Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (646)

Search Parameters:
Keywords = laser theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 7073 KB  
Article
Crack Contour Modeling Based on a Metaheuristic Algorithm and Micro-Laser Line Projection
by J. Apolinar Muñoz Rodríguez
Biomimetics 2026, 11(2), 102; https://doi.org/10.3390/biomimetics11020102 - 2 Feb 2026
Viewed by 23
Abstract
Currently, bio-inspired metaheuristic algorithms play an important role in computer vision for assessing surface cracks. Also, manufacturing industries need non-destructive technologies based on biomimetics theory for characterizing micro-crack contours to determine surface quality. In this way, it is necessary to develop bio-inspired algorithms [...] Read more.
Currently, bio-inspired metaheuristic algorithms play an important role in computer vision for assessing surface cracks. Also, manufacturing industries need non-destructive technologies based on biomimetics theory for characterizing micro-crack contours to determine surface quality. In this way, it is necessary to develop bio-inspired algorithms to construct crack contour models for determining crack regions through an optical microscope system. In this study, a metaheuristic genetic algorithm is implemented to build crack contour models by means of Bezier functions and crack coordinates. The contour modeling is performed by a microscope vision system based on micro-laser line scanning, which provides the crack coordinates through a broken laser line in the crack region. Thus, the metaheuristic algorithm builds the crack contour model by fitting the Bezier functions toward the crack topography. At this stage, an objective function moves the Bezier functions toward the crack topography via control points. The proposed technique provides micro-scale crack contours with a relative error smaller than 2%. Thus, the proposed crack contour modeling enhances the traditional crack contour inspection based on microscope image processing. This contribution is supported by a comparison between the proposed technique and the crack characterization performed via conventional image processing algorithms. Full article
Show Figures

Graphical abstract

22 pages, 5903 KB  
Article
Magnetostrictive Effect of Magnetorheological Elastomers Controlled by Magneto-Mechanical Coupling at the Mesoscopic Scale
by Long Li, Hailong Sun, Yingling Wei, Hongwei Cui, Ruifeng Liu, Hongliang Zou and Weijia Zheng
Polymers 2026, 18(3), 377; https://doi.org/10.3390/polym18030377 - 30 Jan 2026
Viewed by 215
Abstract
Magnetorheological elastomers (MREs) have attracted considerable attention in high-precision sensing and intelligent control due to their responsive sensitivity. The magnetostrictive properties of MREs excited by magneto-mechanical coupling at the mesoscopic scale show broad application potential but have not yet been fully elucidated. In [...] Read more.
Magnetorheological elastomers (MREs) have attracted considerable attention in high-precision sensing and intelligent control due to their responsive sensitivity. The magnetostrictive properties of MREs excited by magneto-mechanical coupling at the mesoscopic scale show broad application potential but have not yet been fully elucidated. In this study, the magnetostrictive properties were investigated at the mesoscopic scale through theoretical modeling, numerical simulation and experimental research. A correction factor was introduced to address the limitations of conventional magnetic dipole theory under near-field conditions, thereby providing a rational theoretical explanation of magnetostrictive behavior. Visualization analysis was performed using the finite element method (FEM). Subsequently, MREs were prepared under various solidified magnetic fields, and their performance was validated through scanning electron microscopy (SEM) and a laser displacement sensor. The results demonstrated that magnetostriction is determined by the relative angle between the particle chain and the magnetic field direction. The linearity of the particle chain was found to be positively correlated with magnetostriction. The maximum theoretical and experimental magnetostrictive elongations reached 0.9% and 0.565%, respectively, while the maximum theoretical and experimental magnetostrictive compression reached 2.77% and 1.81%, respectively. This work provides significant scientific insights into the magneto-mechanical energy conversion mechanism and contributes to the development of magnetostrictive instruments. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

15 pages, 1881 KB  
Article
Finite-Range Scalar–Tensor Gravity: Constraints from Cosmology and Galaxy Dynamics
by Elie Almurr and Jean Claude Assaf
Galaxies 2026, 14(1), 7; https://doi.org/10.3390/galaxies14010007 - 27 Jan 2026
Viewed by 236
Abstract
Objective: We examine whether a finite-range scalar–tensor modification of gravity can be simultaneously compatible with cosmological background data, galaxy rotation curves, and local/astrophysical consistency tests, while satisfying the luminal gravitational-wave propagation constraint (cT=1) implied by GW170817 at low [...] Read more.
Objective: We examine whether a finite-range scalar–tensor modification of gravity can be simultaneously compatible with cosmological background data, galaxy rotation curves, and local/astrophysical consistency tests, while satisfying the luminal gravitational-wave propagation constraint (cT=1) implied by GW170817 at low redshifts. Methods: We formulate the model at the level of an explicit covariant action and derive the corresponding field equations; for cosmological inferences, we adopt an effective background closure in which the late-time dark-energy density is modulated by a smooth activation function characterized by a length scale λ and amplitude ϵ. We constrain this background model using Pantheon+, DESI Gaussian Baryon Acoustic Oscillations (BAOs), and a Planck acoustic-scale prior, including an explicit ΛCDM comparison. We then propagate the inferred characteristic length by fixing λ in the weak-field Yukawa kernel used to model 175 SPARC galaxy rotation curves with standard baryonic components and a controlled spherical approximation for the scalar response. Results: The joint background fit yields Ωm=0.293±0.007, λ=7.691.71+1.85Mpc, and H0=72.33±0.50kms1Mpc1. With λ fixed, the baryons + scalar model describes the SPARC sample with a median reduced chi-square of χν2=1.07; for a 14-galaxy subset, this model is moderately preferred over the standard baryons + NFW halo description in the finite-sample information criteria, with a mean ΔAICc outcome in favor of the baryons + scalar model (≈2.8). A Vainshtein-type screening completion with Λ=1.3×108 eV satisfies Cassini, Lunar Laser Ranging, and binary pulsar bounds while keeping the kpc scales effectively unscreened. For linear growth observables, we adopt a conservative General Relativity-like baseline (μ0=0) and show that current fσ8 data are consistent with μ00 for our best-fit background; the model predicts S8=0.791, consistent with representative cosmic-shear constraints. Conclusions: Within the present scope (action-level weak-field dynamics for galaxy modeling plus an explicitly stated effective closure for background inference), the results support a mutually compatible characteristic length at the Mpc scale; however, a full perturbation-level implementation of the covariant theory remains an issue for future work, and the role of cold dark matter beyond galaxy scales is not ruled out. Full article
Show Figures

Figure 1

16 pages, 3393 KB  
Article
Far-Field Super-Resolution via Longitudinal Nano-Optical Field: A Combined Theoretical and Numerical Investigation
by Aiqin Zhang, Kunyang Li and Jianying Zhou
Photonics 2026, 13(2), 114; https://doi.org/10.3390/photonics13020114 - 26 Jan 2026
Viewed by 195
Abstract
We present a theoretical and numerical investigation of a far-field super-resolution dark-field microscopy technique based on longitudinal nano-optical field excitation and detection. This method is implemented by integrating vector optical field modulation into a back-scattering confocal laser scanning microscope. A complete forward theoretical [...] Read more.
We present a theoretical and numerical investigation of a far-field super-resolution dark-field microscopy technique based on longitudinal nano-optical field excitation and detection. This method is implemented by integrating vector optical field modulation into a back-scattering confocal laser scanning microscope. A complete forward theoretical imaging framework that rigorously accounts for light–matter interactions is adopted and validated. The weak interaction model and general model are both considered. For the weak interaction model, e.g., multiple discrete dipole sources with a uniform or modulated responding intensity are utilized to fundamentally demonstrate the relationship between the sample and the imaging information. For continuous nanostructures, the finite-difference time-domain simulation results of the interaction-induced optical fields in the imaging model show that the captured image information is not determined solely by system resolution and sample geometry, but also arises from a combination of sample-dependent factors, including material composition, the local density of optical states, and intrinsic physical properties such as the complex refractive index. Unlike existing studies, which predominantly focus on system design or rely on simplified assumptions of weak interactions, this paper achieves quantitative characterization and precise regulation of nanoscale vector optical fields and samples under strong interactions through a comprehensive analytical–numerical imaging model based on rigorous vector diffraction theory and strong near-field coupling interactions, thereby overcoming the limitations of traditional methods. Full article
(This article belongs to the Special Issue Optical Imaging Innovations and Applications)
Show Figures

Figure 1

11 pages, 4203 KB  
Article
Optical Performance Analysis of Anti-Reflective Microholes with Different Arrangements Fabricated by Femtosecond Laser Zigzag Scanning
by Yulong Ding, Cong Wang, Zheng Gao, Xiang Jiang, Shiyu Wang, Xianshi Jia, Linpeng Liu and Ji’an Duan
Photonics 2026, 13(2), 109; https://doi.org/10.3390/photonics13020109 - 25 Jan 2026
Viewed by 196
Abstract
A femtosecond laser serves as an excellent tool for efficiently fabricating large-area anti-reflective microhole arrays on infrared windows. The impact of the arrangement of the microholes during processing on final performance, however, remains unclear. Here, microhole arrays were fabricated on MgF2 windows [...] Read more.
A femtosecond laser serves as an excellent tool for efficiently fabricating large-area anti-reflective microhole arrays on infrared windows. The impact of the arrangement of the microholes during processing on final performance, however, remains unclear. Here, microhole arrays were fabricated on MgF2 windows using a femtosecond laser. The optical performance was analyzed by the finite-difference time-domain method, focusing on the effects of in-plane arrangement deviation and double-sided alignment error. Simulation results indicate that the arrangement variations alter the average transmittance by less than 0.02%. Analysis via effective medium theory revealed that, within the target band, the microstructure array collectively functions as a thin film with a gradient refractive index. Its macroscopic properties show little sensitivity to minor misalignments at the microscopic scale. As a proof of concept, a large-area (20 mm × 20 mm) double-sided antireflection window was rapidly fabricated by employing a zigzag scanning strategy, which achieved an average transmittance exceeding 97.5% and exhibited a high degree of consistency between the simulated and experimental results. Upon final integration into the infrared thermal imaging system, this window not only enhanced the richness of detail in captured images but also improved target contrast. Full article
(This article belongs to the Special Issue Recent Progress in Optical Quantum Information and Communication)
Show Figures

Figure 1

20 pages, 4237 KB  
Article
Systematic Measurement and Analysis of Beam Degree of Polarization Under Diverse Atmospheric Turbulence Conditions
by Chenghu Ke, Yan Shu, Meimiao Han and Xizheng Ke
Photonics 2026, 13(1), 82; https://doi.org/10.3390/photonics13010082 - 18 Jan 2026
Viewed by 105
Abstract
Atmospheric turbulence-induced random fluctuations in the refractive index can lead to the degradation of the polarization of polarized light. In accordance with the unified theory of coherent polarization, a comprehensive investigation was undertaken to explore the variation in the degree of polarization (DOP) [...] Read more.
Atmospheric turbulence-induced random fluctuations in the refractive index can lead to the degradation of the polarization of polarized light. In accordance with the unified theory of coherent polarization, a comprehensive investigation was undertaken to explore the variation in the degree of polarization (DOP) of laser beams propagating through atmospheric turbulence channels under diverse weather conditions. This investigation involved both theoretical analyses and experimental validations, providing a multifaceted approach to understanding the dynamics of laser beam propagation in atmospheric turbulence. To this end, numerical simulations were performed to analyze the polarization-maintaining characteristics of laser beams with varying wavelengths, turbulence intensities, and initial DOP values. To validate the simulation results for various weather scenarios, three experimental links with different propagation distances were constructed. The experimental results demonstrated that as the turbulence intensity increased, the average DOP of the beam continuously decreased until it reached a threshold value. Furthermore, the polarization fluctuations exhibited a distance-threshold effect, wherein the polarization parameters tended to saturate beyond a critical propagation distance. Full article
Show Figures

Figure 1

15 pages, 2108 KB  
Article
Experimental Demonstration of Airborne Virtual Hyperbolic Metamaterials for Radar Signal Guiding
by Xiaoxuan Peng, Shiqiang Zhao, Yongzheng Wen, Jingbo Sun and Ji Zhou
Appl. Sci. 2026, 16(2), 773; https://doi.org/10.3390/app16020773 - 12 Jan 2026
Viewed by 144
Abstract
The inherent diffraction of electromagnetic waves, such as shortwaves and microwaves, severely limits the effective signal transmission distance, thereby constraining the development of related applications like radar and communications. This work experimentally demonstrates the use of a virtual hyperbolic metamaterial (VHMM) realized via [...] Read more.
The inherent diffraction of electromagnetic waves, such as shortwaves and microwaves, severely limits the effective signal transmission distance, thereby constraining the development of related applications like radar and communications. This work experimentally demonstrates the use of a virtual hyperbolic metamaterial (VHMM) realized via a plasma filament array induced in air by a femtosecond laser. We characterize the ability of this VHMM to control electromagnetic waves in the shortwave and microwave bands, particularly its guiding and collimating effects. By combining experimental measurements with effective medium theory, we confirm that under specific parameters, the principal diagonal components of the permittivity tensor for the plasma array exhibit opposite signs, manifesting typical hyperbolic dispersion characteristics which enable the guiding of electromagnetic waves. This research provides a feasible approach for utilizing lasers to create dynamically reconfigurable and non-physical structures in free space for manipulating long-wavelength electromagnetic radiation, demonstrating potential for applications in areas such as radar, communications, and remote sensing. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Electromagnetic Metamaterials)
Show Figures

Figure 1

14 pages, 2404 KB  
Article
Red-Pitaya-Based Frequency Stabilization of 1560-nm Fiber Laser to 780-nm Rubidium Atomic Transition via Single-Pass Frequency Doubling
by Yirong Wei, Ziwen Wang, Yuewei Wang, Yuhui Yang, Tao Wang, Rui Chang and Junmin Wang
Photonics 2026, 13(1), 57; https://doi.org/10.3390/photonics13010057 - 7 Jan 2026
Viewed by 347
Abstract
The single-step Rydberg excitation of cesium atoms requires a 319 nm ultraviolet laser with a narrow laser linewidth, high frequency stability, and high output power. To meet these requirements, in this work, we construct a high-power, single-frequency UV laser system at this wavelength. [...] Read more.
The single-step Rydberg excitation of cesium atoms requires a 319 nm ultraviolet laser with a narrow laser linewidth, high frequency stability, and high output power. To meet these requirements, in this work, we construct a high-power, single-frequency UV laser system at this wavelength. In this system, the frequency stabilization of the 1560.492 nm seed laser is critical to the performance of the ultraviolet laser. We employ nonlinear frequency conversion technology, the 1560.492 nm laser is frequency-doubled to 780.246 nm via a single pass through a PPLN crystal, and function integration is realized based on the modular parameter adjustment interface provided by the PyRPL software. Subsequently, the 1560.492 nm laser is stabilized to the D2 hyperfine transition line of Rb-87 atoms using polarization spectroscopy (PS) and radio-frequency-modulated saturation absorption spectroscopy (RF-SAS). A comparative study of these two techniques shows that RF-SAS achieves superior stabilization performance, with the residual frequency fluctuation of the frequency-doubled laser being 1.07 MHz over 30 min. According to frequency doubling theory, the actual residual frequency fluctuation of the 1560.492 nm fundamental-frequency laser can be calculated as 0.535 MHz. Compared with our earlier scheme that utilized an ultra-low-expansion (ULE) optical cavity as a frequency reference, the present scheme eliminates the long-term drift induced by environmental factors. In contrast to frequency stabilization relying on discrete instruments, this integrated scheme significantly reduces the cost, simplifies the system architecture, saves space, and greatly enhances the flexibility and controllability of the system. It therefore provides a reliable and cost-effective solution to ensure the portability and practicability of high-performance UV laser sources. This high-precision frequency stabilization scheme directly guarantees the performance of the 319 nm UV laser, suppressing its linewidth below 10 kHz. Thus, it fully meets the stringent laser linewidth and frequency stability requirements for the single-step Rydberg excitation of cesium atoms and provides a reliable light source foundation for subsequent precision spectroscopic measurements. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 3rd Edition)
Show Figures

Figure 1

32 pages, 3663 KB  
Article
Technology Acceptance and Perceived Learning Outcomes in Construction Surveying Education: A Comparative Analysis Using UTAUT and Bloom’s Taxonomy
by Ri Na, Dyala Aljagoub, Tianjiao Zhao and Xi Lin
Educ. Sci. 2026, 16(1), 45; https://doi.org/10.3390/educsci16010045 - 30 Dec 2025
Viewed by 296
Abstract
Rapid adoption of digital surveying technologies in construction has highlighted the need for engineering education to equip students with technological competency as well as higher-order problem-solving skills. This experiment explores undergraduate students’ acceptance of emerging surveying technologies and their perceived learning results within [...] Read more.
Rapid adoption of digital surveying technologies in construction has highlighted the need for engineering education to equip students with technological competency as well as higher-order problem-solving skills. This experiment explores undergraduate students’ acceptance of emerging surveying technologies and their perceived learning results within a constructivist framework of experiential learning. Thirty-six students in a required construction surveying class interacted with traditional and advanced technologies such as total stations, terrestrial laser scanning, drones, and mobile LiDAR through structured, semi-structured, and unstructured lab activities. Data were gathered based on two post-course surveys: a technology acceptance survey grounded in Unified Theory of Acceptance and Use of Technology (UTAUT) and a self-perceived cognitive learning outcome survey through Bloom’s Taxonomy. Qualitative analysis along with quantitative analysis indicated a gap between technology acceptance and perceived learning gains. Laser scanner had the greatest acceptance scores followed by other advanced tools. Total station (widespread in hands-on lab activities) was perceived to have been most influential in terms of enhancing learning. Lower-order skills were strengthened in structured labs, while higher-order thinking emerged more unevenly in open-ended labs. These findings underscore that the mode of student engagement with technology matters more for learning than the sophistication of the tools themselves. By embedding UTAUT and Bloom’s Taxonomy in an authentic learning environment, this experiment provides engineering educators a mechanism to assess technology-enhanced learning and identifies strategies to facilitate higher-order skills aligned with industry needs. Full article
(This article belongs to the Special Issue Technology-Enhanced Education for Engineering Students)
Show Figures

Figure 1

31 pages, 9313 KB  
Article
A Methodology for Beam Deformation Reconstruction Utilizing CEEMDAN-HT-GMM-Ko
by Shaopeng Xing and Xincong Zhou
Appl. Sci. 2026, 16(1), 349; https://doi.org/10.3390/app16010349 - 29 Dec 2025
Viewed by 161
Abstract
In order to improve the accuracy of the deformation reconstruction method based on the Ko displacement theory, a beam deformation reconstruction method based on CEEMDAN-HT-GMM-KO is proposed in this study. The method uses the CEEMDAN method to decompose the original signal and the [...] Read more.
In order to improve the accuracy of the deformation reconstruction method based on the Ko displacement theory, a beam deformation reconstruction method based on CEEMDAN-HT-GMM-KO is proposed in this study. The method uses the CEEMDAN method to decompose the original signal and the GMM method to identify the noise so as to complete the noise reduction of the original data. A three-dimensional (3D) laser scanner was used to verify the results of strain information reconstruction before and after noise reduction. The results show that the average relative error of strain information reconstruction results after noise reduction is 4.54%. This method can eliminate the noise in the strain information and verify the accuracy of the deformation reconstruction method based on the Ko displacement theory in the overhanging beam under the condition of pre-deformation, providing a new method for the health monitoring of large steel structures. Full article
Show Figures

Figure 1

14 pages, 2886 KB  
Article
First-Principle Study of AlCoCrFeNi High-Entropy Alloys
by Andi Huang, Yilong Liu, Jinghao Huang, Jingang Liu and Shiping Yang
Nanomaterials 2026, 16(1), 20; https://doi.org/10.3390/nano16010020 - 23 Dec 2025
Viewed by 490
Abstract
AlCoCrFeNi high-entropy alloys (HEAs) are promising materials due to their exceptional mechanical properties and thermal stability. This study employs first-principles calculations based on density functional theory (DFT) to investigate the phase stability and electronic properties of AlCoCrFeNi HEA. The atomic size difference ( [...] Read more.
AlCoCrFeNi high-entropy alloys (HEAs) are promising materials due to their exceptional mechanical properties and thermal stability. This study employs first-principles calculations based on density functional theory (DFT) to investigate the phase stability and electronic properties of AlCoCrFeNi HEA. The atomic size difference (δ) was determined to be 5.44%, while the mixing enthalpy (ΔHmix) was found to be −14.24 kJ/mol, and the valence electron concentration (VEC) was measured at 7.2, indicating a dual-phase structure consisting of the BCC and B2 phases. The formation energies indicated that the BCC phase exhibits the highest stability under typical conditions. The elastic properties were assessed, revealing Young’s modulus of 250 GPa, a shear modulus of 100 GPa, and a bulk modulus of 169 GPa, which suggest high stiffness. The alloy demonstrated a Poisson’s ratio of 0.25 and a G/B ratio of 0.59, indicating relatively brittle behavior. Microhardness simulations predicted a value of 604 HV0.2, which closely aligns with experimental measurements of 602 HV0.2 at 1300 W laser power, 532 HV0.2 at 1450 W, and 544 HV0.2 at 1600 W. The electronic structure analysis revealed metallic behavior, with the d-orbitals of Co, Fe, and Ni contributing significantly to the electronic states near the Fermi level. These findings offer valuable insights into the phase behavior and mechanical properties of AlCoCrFeNi HEA, which are crucial for the design of high-performance materials suitable for extreme engineering applications. Full article
(This article belongs to the Special Issue Nano-Based Advanced Thermoelectric Design: 2nd Edition)
Show Figures

Figure 1

16 pages, 3352 KB  
Article
The Regulating Role of Nano-SiO2 Potential in the Thermophysical Properties of NaNO3-KNO3
by Manting Gu, Dan Zhang, Chuang Zhu, Panfeng Li and Wenxin Han
Nanomaterials 2025, 15(24), 1854; https://doi.org/10.3390/nano15241854 - 11 Dec 2025
Viewed by 319
Abstract
Molten salt, as a phase change heat storage material, can be used to mitigate the volatility of clean energy. Increasing the specific heat of molten salts can help to increase heat storage density and reduce costs. In this study, nanoparticles with different potentials [...] Read more.
Molten salt, as a phase change heat storage material, can be used to mitigate the volatility of clean energy. Increasing the specific heat of molten salts can help to increase heat storage density and reduce costs. In this study, nanoparticles with different potentials were prepared and doped into Solar Salt (NaNO3-KNO3). The modification results of the nanoparticles were evaluated by transmission electron microscopy, energy dispersive X-ray spectroscopy and infrared spectroscopy, and the modification process was analyzed by density functional theory. The specific heat, thermal diffusion coefficient, melting point, latent heat of the composites and their variation mechanism were analyzed using synchronized thermal analyzer, laser flash analyzer and scanning electron microscope. It was found that acidification was able to modify the SiO2 nanoparticles and that the higher the acidity, the more the negative charge of the nanoparticles was neutralised. A 25.8% decrease in zeta potential to −23.17 mV was observed for the nano-SiO2 after treatment with HCl at pH 1, compared to the non-acidified sample. The microelectric field generated by the charged nanoparticles affects the thermophysical properties such as the specific heat of the molten salt-nanoparticle composites, with one of the samples having the largest specific heat (1.79 J/(g·K)) and thermal diffusion coefficient (0.94 mm2/s), which were increased by 13.3% and 14.6%, respectively, compared to the Solar Salt. This study attributes the alterations in thermophysical properties to the variation in ion separation distance induced by the charge on nanoparticles. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

19 pages, 3573 KB  
Article
Time-Dependent Theory of Electron Emission Perpendicular to Laser Polarization for Reconstruction of Attosecond Harmonic Beating by Interference of Multiphoton Transitions
by Matías L. Ocello, Sebastián D. López, Martín Barlari and Diego G. Arbó
Atoms 2025, 13(12), 99; https://doi.org/10.3390/atoms13120099 - 10 Dec 2025
Viewed by 404
Abstract
We present a time-dependent nonperturbative theory of the reconstruction of attosecond beating by interference of multiphoton transitions (RABBIT) for photoelectron emission from hydrogen atoms in the transverse direction relative to the laser polarization axis. Extending our recent semiclassical strong-field approximation (SFA) model developed [...] Read more.
We present a time-dependent nonperturbative theory of the reconstruction of attosecond beating by interference of multiphoton transitions (RABBIT) for photoelectron emission from hydrogen atoms in the transverse direction relative to the laser polarization axis. Extending our recent semiclassical strong-field approximation (SFA) model developed for parallel emission, we deduce analytical expressions for the transition amplitudes and demonstrate that the photoelectron probability distribution can be factorized into interhalf- and intrahalfcycle interference contributions, the latter modulating the intercycle pattern responsible for sideband formation. We identify the intrahalfcycle interference arising from trajectories released within the same half cycle as the mechanism governing attosecond phase delays in the perpendicular geometry. Our results reveal the suppression of even-order sidebands due to destructive interhalfcycle interference, leading to a characteristic spacing between adjacent peaks that doubles the standard spacing observed along the polarization axis. Comparisons with numerical calculations of the SFA and the ab initio solution of the time-dependent Schrödinger equation confirm the accuracy of the semiclassical description. This work provides a unified framework for understanding quantum interferences in attosecond chronoscopy, bridging the cases of parallel and perpendicular electron emission in RABBIT-like protocols. Full article
Show Figures

Figure 1

11 pages, 2440 KB  
Article
Internal Temperature Measurement of Optically Levitated Particles in Vacuum by Raman Thermometry
by Kou Li, Jiaming Liu, Xincai Xu, Zhuangzhuang Wang, Nan Li, Han Cai, Wenqiang Li and Huizhu Hu
Micromachines 2025, 16(12), 1388; https://doi.org/10.3390/mi16121388 - 7 Dec 2025
Viewed by 487
Abstract
An optical levitation system in a vacuum is an efficient system to investigate the dynamics of isolated micro- and nanoparticles. However, the motion and stability of the trapped particles in this system can be affected by the internal temperature, which remains a challenge [...] Read more.
An optical levitation system in a vacuum is an efficient system to investigate the dynamics of isolated micro- and nanoparticles. However, the motion and stability of the trapped particles in this system can be affected by the internal temperature, which remains a challenge to measure. Conventional methods are constrained by material specificity or lack the capability for direct temperature measurement. Here, we demonstrate the application of Raman thermometry for non-contact temperature detection of an optically levitated fused silica sphere in vacuum. In addition, the experimental results reveal a linear increase in particle temperature with laser power, consistent with photothermal theory. The integration of Raman thermometry with the optical levitation system enables high-precision thermal sensing at the microscale, offering significant potential for applications in precision metrology and fundamental physics. Full article
(This article belongs to the Special Issue Optical Tweezers and Their Applications)
Show Figures

Figure 1

15 pages, 2990 KB  
Article
Infrared Photodissociation Spectroscopic and Theoretical Study of Mass-Selected Heteronuclear Iron–Rhodium and Iron–Iridium Carbonyl Cluster Cations
by Jin Hu and Xuefeng Wang
Molecules 2025, 30(23), 4619; https://doi.org/10.3390/molecules30234619 - 1 Dec 2025
Viewed by 401
Abstract
Heterobimetallic iron–group 9 carbonyl cations, FeM(CO)n+ (M = Rh, Ir; n = 9–11), were generated in the gas phase via pulsed laser vaporization within a supersonic expansion and characterized by infrared photodissociation spectroscopy in the carbonyl stretching region. By combining experimental [...] Read more.
Heterobimetallic iron–group 9 carbonyl cations, FeM(CO)n+ (M = Rh, Ir; n = 9–11), were generated in the gas phase via pulsed laser vaporization within a supersonic expansion and characterized by infrared photodissociation spectroscopy in the carbonyl stretching region. By combining experimental spectra with density functional theory simulations, the geometric and electronic structures of these clusters were unambiguously assigned. Mass spectrometry and photodissociation results identified FeM(CO)9+ as the saturated species for M = Rh and Ir, in contrast to the lighter cobalt analog FeCo(CO)8+. The FeM(CO)9+ cations adopt a C4v-symmetric singlet ground-state structure with all carbonyl ligands terminally bound, corresponding to a (OC)5Fe–M(CO)4 configuration. These complexes can be formally described as combination products of the stable neutral Fe(CO)5 and cationic M(CO)4+ fragments. Analyses based on canonical molecular orbitals, Mayer bond orders, and fragment-based correlation diagrams reveal the presence of a dative Fe→M interaction in FeM(CO)9+, which formally enables the heavier Rh/Ir metal center to attain an 18-electron configuration. However, this bond is weaker than a typical covalent single bond, as the key molecular orbitals involved possess antibonding character. This study provides important insights into the structure and bonding of heteronuclear transition metal carbonyl clusters, highlighting distinctive coordination behavior between late 3d and heavier 4d/5d congeners. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

Back to TopTop