Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = laser cleaning mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2093 KiB  
Review
A Practical Guide Paper on Bulk and PLD Thin-Film Metals Commonly Used as Photocathodes in RF and SRF Guns
by Alessio Perrone, Muhammad Rizwan Aziz, Francisco Gontad, Nikolaos A. Vainos and Anna Paola Caricato
Chemistry 2025, 7(4), 123; https://doi.org/10.3390/chemistry7040123 - 30 Jul 2025
Viewed by 286
Abstract
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many [...] Read more.
This paper serves as a comprehensive and practical resource to guide researchers in selecting suitable metals for use as photocathodes in radio-frequency (RF) and superconducting radio-frequency (SRF) electron guns. It offers an in-depth review of bulk and thin-film metals commonly employed in many applications. The investigation includes the photoemission, optical, chemical, mechanical, and physical properties of metallic materials used in photocathodes, with a particular focus on key performance parameters such as quantum efficiency, operational lifetime, chemical inertness, thermal emittance, response time, dark current, and work function. In addition to these primary attributes, this study examines essential parameters such as surface roughness, morphology, injector compatibility, manufacturing techniques, and the impact of chemical environmental factors on overall performance. The aim is to provide researchers with detailed insights to make well-informed decisions on materials and device selection. The holistic approach of this work associates, in tabular format, all photo-emissive, optical, mechanical, physical, and chemical properties of bulk and thin-film metallic photocathodes with experimental data, aspiring to provide unique tools for maximizing the effectiveness of laser cleaning treatment. Full article
(This article belongs to the Section Electrochemistry and Photoredox Processes)
Show Figures

Figure 1

15 pages, 8574 KiB  
Article
Hydrogen Embrittlement Resistance of an Optimized Additively Manufactured Austenitic Stainless Steel from Recycled Sources
by Mattia Cabrioli, María Silva Colmenero, Matteo Vanazzi, Luisa E. Mondora, Gianluca Acquistapace, Fabio Esposito and Michela Giovanardi
Corros. Mater. Degrad. 2025, 6(3), 34; https://doi.org/10.3390/cmd6030034 - 26 Jul 2025
Viewed by 180
Abstract
In the framework of hydrogen production and storage for clean energy generation, the resistance to hydrogen embrittlement of a newly developed austenitic stainless steel is presented. Gas-atomized metal powders prepared from secondary-sourced metals were employed to manufacture test specimens with Laser Powder Bed [...] Read more.
In the framework of hydrogen production and storage for clean energy generation, the resistance to hydrogen embrittlement of a newly developed austenitic stainless steel is presented. Gas-atomized metal powders prepared from secondary-sourced metals were employed to manufacture test specimens with Laser Powder Bed Fusion (LPBF) technology. After machining and exposure to a controlled, pressurized hydrogen atmosphere at high temperature, the effect of hydrogen charging on the mechanical performance under static and dynamic conditions was investigated. The stabilizing effect of the optimized chemical composition is reflected in the absence of degradation effects on Yield Stress (YS), Ultimate Tensile Stress (UTS), and fatigue life observed for specimens exposed to hydrogen. Moreover, despite a moderate reduction in the elongation at fracture observed by increasing the hydrogen charging time, ductility loss calculated as Relative Reduction of Area (RRA) remains substantially unaffected by the duration of exposure to hydrogen and demonstrates that the austenitic steel is capable of resisting hydrogen embrittlement (HE). Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

19 pages, 3591 KiB  
Article
Physics-Informed Generative Adversarial Networks for Laser Speckle Noise Suppression
by Xiangji Guo, Fei Xie, Tingkai Yang, Ming Ming and Tao Chen
Sensors 2025, 25(13), 3842; https://doi.org/10.3390/s25133842 - 20 Jun 2025
Viewed by 458
Abstract
In high-resolution microscopic imaging, using shorter-wavelength ultraviolet (UV) lasers as illumination sources is a common approach. However, the high spatial coherence of such lasers, combined with the surface roughness of the sample, often introduces disturbances in the received optical field, resulting in strong [...] Read more.
In high-resolution microscopic imaging, using shorter-wavelength ultraviolet (UV) lasers as illumination sources is a common approach. However, the high spatial coherence of such lasers, combined with the surface roughness of the sample, often introduces disturbances in the received optical field, resulting in strong speckle noise. This paper presents a novel speckle noise suppression method specifically designed for coherent laser-based microscopic imaging. The proposed approach integrates statistical physical modeling and image gradient discrepancy into the training of a Cycle Generative Adversarial Network (CycleGAN), capturing the perturbation mechanism of speckle noise in the optical field. By incorporating these physical constraints, the method effectively enhances the model’s ability to suppress speckle noise without requiring annotated clean data. Experimental results under high-resolution laser microscopy settings demonstrate that the introduced constraints successfully guide network training and significantly outperform traditional filtering methods and unsupervised CNNs in both denoising performance and training efficiency. While this work focuses on microscopic imaging, the underlying framework offers potential extensibility to other laser-based imaging modalities with coherent noise characteristics. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

15 pages, 4313 KiB  
Article
Fabrication of EP@PDMS@F-SiO2 Superhydrophobic Composite Coating on Titanium Alloy Substrate
by Chaoming Huang, Jinhe Qi, Jie Li, Xinchi Li, Jiawei Chen, Shuo Fu and Yanning Lu
Biomimetics 2025, 10(6), 404; https://doi.org/10.3390/biomimetics10060404 - 16 Jun 2025
Cited by 1 | Viewed by 513
Abstract
In this study, a preparation method of superhydrophobic composite coating based on a titanium alloy (Ti-6Al-4V) substrate is proposed. The micro-scale pit array structure was fabricated via laser etching technology. Utilizing the synergistic effects of epoxy resin (EP), polydimethylsiloxane (PDMS), and fluorinated nanosilica [...] Read more.
In this study, a preparation method of superhydrophobic composite coating based on a titanium alloy (Ti-6Al-4V) substrate is proposed. The micro-scale pit array structure was fabricated via laser etching technology. Utilizing the synergistic effects of epoxy resin (EP), polydimethylsiloxane (PDMS), and fluorinated nanosilica (F-SiO2), we successfully prepared an EP@PDMS@F-SiO2 composite coating. The effects of the contents of EP, PDMS, and F-SiO2 on the surface wettability, mechanical stability, and UV durability were studied by optimizing the coating ratio through orthogonal experiments. The results show that the micro–nano composite structure formed by laser etching can effectively fix the coating particles and provide excellent superhydrophobicity on the surface. The coating retains high hydrophobicity after paper abrasion (1000 cm under a 200 g load), demonstrating the mechanical stability of the armor-like structure, High-content F-SiO2 coatings exhibit greater UV durability. In addition, the coating surface has low droplet adhesion and self-cleaning capabilities for efficient contaminant removal. The research provides theoretical and technical support for the design and engineering application of a non-fluorinated, environmentally friendly superhydrophobic coating. Full article
Show Figures

Figure 1

23 pages, 4562 KiB  
Review
Biomimetic Superhydrophobic Surfaces: From Nature to Application
by Yingke Wang, Jiashun Li, Haoran Song, Fenxiang Wang, Xuan Su, Donghe Zhang and Jie Xu
Materials 2025, 18(12), 2772; https://doi.org/10.3390/ma18122772 - 12 Jun 2025
Cited by 1 | Viewed by 745
Abstract
Research on bionic superhydrophobic surfaces draws inspiration from the microstructures and wetting mechanisms of natural organisms such as lotus leaves, water striders, and butterfly wings, offering innovative approaches for developing artificial functional surfaces. By synergistically combining micro/nano hierarchical structures with low surface energy [...] Read more.
Research on bionic superhydrophobic surfaces draws inspiration from the microstructures and wetting mechanisms of natural organisms such as lotus leaves, water striders, and butterfly wings, offering innovative approaches for developing artificial functional surfaces. By synergistically combining micro/nano hierarchical structures with low surface energy chemical modifications, researchers have devised various fabrication strategies—including laser etching, sol-gel processes, electrochemical deposition, and molecular self-assembly—to achieve superhydrophobic surfaces characterized by contact angles exceeding 150° and sliding angles below 5°. These technologies have found widespread applications in self-cleaning architectural coatings, efficient oil–water separation membranes, anti-icing materials for aviation, and anti-biofouling medical devices. This article begins by examining natural organisms exhibiting superhydrophobic properties, elucidating the principles underlying their surface structures and the wetting states of droplets on solid surfaces. Subsequently, it categorizes and highlights key fabrication methods and application domains of superhydrophobic surfaces, providing an in-depth and comprehensive discussion. Full article
Show Figures

Figure 1

11 pages, 9609 KiB  
Article
Research on the Influence of Laser Cleaning Parameters on the Removal Effectiveness of Al Metal Layers from Ceramic Substrate Surfaces
by Yuqin Li, Hangchao Wang, Weizhuo Hua, Hang Wang and Yuchang Qing
Coatings 2025, 15(5), 600; https://doi.org/10.3390/coatings15050600 - 18 May 2025
Viewed by 553
Abstract
This study explores a novel method for removing Al metal coatings by using nanosecond pulsed lasers to clean Al metal layers from ceramic substrate surfaces. The impact of laser power and pulse width on the effectiveness of the removal of the Al metal [...] Read more.
This study explores a novel method for removing Al metal coatings by using nanosecond pulsed lasers to clean Al metal layers from ceramic substrate surfaces. The impact of laser power and pulse width on the effectiveness of the removal of the Al metal layer from the ceramic substrate was examined. The findings revealed that a laser with a power of 120 W, a pulse width of 200 ns, a frequency of 240 kHz, and a speed of 6000 mm/s could effectively remove the Al metal layer (50 μm) in a single laser cleaning cycle without causing damage to the ceramic substrate. The mechanism behind the removal of the Al metal layer from the ceramic substrate surface was also investigated. It was discovered that local high temperatures caused by laser irradiation and the difference in thermal expansion coefficients between the metal layer and the ceramic substrate both contribute to the removal of the Al metal layer during the laser cleaning process. This research provides an effective process for removing the Al metal layer. Full article
(This article belongs to the Special Issue Advanced Coating Material for Heritage Preservation, 2nd Edition)
Show Figures

Figure 1

30 pages, 10034 KiB  
Article
Study on Cold Start of Methanol Direct Injection Engine Based on Laser Ignition
by Xiaoyu Liu, Jie Zhu and Zhongcheng Wang
Energies 2025, 18(8), 2119; https://doi.org/10.3390/en18082119 - 20 Apr 2025
Cited by 1 | Viewed by 361
Abstract
Methanol has garnered attention as a promising alternative fuel for marine engines due to its high octane number and superior knock resistance. However, methanol-fueled engines face cold-start challenges under low-temperature conditions. Laser ignition technology, an emerging ignition approach, shows potential to replace conventional [...] Read more.
Methanol has garnered attention as a promising alternative fuel for marine engines due to its high octane number and superior knock resistance. However, methanol-fueled engines face cold-start challenges under low-temperature conditions. Laser ignition technology, an emerging ignition approach, shows potential to replace conventional spark ignition systems. This study investigates the effects of laser ignition on combustion and emission characteristics of direct-injection methanol engines based on methanol fuel combustion mechanisms using the AVL-Fire simulation platform, focusing on optimizing key parameters, including ignition energy, longitudinal depth, and lateral position, to provide theoretical support for efficient and clean combustion in marine medium-speed methanol engines. Key findings include an ignition energy threshold (60 mJ) for methanol combustion stability, with combustion parameters (peak pressure, heat release rate) stabilizing when energy reaches ≥80 mJ, recommending 80 mJ as the optimal energy level (balancing ignition reliability and energy consumption economy). Laser longitudinal depth significantly influences flame propagation characteristics, showing a 23% increase in flame propagation speed at 15 mm depth and a reduction of unburned methanol mass fraction to 0.8% at the end of combustion. Full article
(This article belongs to the Special Issue Advanced Combustion Technologies and Emission Control)
Show Figures

Figure 1

18 pages, 10927 KiB  
Article
Study on the Formation and Evolution Mechanism of Pinhole in Aluminum Foil for the Lithium-Ion Battery Soft Packaging
by Kai Zhang, Wei Chen, Zhehang Fan, Xiaohu Chen, Changle Xiao, Yunan Chen, Yinhui Xu, Ruian Ni and Hongyan Wu
Coatings 2025, 15(4), 472; https://doi.org/10.3390/coatings15040472 - 16 Apr 2025
Viewed by 702
Abstract
As the crucial core material in aluminum–plastic-laminated films, aluminum foil serves as a barrier and shaping element for lithium-ion battery soft packaging. However, its thinness, measuring only tens of microns, makes it susceptible to the formation of pinholes during the manufacturing process, which [...] Read more.
As the crucial core material in aluminum–plastic-laminated films, aluminum foil serves as a barrier and shaping element for lithium-ion battery soft packaging. However, its thinness, measuring only tens of microns, makes it susceptible to the formation of pinholes during the manufacturing process, which can significantly impact the barrier performance and properties of the aluminum–plastic-laminated film. The morphology and composition of foreign particles that lead to pinholes were analyzed using scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). Additionally, the formation mechanism and evolution law of pinholes were investigated using a laser scanning confocal microscope (LSCM). The results revealed that foreign particles responsible for pinholes originated from the inclusions in the aluminum alloy melt, filter aid particles from rolling oil, and environmental dust particles. To address this issue, potential strategies for controlling foreign particles were proposed. These included purifying the aluminum alloy melt, filtering the rolling oil, and maintaining a clean production environment. The simulated experiments showed that foreign particles were gradually embedded in the aluminum matrix during plastic deformation, leading to damage in the aluminum matrix. When the cumulative rolling reduction ratio exceeded 38%, the aluminum foil and foreign particles began to separate along the rolling direction, resulting in the formation of pinholes. The mechanism of uncoordinated deformation between foreign particles and aluminum foil was elaborated in detail. In addition, the simulation experiment indicated that once the cumulative reduction ratio surpassed 50%, the aspect ratio of the pinhole increased rapidly. When the cumulative reduction ratio increased to 83%, the pinhole began to gradually heal. Consequently, a quantitative relationship model between the pinhole area and the rolling reduction ratio was constructed. The pinhole evolution model enables a rough prediction of the actual pinhole area change and meets the requirements for engineering applications. This research provides both engineering applications and theoretical prediction approaches that can aid in the production of high-quality aluminum foil for lithium-ion battery soft packaging. Full article
Show Figures

Figure 1

12 pages, 2778 KiB  
Article
High Reflectivity, Compact, and Widely Tunable Distributed Bragg Reflector Based on Silicon-Rich SiNx-SiOy at 80 °C PECVD
by Irene Rodríguez Lamoso and Sascha Preu
Appl. Sci. 2025, 15(6), 3330; https://doi.org/10.3390/app15063330 - 18 Mar 2025
Viewed by 2473
Abstract
This study investigates the mechanical and optical characteristics of silicon nitride thin films deposited with PECVD at 80 °C for tunable silicon-rich SiNx-SiOy-based MEMS optical cavities. Varying the deposition parameters using SiH4 and N2 as precursor gases [...] Read more.
This study investigates the mechanical and optical characteristics of silicon nitride thin films deposited with PECVD at 80 °C for tunable silicon-rich SiNx-SiOy-based MEMS optical cavities. Varying the deposition parameters using SiH4 and N2 as precursor gases for silicon-rich SiNx thin films allows us to tune the refractive index to a value as high as 2.40 ± 0.013 at an extinction coefficient of only 0.008, an extremely low surface roughness of only 0.26 nm, and a compressive stress of about 150 MPa. We deposited 6.5-layer pairs of silicon-rich SiNx/SiOy-distributed Bragg reflector (DBR) micro-electro-mechanical system (MEMS) mirror that covers the whole 1300 and 1550 nm range. Cavity architectures of 6.5 top and 6 bottom layer-pairs were fabricated in the clean room providing a variety of cavity lengths between 0.615 µm and 2.85 µm. These lengths were then simulated in order to estimate the Young’s Modulus of silicon-rich SiNx, obtaining values from 56 to 92 GPa. One of the designs was characterised electro-thermally providing a tuning range of at least 86.7 nm centred at 1585 nm. The tunable filters are well suitable for implementation as tuning element in lasers for optical coherence tomography. Full article
(This article belongs to the Special Issue Interdisciplinary Approaches and Applications of Optics & Photonics)
Show Figures

Figure 1

18 pages, 22204 KiB  
Article
Oxide Removal Mechanism and Process Optimization During Integrated Pulsed-Continuous Laser Cleaning of Q235B Carbon Steel
by Wei Zhang, Chunming Wang, Qiong Wu, Fei Yan, Guoli Zhu and Junqiang Wang
Materials 2025, 18(6), 1247; https://doi.org/10.3390/ma18061247 - 12 Mar 2025
Viewed by 769
Abstract
Laser cleaning has received extensive attention due to its high efficiency, non-pollution and easy automation. However, how to improve the cleaning quality has become the focus of current research. In this paper, we used a pulsed laser for cleaning experiments on Q235B carbon [...] Read more.
Laser cleaning has received extensive attention due to its high efficiency, non-pollution and easy automation. However, how to improve the cleaning quality has become the focus of current research. In this paper, we used a pulsed laser for cleaning experiments on Q235B carbon steel to investigate the effects of different process parameters on the surface cleaning quality. On this basis, a new cleaning method was innovatively proposed to improve the oxide removal efficiency, microstructure, and mechanical properties of cleaned samples. The results showed that pulsed laser cleaning of Q235B carbon steel was the most effective at a laser linewidth of 50 mm, pulsed frequency of 500 kHz, and cleaning speed of 15 mm/s. A great deal of craters formed on the surface of cleaned samples due to the thermal shock of the pulsed laser. Compared with other laser cleaning methods, integrated laser cleaning had an obvious effect in raising the oxide removal efficiency and reducing the surface roughness. The ridge structures on the sample surface also could be successfully eliminated, subsequently achieving smooth structures. Fine-crystalline structures were formed near the surface of tested samples, which significantly decreased the crystal orientation and increased the number of small angle grain boundaries and the GND density. The improvement in hardness was mainly on account of grain refinement in the integrated laser cleaning samples. In addition, a physical model was proposed to illustrate the oxide removal mechanism on integrated pulsed-continuous laser cleaning samples. This research can offer new theoretical and technical support for solving the long-standing problems of efficiency and quality in laser cleaning, thus significantly broadening the application of laser technology in manufacturing fields. Full article
(This article belongs to the Special Issue Laser and Multi-Energy Field Processing of High-Performance Materials)
Show Figures

Figure 1

14 pages, 7263 KiB  
Article
Parameter Optimization, Morphological and Histological Characteristics of Accurate Bone Ablation by Femtosecond Laser: An In Vitro Study
by Yiyang Wang, Shanshan Liang, Yongsheng Zhou, Fusong Yuan and Hongqiang Ye
Bioengineering 2025, 12(3), 217; https://doi.org/10.3390/bioengineering12030217 - 21 Feb 2025
Viewed by 909
Abstract
The use of femtosecond laser for bone ablation has been demonstrated in numerous studies; however, the clinical application requires further optimization to meet safety, accuracy, and efficiency standards. This study aims to optimize the energy density parameter of a robot-controlled femtosecond laser surgical [...] Read more.
The use of femtosecond laser for bone ablation has been demonstrated in numerous studies; however, the clinical application requires further optimization to meet safety, accuracy, and efficiency standards. This study aims to optimize the energy density parameter of a robot-controlled femtosecond laser surgical system for bone ablation by assessing temperature changes, ablation efficiency, and ablation effects. Furthermore, the morphological and histological characteristics of bone tissue were compared with those of conventional mechanical methods. The results indicated that a laser energy density of 1.05 J/cm2 was optimal for bone ablation, maintaining the bone surface temperature below 47 °C and achieving an ablation efficiency of 0.145 mm3/s. The deviations in cavity diameters were significantly smaller for the laser group (6.58 ± 18.09 μm) compared to the bur group (80.09 ± 45.45 μm, p < 0.001, N = 5 per group). Femtosecond laser ablation produced cleaner cavity margins with minimal bone debris accumulation. Additionally, the adjacent Volkmann and Haversian canals retained their normal morphology, indicating limited mechanical and thermal damage to the bone tissue. The robot-controlled femtosecond laser system demonstrated the potential for achieving safe, accurate, efficient, and clean bone ablation, offering promising prospects for clinical applications. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

17 pages, 13254 KiB  
Article
Research on Laser Cleaning of Graphite Lubrication Coating on the Magnesium Alloy Surface
by Zhenhai Xu, Yunhui Yue, Donghe Zhang, Shaoxi Xue, Erju Liu, Debin Shan, Jie Xu and Bin Guo
Materials 2025, 18(3), 484; https://doi.org/10.3390/ma18030484 - 21 Jan 2025
Viewed by 899
Abstract
The lubricating coating must be removed from the forged or stamped workpieces. Developing environment-friendly and high-precision cleaning technology is necessary. In this study, a nanosecond pulsed laser was used to clean the graphite lubricating coating of 15 μm thickness on the surface of [...] Read more.
The lubricating coating must be removed from the forged or stamped workpieces. Developing environment-friendly and high-precision cleaning technology is necessary. In this study, a nanosecond pulsed laser was used to clean the graphite lubricating coating of 15 μm thickness on the surface of an MB15 magnesium alloy. The effects of various laser cleaning parameters on the cleaning quality and the cleaning mechanism were studied. When the laser fluence (F) increases from 1.27 to 7.64 J/cm2, the clearance rate increases, and the surface roughness initially decreases before increasing. When the pulse frequency (f) increases from 10 to 30 kHz, the single-pulse energy decreases, the clearance rate decreases, and the surface roughness increases. When the scanning speed (v) increases from 1000 to 5000 mm/s, the spot overlap rate decreases, the clearance rate decreases, and the surface roughness firstly decreases and then increases. The optimal cleaning parameter combinations are F = 3.82 J/cm2, f = 10 kHz, and v = 3000 mm/s. The graphite lubrication coating was almost completely removed without damaging the substrate surface, and the surface carbon content of the sample was decreased to 6.42%. The laser cleaning mechanism of the graphite lubricating coating on the magnesium alloy surface is dominated by thermal ablation. As the laser fluence increases, the physical and chemical reactions become more violent. Full article
(This article belongs to the Special Issue Laser Technology for Materials Processing)
Show Figures

Figure 1

20 pages, 9707 KiB  
Review
Advancements in Superhydrophobic Paper-Based Materials: A Comprehensive Review of Modification Methods and Applications
by Yin Tang, Shouwei Ban, Zhihan Xu, Jing Sun and Zhenxin Ning
Nanomaterials 2025, 15(2), 107; https://doi.org/10.3390/nano15020107 - 12 Jan 2025
Viewed by 1514
Abstract
Superhydrophobic paper-based functional materials have emerged as a sustainable solution with a wide range of applications due to their unique water-repelling properties. Inspired by natural examples like the lotus leaf, these materials combine low surface energy with micro/nanostructures to create air pockets that [...] Read more.
Superhydrophobic paper-based functional materials have emerged as a sustainable solution with a wide range of applications due to their unique water-repelling properties. Inspired by natural examples like the lotus leaf, these materials combine low surface energy with micro/nanostructures to create air pockets that maintain a high contact angle. This review provides an in-depth analysis of recent advancements in the development of superhydrophobic paper-based materials, focusing on methodologies for modification, underlying mechanisms, and performance in various applications. The paper-based materials, leveraging their porous structure and flexibility, are modified to achieve superhydrophobicity, which broadens their application in oil–water separation, anti-corrosion, and self-cleaning. The review describes the use of these superhydrophobic paper-based materials in diagnostics, environmental management, energy generation, food testing, and smart packaging. It also discusses various superhydrophobic modification techniques, including surface chemical modification, coating technology, physical composite technology, laser etching, and other innovative methods. The applications and development prospects of these materials are explored, emphasizing their potential in self-cleaning materials, oil–water separation, droplet manipulation, and paper-based sensors for wearable electronics and environmental monitoring. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

13 pages, 6787 KiB  
Article
Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser
by Junyu Duan, Gui Long, Xu Xu, Weiming Liu, Chuankun Li, Liang Chen, Jianguo Zhang and Junfeng Xiao
Micromachines 2024, 15(11), 1304; https://doi.org/10.3390/mi15111304 - 27 Oct 2024
Cited by 1 | Viewed by 2029
Abstract
In this paper, hierarchical micro/nano structures composed of periodic microstructures, laser-induced periodic surface structures (LIPSS), and nanoparticles were fabricated by femtosecond laser processing (LP). A layer of hydrophobic species was formed on the micro/nano structures through perfluorosilane modification (PM). The reflectivity and hydrophobicity’s [...] Read more.
In this paper, hierarchical micro/nano structures composed of periodic microstructures, laser-induced periodic surface structures (LIPSS), and nanoparticles were fabricated by femtosecond laser processing (LP). A layer of hydrophobic species was formed on the micro/nano structures through perfluorosilane modification (PM). The reflectivity and hydrophobicity’s influence mechanisms of structural height, duty cycle, and size are experimentally elucidated. The average reflectivity of the silicon surface in the visible light band is reduced to 3.0% under the optimal parameters, and the surface exhibits a large contact angle of 172.3 ± 0.8° and a low sliding angle of 4.2 ± 1.4°. Finally, the durability of the anti-reflection and superhydrophobicity is also confirmed. This study deepens our understanding of the principles of anti-reflection and superhydrophobicity and expands the design and preparation methods for self-cleaning and anti-reflective surfaces. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Fabrication)
Show Figures

Figure 1

20 pages, 7824 KiB  
Article
Research on a Feature Point Detection Algorithm for Weld Images Based on Deep Learning
by Shaopeng Kang, Hongbin Qiang, Jing Yang, Kailei Liu, Wenbin Qian, Wenpeng Li and Yanfei Pan
Electronics 2024, 13(20), 4117; https://doi.org/10.3390/electronics13204117 - 18 Oct 2024
Cited by 2 | Viewed by 1835
Abstract
Laser vision seam tracking enhances robotic welding by enabling external information acquisition, thus improving the overall intelligence of the welding process. However, camera images captured during welding often suffer from distortion due to strong noises, including arcs, splashes, and smoke, which adversely affect [...] Read more.
Laser vision seam tracking enhances robotic welding by enabling external information acquisition, thus improving the overall intelligence of the welding process. However, camera images captured during welding often suffer from distortion due to strong noises, including arcs, splashes, and smoke, which adversely affect the accuracy and robustness of feature point detection. To mitigate these issues, we propose a feature point extraction algorithm tailored for weld images, utilizing an improved Deeplabv3+ semantic segmentation network combined with EfficientDet. By replacing Deeplabv3+’s backbone with MobileNetV2, we enhance prediction efficiency. The DenseASPP structure and attention mechanism are implemented to focus on laser stripe edge extraction, resulting in cleaner laser stripe images and minimizing noise interference. Subsequently, EfficientDet extracts feature point positions from these cleaned images. Experimental results demonstrate that, across four typical weld types, the average feature point extraction error is maintained below 1 pixel, with over 99% of errors falling below 3 pixels, indicating both high detection accuracy and reliability. Full article
Show Figures

Figure 1

Back to TopTop