Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,945)

Search Parameters:
Keywords = laser sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3259 KB  
Article
Design of Circularly Polarized VCSEL Based on Cascaded Chiral GaAs Metasurface
by Xiaoming Wang, Bo Cheng, Yuxiao Zou, Guofeng Song, Kunpeng Zhai and Fuchun Sun
Photonics 2026, 13(1), 87; https://doi.org/10.3390/photonics13010087 (registering DOI) - 19 Jan 2026
Abstract
Vertical cavity surface emitting lasers (VCSELs) have shown great potential in high-speed communication, quantum information processing, and 3D sensing due to their excellent beam quality and low power consumption. However, generating high-purity and controllable circularly polarized light usually requires external optical components such [...] Read more.
Vertical cavity surface emitting lasers (VCSELs) have shown great potential in high-speed communication, quantum information processing, and 3D sensing due to their excellent beam quality and low power consumption. However, generating high-purity and controllable circularly polarized light usually requires external optical components such as quarter-wave plates, which undoubtedly increases system complexity and volume, hindering chip-level integration. To address this issue, we propose a monolithic integration scheme that directly integrates a custom-designed double-layer asymmetric metasurface onto the upper distributed Bragg reflector of a chiral VCSEL. This metasurface consists of a rotated GaAs elliptical nanocolumn array and an anisotropic grating above it. By precisely controlling the relative orientation between the two, the in-plane symmetry of the structure is effectively broken, introducing a significant optical chirality response at a wavelength of 1550 nm. Numerical simulations show that this structure can achieve a near 100% high reflectivity for the left circularly polarized light (LCP), while suppressing the reflectivity of the right circularly polarized light (RCP) to approximately 33%, thereby obtaining an efficient in-cavity circular polarization selection function. Based on this, the proposed VCSEL can directly emit high-purity RCP without any external polarization control components. This compact circularly polarized laser source provides a key solution for achieving the next generation of highly integrated photonic chips and will have a profound impact on frontier fields such as spin optics, secure communication, and chip-level quantum light sources. Full article
Show Figures

Figure 1

20 pages, 1534 KB  
Article
Low-Cost DLW Setup for Fabrication of Photonics-Integrated Circuits
by André Moreira, Alessandro Fantoni, Miguel Fernandes and Jorge Fidalgo
Micromachines 2026, 17(1), 125; https://doi.org/10.3390/mi17010125 - 19 Jan 2026
Abstract
The development of photonic-integrated circuits (PICs) for data communication, sensing, and quantum computing is hindered by the high complexity and cost of traditional fabrication methods, which rely on expensive equipment, limiting accessibility for research and prototyping. This study introduces a Direct Laser Writing [...] Read more.
The development of photonic-integrated circuits (PICs) for data communication, sensing, and quantum computing is hindered by the high complexity and cost of traditional fabrication methods, which rely on expensive equipment, limiting accessibility for research and prototyping. This study introduces a Direct Laser Writing (DLW) system designed as a low-cost alternative, utilizing an XY platform for precise substrate movement and an optical system comprising a collimator and lens to focus the laser beam. Operating on a single layer, the system employs SU-8 photoresist to fabricate polymer-based structures on substrates such as ITO-covered glass. Preparation involves thorough cleaning, spin coating with photoresist, and pre- and post-baking to ensure material stability. This approach reduces dependence on costly infrastructure, making it suitable for academic settings and enabling rapid prototyping. A user interface and custom slicer process standard .dxf files into executable commands, enhancing operational flexibility. Experimental results demonstrate a resolution of 10 µm, with successful patterning of structures, including diffraction grids, waveguides, and multimode interference devices. This system aims to transform PIC prototype fabrication into a cost-effective, accessible process. Full article
(This article belongs to the Special Issue Laser-Assisted Ultra-Precision Machining)
Show Figures

Figure 1

14 pages, 423 KB  
Article
Coherent State Description of Astrophysical Gamma-Ray Amplification from a Para-Positronium Condensate
by Diego Julio Cirilo-Lombardo
Particles 2026, 9(1), 5; https://doi.org/10.3390/particles9010005 - 14 Jan 2026
Viewed by 60
Abstract
The para-positronium system S01Ps is described by means of specially constructed coherent states (CSs) in the Klauder–Perelomov sense. It is analyzed from the physical point of view and from the geometry underlying the relevant symmetry group establishing the dynamics [...] Read more.
The para-positronium system S01Ps is described by means of specially constructed coherent states (CSs) in the Klauder–Perelomov sense. It is analyzed from the physical point of view and from the geometry underlying the relevant symmetry group establishing the dynamics of the processes. In this new theoretical context, the possibility of a gamma-ray laser emission is investigated within a QFT context, showing explicitly that, in addition to the oscillator solution based only on a Bogoliubov approximation for the condensate, there is a second phase or “squeezed” stage by which physical features beyond the classical ones appear. Explicitly, while the generated photons are in the active medium (e.g., Ps-BEC), the evolution is described by a Heisenberg–Weyl coherent state with displacement operators dependent on the interaction time, which is related to the condensate shape. After the interaction time has elapsed, we explicitly demonstrate that the displacement operator of the S01Ps is transformed into a squeezed operator of the photonic fields modulated by the matrix element of the Positronium decay MS01Ps2γ. We also show that this squeezed operator (belonging to the Metaplectic group) generates a non-classical radiation state spanning only even (s = 1/4) levels in the number of photons. The implications in astrophysical systems of interest, considering gamma-ray coherent emission and the possibility of an S01PsBEC in the context of pulsars, blazars, and quasars, are briefly discussed. Full article
(This article belongs to the Section Astroparticle Physics and Cosmology)
Show Figures

Figure 1

17 pages, 3960 KB  
Article
Tunable Narrow-Linewidth Si3N4 Cascaded Triple-Ring External-Cavity Semiconductor Laser for Coherent Optical Communications
by Tong Wang, Yuchen Hu, Wen Zhou and Ye Wang
Photonics 2026, 13(1), 72; https://doi.org/10.3390/photonics13010072 - 13 Jan 2026
Viewed by 102
Abstract
We propose an external-cavity laser that combines wide tunability with narrow linewidth. The design utilizes a low-loss Si3N4 waveguide and a thermally tuned cascaded triple-ring resonator to enable continuous wavelength tuning. The numerical simulations indicate that the proposed laser exhibits [...] Read more.
We propose an external-cavity laser that combines wide tunability with narrow linewidth. The design utilizes a low-loss Si3N4 waveguide and a thermally tuned cascaded triple-ring resonator to enable continuous wavelength tuning. The numerical simulations indicate that the proposed laser exhibits a tuning range of 64 nm with a sub-kHz linewidth, an SMSR of more than 80 dB, an output power of 24 mW and a linewidth of 193 Hz at 1550 nm. Furthermore, we perform comparative system-level simulations using QPSK and 16QAM coherent optical fiber links at 50 Gbaud over 100 km. Under identical conditions, when the laser linewidth is reduced from 1 MHz level to 193 Hz, the BER of 16QAM decreases from 1.5 × 10−3 to 5.3 × 10−5. These results indicate that a narrow linewidth effectively mitigates phase noise degradation in high-order modulation formats. With its narrow linewidth, wide tuning range, high SMSR, and high output power, this laser serves as a promising on-chip light source for high-resolution sensing and coherent optical communications. Full article
Show Figures

Figure 1

11 pages, 1684 KB  
Article
Polarization Dependence on the Optical Emission in Nd-Doped Bioactive W-TCP Coatings
by Daniel Sola, Eloy Chueca and José Ignacio Peña
J. Funct. Biomater. 2026, 17(1), 38; https://doi.org/10.3390/jfb17010038 - 13 Jan 2026
Viewed by 221
Abstract
Neodymium-doped bioactive wollastonite–tricalcium phosphate (W-TCP:Nd) coatings were fabricated by combining dip-coating and laser floating zone (LFZ) techniques to investigate the dependence of optical emission on polarization. Structural and spectroscopic analyses were performed on both longitudinal and transversal sections of the coating to assess [...] Read more.
Neodymium-doped bioactive wollastonite–tricalcium phosphate (W-TCP:Nd) coatings were fabricated by combining dip-coating and laser floating zone (LFZ) techniques to investigate the dependence of optical emission on polarization. Structural and spectroscopic analyses were performed on both longitudinal and transversal sections of the coating to assess the effects of directional solidification on luminescence and vibrational behavior. Micro-Raman spectroscopy revealed that the coating exhibited sharp, well-defined peaks compared to the W-TCP:Nd glass, confirming its glass-ceramic nature. New Raman modes appeared in the longitudinal section, accompanied by red and blue shifts in some bands relative to the transversal section, suggesting the presence of anisotropic stress and orientation-dependent crystal growth. Optical emission measurements showed that while the 4F3/24I11/2 transition near 1060 nm was nearly polarization independent, the 4F3/24I9/2 transition around 870–900 nm exhibited strong polarization dependence with notable Stark splitting. The relative intensity and spectral position of the Stark components varied systematically with the rotation of the emission polarization. These findings demonstrate that directional solidification induces polarization-dependent optical behavior, indicating potential applications for polarization-sensitive optical tracking and sensing in bioactive implant coatings. Full article
(This article belongs to the Special Issue Advanced Technologies for Processing Functional Biomaterials)
Show Figures

Figure 1

42 pages, 4878 KB  
Review
Carbon Nanotubes and Graphene in Polymer Composites for Strain Sensors: Synthesis, Functionalization, and Application
by Aleksei V. Shchegolkov, Alexandr V. Shchegolkov and Vladimir V. Kaminskii
J. Compos. Sci. 2026, 10(1), 43; https://doi.org/10.3390/jcs10010043 - 13 Jan 2026
Viewed by 203
Abstract
This review provides a comprehensive analysis of modern strategies for the synthesis, functionalization, and application of carbon nanotubes (CNTs) and graphene for the development of high-performance polymer composites in the field of strain sensing. The paper systematically organizes key synthesis methods for CNTs [...] Read more.
This review provides a comprehensive analysis of modern strategies for the synthesis, functionalization, and application of carbon nanotubes (CNTs) and graphene for the development of high-performance polymer composites in the field of strain sensing. The paper systematically organizes key synthesis methods for CNTs and graphene (chemical vapor deposition (CVD), such as arc discharge, laser ablation, microwave synthesis, and flame synthesis, as well as approaches to their chemical and physical modification aimed at enhancing dispersion within polymer matrices and strengthening interfacial adhesion. A detailed examination is presented on the structural features of the nanofillers, such as the CNT aspect ratio, graphene oxide modification, and the formation of hybrid 3D networks and processing techniques, which enable the targeted control of the nanocomposite’s electrical conductivity, mechanical strength, and flexibility. Central focus is placed on the fundamental mechanisms of the piezoresistive response, analyzing the role of percolation thresholds, quantum tunneling effects, and the reconfiguration of conductive networks under mechanical load. The review summarizes the latest advancements in flexible and stretchable sensors capable of detecting both micro- and macro-strains for structural health monitoring, highlighting the achieved improvements in sensitivity, operational range, and durability of the composites. Ultimately, this analysis clarifies the interrelationship between nanofiller structure (CNTs and graphene), processing conditions, and sensor functionality, highlighting key avenues for future innovation in smart materials and wearable devices. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

15 pages, 2108 KB  
Article
Experimental Demonstration of Airborne Virtual Hyperbolic Metamaterials for Radar Signal Guiding
by Xiaoxuan Peng, Shiqiang Zhao, Yongzheng Wen, Jingbo Sun and Ji Zhou
Appl. Sci. 2026, 16(2), 773; https://doi.org/10.3390/app16020773 - 12 Jan 2026
Viewed by 95
Abstract
The inherent diffraction of electromagnetic waves, such as shortwaves and microwaves, severely limits the effective signal transmission distance, thereby constraining the development of related applications like radar and communications. This work experimentally demonstrates the use of a virtual hyperbolic metamaterial (VHMM) realized via [...] Read more.
The inherent diffraction of electromagnetic waves, such as shortwaves and microwaves, severely limits the effective signal transmission distance, thereby constraining the development of related applications like radar and communications. This work experimentally demonstrates the use of a virtual hyperbolic metamaterial (VHMM) realized via a plasma filament array induced in air by a femtosecond laser. We characterize the ability of this VHMM to control electromagnetic waves in the shortwave and microwave bands, particularly its guiding and collimating effects. By combining experimental measurements with effective medium theory, we confirm that under specific parameters, the principal diagonal components of the permittivity tensor for the plasma array exhibit opposite signs, manifesting typical hyperbolic dispersion characteristics which enable the guiding of electromagnetic waves. This research provides a feasible approach for utilizing lasers to create dynamically reconfigurable and non-physical structures in free space for manipulating long-wavelength electromagnetic radiation, demonstrating potential for applications in areas such as radar, communications, and remote sensing. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Electromagnetic Metamaterials)
Show Figures

Figure 1

19 pages, 7965 KB  
Article
An Open-Path Eddy-Covariance Laser Spectrometer for Simultaneous Monitoring of CO2, CH4, and H2O
by Viacheslav Meshcherinov, Iskander Gazizov, Bogdan Pravuk, Viktor Kazakov, Sergei Zenevich, Maxim Spiridonov, Shamil Gazizov, Gennady Suvorov, Olga Kuricheva, Yuri Lebedev, Imant Vinogradov and Alexander Rodin
Sensors 2026, 26(2), 462; https://doi.org/10.3390/s26020462 - 10 Jan 2026
Viewed by 211
Abstract
We present E-CAHORS—a compact mid-infrared open-path diode-laser spectrometer designed for the simultaneous measurement of carbon dioxide, methane, and water vapor concentrations in the near-surface atmospheric layer. These measurements, combined with simultaneous data from a three-dimensional anemometer, can be used to determine fluxes using [...] Read more.
We present E-CAHORS—a compact mid-infrared open-path diode-laser spectrometer designed for the simultaneous measurement of carbon dioxide, methane, and water vapor concentrations in the near-surface atmospheric layer. These measurements, combined with simultaneous data from a three-dimensional anemometer, can be used to determine fluxes using the eddy-covariance method. The instrument utilizes two interband cascade lasers operating at 2.78 µm and 3.24 µm within a novel four-pass M-shaped optical cell, which provides high signal power and long-term field operation without requiring active air sampling. Two detection techniques—tunable diode laser absorption spectroscopy (TDLAS) and a simplified wavelength modulation spectroscopy (sWMS)—were implemented and evaluated. Laboratory calibration demonstrated linear responses for all gases (R2 ≈ 0.999) and detection precisions at 10 Hz of 311 ppb for CO2, 8.87 ppb for CH4, and 788 ppb for H2O. Field tests conducted at a grassland site near Moscow showed strong correlations (R = 0.91 for CO2 and H2O, R = 0.74 for CH4) with commercial LI-COR LI-7200 and LI-7700 analyzers. The TDLAS mode demonstrated lower noise and greater stability under outdoor conditions, while sWMS provided baseline-free spectra but was more sensitive to power fluctuations. E-CAHORS combines high precision, multi-species sensing capability with low power consumption (10 W) and a compact design (4.2 kg). Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

54 pages, 8516 KB  
Review
Interdisciplinary Applications of LiDAR in Forest Studies: Advances in Sensors, Methods, and Cross-Domain Metrics
by Nadeem Fareed, Carlos Alberto Silva, Izaya Numata and Joao Paulo Flores
Remote Sens. 2026, 18(2), 219; https://doi.org/10.3390/rs18020219 - 9 Jan 2026
Viewed by 376
Abstract
Over the past two decades, Light Detection and Ranging (LiDAR) technology has evolved from early National Aeronautics and Space Administration (NASA)-led airborne laser altimetry into commercially mature systems that now underpin vegetation remote sensing across scales. Continuous advancements in laser engineering, signal processing, [...] Read more.
Over the past two decades, Light Detection and Ranging (LiDAR) technology has evolved from early National Aeronautics and Space Administration (NASA)-led airborne laser altimetry into commercially mature systems that now underpin vegetation remote sensing across scales. Continuous advancements in laser engineering, signal processing, and complementary technologies—such as Inertial Measurement Units (IMU) and Global Navigation Satellite Systems (GNSS)—have yielded compact, cost-effective, and highly sophisticated LiDAR sensors. Concurrently, innovations in carrier platforms, including uncrewed aerial systems (UAS), mobile laser scanning (MLS), Simultaneous Localization and Mapping (SLAM) frameworks, have expanded LiDAR’s observational capacity from plot- to global-scale applications in forestry, precision agriculture, ecological monitoring, Above Ground Biomass (AGB) modeling, and wildfire science. This review synthesizes LiDAR’s cross-domain capabilities for the following: (a) quantifying vegetation structure, function, and compositional dynamics; (b) recent sensor developments encompassing ALS discrete-return (ALSD), and ALS full-waveform (ALSFW), photon-counting LiDAR (PCL), emerging multispectral LiDAR (MSL), and hyperspectral LiDAR (HSL) systems; and (c) state-of-the-art data processing and fusion workflows integrating optical and radar datasets. The synthesis demonstrates that many LiDAR-derived vegetation metrics are inherently transferable across domains when interpreted within a unified structural framework. The review further highlights the growing role of artificial-intelligence (AI)-driven approaches for segmentation, classification, and multitemporal analysis, enabling scalable assessments of vegetation dynamics at unprecedented spatial and temporal extents. By consolidating historical developments, current methodological advances, and emerging research directions, this review establishes a comprehensive state-of-the-art perspective on LiDAR’s transformative role and future potential in monitoring and modeling Earth’s vegetated ecosystems. Full article
(This article belongs to the Special Issue Digital Modeling for Sustainable Forest Management)
Show Figures

Graphical abstract

18 pages, 1182 KB  
Article
Optical Microscopy for High-Resolution IPMC Displacement Measurement
by Dimitrios Minas, Kyriakos Tsiakmakis, Argyrios T. Hatzopoulos, Konstantinos A. Tsintotas, Vasileios Vassios and Maria S. Papadopoulou
Sensors 2026, 26(2), 436; https://doi.org/10.3390/s26020436 - 9 Jan 2026
Viewed by 161
Abstract
This study presents an integrated, low-cost system for measuring extremely small displacements in Ionic Polymer–Metal Composite (IPMC) actuators operating in aqueous environments. A custom optical setup was developed, combining a glass tank, a tubular microscope with a 10× achromatic objective, a digital USB [...] Read more.
This study presents an integrated, low-cost system for measuring extremely small displacements in Ionic Polymer–Metal Composite (IPMC) actuators operating in aqueous environments. A custom optical setup was developed, combining a glass tank, a tubular microscope with a 10× achromatic objective, a digital USB camera and uniform LED backlighting, enabling side-view imaging of the actuator with high contrast. The microscopy system achieves a spatial sampling of 0.536 μm/pixel on the horizontal axis and 0.518 μm/pixel on the vertical axis, while lens distortion is limited to a maximum edge deviation of +0.015 μm/pixel (≈+2.8%), ensuring consistent geometric magnification across the field of view. On the image-processing side, a predictive grid-based tracking algorithm is introduced to localize the free tip of the IPMC. The method combines edge detection, Harris corners and a constant-length geometric constraint with an adaptive search over selected grid cells. On 1920 × 1080-pixel frames, the proposed algorithm achieves a mean processing time of about 10 ms per frame and a frame-level detection accuracy of approximately 99% (98.3–99.4% depending on the allowed search radius) for actuation frequencies below 2 Hz, enabling real-time monitoring at 30 fps. In parallel, dedicated electronic circuitry for supply and load monitoring provides overvoltage, undervoltage, open-circuit and short-circuit detection in 100 injected fault events, all faults were detected and no spurious triggers over 3 h of nominal operation. The proposed microscopy and tracking framework offer a compact, reproducible and high-resolution alternative to laser-based or Digital Image Correlation techniques for IPMC displacement characterization and can be extended to other micro-displacement sensing applications in submerged or challenging environments. Full article
Show Figures

Figure 1

19 pages, 5302 KB  
Article
LSSCC-Net: Integrating Spatial-Feature Aggregation and Adaptive Attention for Large-Scale Point Cloud Semantic Segmentation
by Wenbo Wang, Xianghong Hua, Cheng Li, Pengju Tian, Yapeng Wang and Lechao Liu
Symmetry 2026, 18(1), 124; https://doi.org/10.3390/sym18010124 - 8 Jan 2026
Viewed by 208
Abstract
Point cloud semantic segmentation is a key technology for applications such as autonomous driving, robotics, and virtual reality. Current approaches are heavily reliant on local relative coordinates and simplistic attention mechanisms to aggregate neighborhood information. This often leads to an ineffective joint representation [...] Read more.
Point cloud semantic segmentation is a key technology for applications such as autonomous driving, robotics, and virtual reality. Current approaches are heavily reliant on local relative coordinates and simplistic attention mechanisms to aggregate neighborhood information. This often leads to an ineffective joint representation of geometric perturbations and feature variations, coupled with a lack of adaptive selection for salient features during context fusion. On this basis, we propose LSSCC-Net, a novel segmentation framework based on LACV-Net. First, the spatial-feature dynamic aggregation module is designed to fuse offset information by symmetric interaction between spatial positions and feature channels, thus supplementing local structural information. Second, a dual-dimensional attention mechanism (spatial and channel) is introduced to symmetrically deploy attention modules in both the encoder and decoder, prioritizing salient information extraction. Finally, Lovász-Softmax Loss is used as an auxiliary loss to optimize the training objective. The proposed method is evaluated on two public benchmark datasets. The mIoU on the Toronto3D and S3DIS datasets is 83.6% and 65.2%, respectively. Compared with the baseline LACV-Net, LSSCC-Net showed notable improvements in challenging categories: the IoU for “road mark” and “fence” on Toronto3D increased by 3.6% and 8.1%, respectively. These results indicate that LSSCC-Net more accurately characterizes complex boundaries and fine-grained structures, enhancing segmentation capabilities for small-scale targets and category boundaries. Full article
Show Figures

Figure 1

24 pages, 3401 KB  
Article
Ground to Altitude: Weakly-Supervised Cross-Platform Domain Generalization for LiDAR Semantic Segmentation
by Jingyi Wang, Xiaojia Xiang, Jun Lai, Yu Liu, Qi Li and Chen Chen
Remote Sens. 2026, 18(2), 192; https://doi.org/10.3390/rs18020192 - 6 Jan 2026
Viewed by 185
Abstract
Collaborative sensing between low-altitude remote sensing and ground-based mobile mapping lays the theoretical foundation for multi-platform 3D data fusion. However, point clouds collected from Airborne Laser Scanners (ALSs) remain scarce due to high acquisition and annotation costs. In contrast, while autonomous driving datasets [...] Read more.
Collaborative sensing between low-altitude remote sensing and ground-based mobile mapping lays the theoretical foundation for multi-platform 3D data fusion. However, point clouds collected from Airborne Laser Scanners (ALSs) remain scarce due to high acquisition and annotation costs. In contrast, while autonomous driving datasets are more accessible, dense annotation remains a significant bottleneck. To address this, we propose Ground to Altitude (GTA), a weakly supervised domain generalization (DG) framework. GTA leverages sparse autonomous driving data to learn robust representations, enabling reliable segmentation on airborne point clouds under zero-label conditions. Specifically, we tackle cross-platform discrepancies through progressive domain-aware augmentation (PDA) and cross-scale semantic alignment (CSA). For PDA, we design a distance-guided dynamic upsampling strategy to approximate airborne point density and a cross-view augmentation scheme to model viewpoint variations. For CSA, we impose cross-domain feature consistency and contrastive regularization to enhance robustness against perturbations. A progressive training pipeline is further employed to maximize the utility of limited annotations and abundant unlabeled data. Our study reveals the limitations of existing DG methods in cross-platform scenarios. Extensive experiments demonstrate that GTA achieves state-of-the-art (SOTA) performance. Notably, under the challenging 0.1% supervision setting, our method achieves a 6.36% improvement in mIoU over the baseline on the SemanticKITTI → DALES benchmark, demonstrating significant gains across diverse categories beyond just structural objects. Full article
(This article belongs to the Special Issue New Perspectives on 3D Point Cloud (Fourth Edition))
Show Figures

Figure 1

33 pages, 1474 KB  
Review
Understanding Pseudomonas aeruginosa Biofilms: Quorum Sensing, c-di-GMP Signaling, and Emerging Antibiofilm Approaches
by Ayman Elbehiry, Eman Marzouk, Husam M. Edrees, Mai Ibrahem, Safiyah Alzahrani, Sulaiman Anagreyyah, Hussain Abualola, Abdulaziz Alghamdi, Ahmed Alzahrani, Mahmoud Jaber and Akram Abu-Okail
Microorganisms 2026, 14(1), 109; https://doi.org/10.3390/microorganisms14010109 - 4 Jan 2026
Viewed by 462
Abstract
Pseudomonas aeruginosa (P. aeruginosa) forms biofilms that are difficult to eliminate. The matrix protects the cells, efflux pumps reduce intracellular drug levels, and dormant subpopulations survive treatment. Routine minimum inhibitory concentration (MIC) testing does not account for these features, which helps [...] Read more.
Pseudomonas aeruginosa (P. aeruginosa) forms biofilms that are difficult to eliminate. The matrix protects the cells, efflux pumps reduce intracellular drug levels, and dormant subpopulations survive treatment. Routine minimum inhibitory concentration (MIC) testing does not account for these features, which helps explain why infections often continue even when therapy appears appropriate. This review describes how quorum-sensing (QS) and cyclic di-guanosine monophosphate (c-di-GMP) regulate matrix production, efflux activity, and dormancy within P. aeruginosa biofilms. Important matrix components, including Psl, Pel, alginate, and extracellular DNA, slow the movement of antimicrobial agents. Regulatory proteins such as sagS and brlR increase the activity of the MexAB-OprM and MexEF-OprN efflux systems, further reducing intracellular drug concentrations. Oxygen and nutrient limitation promote persister cells and viable but nonculturable cells, with both having the ability to survive antibiotic levels that would normally be lethal. These defenses explain the gap between MIC values and biofilm-specific measurements, such as the minimum biofilm inhibitory concentration and the minimum biofilm eradication concentration. This review also summarizes emerging antibiofilm strategies. These include QS inhibitors, compounds that lower c-di-GMP, such as nitric oxide donors, nanoparticles, depolymerases, bacteriophages, and therapies that are directed at host targets. Modern diagnostic tools, such as confocal laser scanning microscopy, optical coherence tomography, and Raman spectroscopy, improve detection and guide treatment planning. A staged therapeutic approach is presented that begins with the dispersal or loosening of the matrix, continues with targeted antibiotics, and concludes with support for immune clearance. Viewing these strategies within a One Health framework highlights the role of biofilms in clinical disease and in environmental reservoirs and supports more effective surveillance and prevention. Full article
Show Figures

Figure 1

10 pages, 2650 KB  
Article
Deep Learning Wavefront Sensing from Object Scene for Directed Energy HEL Systems
by Leonardo Herrera, Nicholas Messina and Brij N. Agrawal
Sensors 2026, 26(1), 268; https://doi.org/10.3390/s26010268 - 1 Jan 2026
Viewed by 309
Abstract
Atmospheric turbulence significantly degrades the performance of High Energy Laser (HEL) systems by distorting the laser wavefront as it propagates through the atmosphere. Conventional correction techniques rely on Adaptive Optics (AO), which preserve beam quality at the object. However, AO systems require wavefront [...] Read more.
Atmospheric turbulence significantly degrades the performance of High Energy Laser (HEL) systems by distorting the laser wavefront as it propagates through the atmosphere. Conventional correction techniques rely on Adaptive Optics (AO), which preserve beam quality at the object. However, AO systems require wavefront sensors, such as Shack–Hartmann, and a reference beam, increasing system complexity and cost. This work presents a Deep Learning (DL)-based wavefront sensing approach that operates directly on scene imagery, thereby eliminating the need for dedicated wavefront sensors and a reference beam. A DL model was trained to predict wavefront distortions, represented by Zernike coefficients, from aberrated imagery of the Reaper Unmanned Aerial Vehicle (UAV). Reaper imagery utilized in training was aberrated at different levels of turbulence, D/r0, with D=30 cm being the aperture diameter of a telescope capturing the object scene and r0=3, 5, 7 cm the Fried parameter that defines weak turbulence for higher values and strong turbulence for lower values. The proposed model, trained across all these turbulence levels, outperformed models trained on a single level by providing superior accuracy and offering practical advantages for deployment. The model also demonstrated strong generalization capabilities for two practical scenarios: (a) Reaper imagery with turbulence levels beyond the training range, and (b) Mongoose UAV imagery not included in the training set. The model predicts turbulence accurately in both cases. The results confirm that if the model is trained for a UAV model for a certain turbulence level, it provides accurate predictions for turbulence levels outside its training range and for other UAV aberrated images. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

17 pages, 3389 KB  
Article
Offboard Fault Diagnosis for Large UAV Fleets Using Laser Doppler Vibrometer and Deep Extreme Learning
by Mohamed A. A. Ismail, Saadi Turied Kurdi, Mohammad S. Albaraj and Christian Rembe
Automation 2026, 7(1), 6; https://doi.org/10.3390/automation7010006 - 31 Dec 2025
Viewed by 353
Abstract
Unmanned Aerial Vehicles (UAVs) have become integral to modern applications, including smart agricultural robotics, where reliability is essential to ensure safe and efficient operation. It is commonly recognized that traditional fault diagnosis approaches usually rely on vibration and noise measurements acquired via onboard [...] Read more.
Unmanned Aerial Vehicles (UAVs) have become integral to modern applications, including smart agricultural robotics, where reliability is essential to ensure safe and efficient operation. It is commonly recognized that traditional fault diagnosis approaches usually rely on vibration and noise measurements acquired via onboard sensors or similar methods, which typically require continuous data acquisition and non-negligible onboard computational resources. This study presents a portable Laser Doppler Vibrometer (LDV)-based system designed for noncontact, offboard, and high-sensitivity measurement of UAV vibration signatures. The LDV measurements are analyzed using a Deep Extreme Learning-based Neural Network (DeepELM-DNN) capable of identifying both propeller fault type and severity from a single 1 s measurement. Experimental validation on a commercial quadcopter using 50 datasets across multiple induced fault types and severity levels demonstrates a classification accuracy of 97.9%. Compared to conventional onboard sensor-based approaches, the proposed framework shows strong potential for reduced computational effort while maintaining high diagnostic accuracy, owing to its short measurement duration and closed-form learning structure. The proposed LDV setup and DeepELM-DNN framework enable noncontact fault inspection while minimizing or eliminating the need for additional onboard sensing hardware. This approach offers a practical and scalable diagnostic solution for large UAV fleets and next-generation smart agricultural and industrial aerial robotics. Full article
Show Figures

Figure 1

Back to TopTop