - 7 May 2025
Cited by 1 | Viewed by 726
Abstract
The harsh service environment has increased the demand for hydrophobic surfaces with excellent mechanical properties; however, how to manufacture such surfaces remains a significant challenge. In this study, a method for fabricating hydrophobic surfaces with excellent mechanical properties using femtosecond laser shock peening [...] Read more.
The harsh service environment has increased the demand for hydrophobic surfaces with excellent mechanical properties; however, how to manufacture such surfaces remains a significant challenge. In this study, a method for fabricating hydrophobic surfaces with excellent mechanical properties using femtosecond laser shock peening (fs-LSP) is proposed, without the need for any additional processing steps. Taking CH1900A martensitic steel as an example, a systematic analysis of the microstructure was conducted after fs-LSP, revealing the mechanisms by which fs-LSP affects surface morphology, grain structure, dislocation density, and grain boundary characteristics. The high-density dislocations and grain refinement induced by fs-LSP significantly enhanced the surface hardness and introduced residual compressive stresses. Additionally, the laser-induced periodic micro/nanostructures on the surface ensured excellent hydrophobic properties. The effect of single pulse energy and the number of impacts on fs-LSP has also been discussed in detail. As the pulse energy and number of impacts were increased, the surface microstructure of the material was progressively optimized, evidenced by grain refinement, an increase in geometrically necessary dislocation (GND) density, and a higher proportion of high-angle grain boundaries (HAGBs). Such optimization is not monotonous or unlimited; a pulse energy of 75 μJ and six impacts achieved the optimal effect, with the surface hardness reaching up to 8.2 GPa and a contact angle of 135 degrees. The proposed fs-LSP provides a new strategy for manufacturing hydrophobic surfaces with excellent mechanical properties, and the detailed discussion and analysis also provide theoretical guidance for process optimization. Full article
Show Figures

Figure 1

14 pages, 7058 KB  
Article
Manufacturing Process and Characteristics of Silica Nanostructures for Anti-Reflection at 355 nm
by Anne Gärtner, Mihai-George Mureșan, Christian Mühlig, Tobias Herffurth, Nadja Felde, Hanjörg Wagner, Ulrike Schulz, Astrid Bingel, Sven Schröder, Tomáš Mocek and Andreas Tünnermann
Coatings 2025, 15(5), 556; https://doi.org/10.3390/coatings15050556 - 6 May 2025
Viewed by 851
Abstract
Recent advancements in photonics have intensified the performance requirements for optical systems and present significant challenges for optical coating technologies. Conventional interference coating systems often prove to be insufficient, especially in applications requiring large angles of light incidence or a wide wavelength range. [...] Read more.
Recent advancements in photonics have intensified the performance requirements for optical systems and present significant challenges for optical coating technologies. Conventional interference coating systems often prove to be insufficient, especially in applications requiring large angles of light incidence or a wide wavelength range. Nanostructures, which consist of an air material mixture, offer promising alternatives. In this work, silica nanostructures are manufactured by the AR-plas2 method, in which first an organic layer is evaporated onto a substrate. This organic layer forms self-organizing nanostructures by a plasma etching step, which are subsequently coated with silica. Finally, the organic residues are removed by additional plasma etching and heat treatment steps, which results in hollow silica structures. The work examines the optical and functional properties of these structures designed for 355 nm to demonstrate their use as anti-reflective coatings for advanced optical systems. Full article
Show Figures

Graphical abstract

40 pages, 9219 KB  
Article
Enhanced Intranasal Delivery of Atorvastatin via Superparamagnetic Iron-Oxide-Loaded Nanocarriers: Cytotoxicity and Inflammation Evaluation and In Vivo, In Silico, and Network Pharmacology Study for Targeting Glioblastoma Management
by Kristina Zarif Attalla, Doaa H. Hassan, Mahmoud H. Teaima, Carol Yousry, Mohamed A. El-Nabarawi, Mohamed A. Said and Sammar Fathy Elhabal
Pharmaceuticals 2025, 18(3), 421; https://doi.org/10.3390/ph18030421 - 16 Mar 2025
Cited by 14 | Viewed by 2515
Abstract
Objective: This study aims to develop an intranasal (IN) delivery system for glioblastoma multiforme (GBM) management using repurposed superparamagnetic iron-oxide (SPION) loaded with atorvastatin (ATO)-nanostructured lipid carrier (NLC). Methods: Emulsification and ultrasonication were used to formulate ATO-NLCs, and the best formula [...] Read more.
Objective: This study aims to develop an intranasal (IN) delivery system for glioblastoma multiforme (GBM) management using repurposed superparamagnetic iron-oxide (SPION) loaded with atorvastatin (ATO)-nanostructured lipid carrier (NLC). Methods: Emulsification and ultrasonication were used to formulate ATO-NLCs, and the best formula was loaded with SPION to make the final atorvastatin/superparamagnetic iron oxide-loaded nanostructured lipid carrier (ASN) formulation. Entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and drug release after 6 h (Q6h) were evaluated for NLCs. ASN was tested for cytotoxicity on T98G cancer cells, and the cell cycle was examined to determine cell death. Furthermore, the ability of the optimal formulation to suppress the levels of inflammatory biomarkers was investigated in Lipopolysaccharide (LPS)-induced inflammation. The brain-targeting behavior of IN-ASN was visualized in rabbits via confocal laser scanning microscopy (CLSM). Results: The optimum NLC exhibited a spherical shape, EE% of 84.0 ± 0.67%, PS of 282.50 ± 0.51 nm, ZP of −18.40 ± 0.15 mV, and Q6h of 89.23%. The cytotoxicity of ASN against cancer cells was 4.4-fold higher than ATO suspension, with a 1.3-fold increment in cell apoptosis. ASN showed significantly reduced pro-inflammatory biomarkers (IL-β, IL-6, TNF-α, TLR4, NF-қB), whereas CLSM revealed enhanced brain delivery with no observed histopathological nasal irritation. The in silico analysis demonstrated enhanced ATO-ADME (absorption, distribution, metabolism, and excretion) properties, while the network pharmacology study identified 10 target GBM genes, among which MAPK3 was the most prominent with a good binding score as elucidated by the simulated docking study. Conclusions: These findings may present ATO/SPION-NLCs as significant evidence for repurposing atorvastatin in the treatment of glioblastoma multiforme. Full article
(This article belongs to the Special Issue Tumor Therapy and Drug Delivery)
Show Figures

Graphical abstract

Back to TopTop