Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = large Stokes shifts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7022 KiB  
Article
Sensitive and Facile Detection of Aloin via N,F-CD-Coated Test Strips Coupled with a Miniaturized Fluorimeter
by Guo Wei, Chuanliang Wang, Rui Wang, Peng Zhang, Xuhui Geng, Jinhua Li, Abbas Ostovan, Lingxin Chen and Zhihua Song
Biomolecules 2025, 15(7), 1052; https://doi.org/10.3390/biom15071052 - 21 Jul 2025
Viewed by 294
Abstract
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects [...] Read more.
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects (increased carcinogenicity caused by excessive use of aloin) impacting human health. This investigation was inspired by the good fluorescence properties of carbon dots (CDs); CD-based sensors have aroused a great deal of interest due to their excellent sensitivity and selectivity. Thus, it is of great significance to develop novel CD-based sensors for aloin determination. Herein, N,F-CDs were designed and synthesized through a convenient hydrothermal strategy; the synthesized N,F-CDs possessed good fluorescence performance and a small particle size (near 4.3 nm), which demonstrated the successful preparation of N,F-CDs. The resulting N,F-CDs possessed a large Stokes shift and could emit a highly stable green fluorescence. The fluorescence of the N,F-CDs could be effectively quenched by aloin through the inner filter effect. Furthermore, the synthesis procedure was easy to operate. Finally, the N,F-CD-coated test strips were fabricated and combined with a miniaturized fluorimeter for the fluorescence detection of aloin via the inner filter effect for the first time. The N,F-CD-coated test strips were fabricated and used for the fluorescence sensing of aloin, and the results were compared with a typical ultraviolet (UV) method. The N,F-CD-coated test strips exhibited high recovery (96.9~106.1%) and sensitivity (31.8 nM, n = 3), good selectivity, low sample consumption (1 μL), high speed (5 min), good stability, and anti-interference properties. The results indicate that N,F-CD-coated test strips are applicable for the quantitative determination of aloin in bovine serum, orange juice, and urine samples. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

16 pages, 6344 KiB  
Article
RISC-Based 10K+ Core Finite Difference Method Accelerator for CFD
by Yanqiong Gong, Biwei Liu, Dongchang Huang, Wen Lai and Xuhui Wei
Appl. Sci. 2025, 15(13), 7283; https://doi.org/10.3390/app15137283 - 27 Jun 2025
Viewed by 231
Abstract
Computational limitations of computers have emerged as a critical barrier to the advancement of Computational Fluid Dynamics (CFD). Consequently, exploring novel accelerator architectures tailored for large-scale CFD applications and closely integrated with CFD algorithmic characteristics holds significant value. Through an in-depth analysis of [...] Read more.
Computational limitations of computers have emerged as a critical barrier to the advancement of Computational Fluid Dynamics (CFD). Consequently, exploring novel accelerator architectures tailored for large-scale CFD applications and closely integrated with CFD algorithmic characteristics holds significant value. Through an in-depth analysis of the finite difference method (FDM) for solving Navier–Stokes (N-S) equations, we propose a specialized accelerator architecture for FDM-based CFD (FAcc). Implemented on a 28 nm process, FAcc integrates 16,384 differential computing cores (FCores). Experimental validation demonstrates FAcc’s capability to solve N-S equations of varying complexities by flexibly configuring boundary conditions. Compared to conventional approaches, FAcc achieves significant acceleration performance, with its programmability underscoring adaptability to high-precision, large-scale CFD simulations. As the first CFD-focused accelerator designed from the instruction set architecture (ISA) level, FAcc bridges a critical gap in domain-specific hardware for CFD, offering a paradigm shift in high-performance fluid dynamics computation. Full article
Show Figures

Figure 1

19 pages, 2229 KiB  
Article
Dyeing to Know: Harmonizing Nile Red Staining Protocols for Microplastic Identification
by Derek Ho and Julie Masura
Colorants 2025, 4(2), 20; https://doi.org/10.3390/colorants4020020 - 3 Jun 2025
Cited by 1 | Viewed by 1249
Abstract
The increasing prevalence of microplastic (MP) pollution and the labor-intensive nature of existing identification methods necessitate improved large-scale detection approaches. Nile Red (NR) fluorescence, which varies with polarity, offers a potential classification method, but standardization of carrier solvents and fluorescence differentiation techniques remains [...] Read more.
The increasing prevalence of microplastic (MP) pollution and the labor-intensive nature of existing identification methods necessitate improved large-scale detection approaches. Nile Red (NR) fluorescence, which varies with polarity, offers a potential classification method, but standardization of carrier solvents and fluorescence differentiation techniques remains lacking. This study evaluated eight NR-carrier solvents (n-hexane, chloroform, acetone, methanol, ethanol, acetone/hexane, acetone/ethanol, and acetone/water) across ten common MP polymers (HDPE, LDPE, PP, EPS, PS, PC, ABS, PVC, PET, and PA). Fluorescence intensity, Stokes shift, and solvent-induced polymer degradation were analyzed. The study also assessed HSV (Hue/Saturation/Value) color spaces for Stokes shift representation and MP differentiation. Fenton oxidation effectively quenched fluorescence in natural organic matter (e.g., eggshells, fingernails, wood, cotton) while preserving NR-stained MPs. Acetone/water [25% (v/v)] emerged as the optimal solvent, balancing fluorescence performance and minimal degradation. Full article
(This article belongs to the Special Issue Feature Papers in Colorant Chemistry)
Show Figures

Figure 1

15 pages, 2652 KiB  
Article
Construction of Triphenylamine-Based Aggregation-Induced Emission Luminogens for Lysosomes Imaging and Its Application in the Photodynamic Therapy of Cancer Cells
by Zhanguo Sun, Bin Liu and Huijun Liu
Molecules 2025, 30(11), 2272; https://doi.org/10.3390/molecules30112272 - 22 May 2025
Viewed by 488
Abstract
Lysosomes are important acidic subcellular organelles whose dysfunction can lead to some related diseases. The development of new lysosome-imaging-guided AIEgens for the photodynamic therapy of cancer cells is important. In this work, two novel organic compounds with AIE characteristics, namely, TPAB-CF3 and [...] Read more.
Lysosomes are important acidic subcellular organelles whose dysfunction can lead to some related diseases. The development of new lysosome-imaging-guided AIEgens for the photodynamic therapy of cancer cells is important. In this work, two novel organic compounds with AIE characteristics, namely, TPAB-CF3 and TPAB-diCF3, were designed and synthesized by introducing the weakly basic morpholinyl moiety with lysosome-targeting ability into a triphenylamine-based luminogen. The distorted spatial feature of TPA and the D1-D2-π-A structure of these AIEgens prevented the aggregation-caused quenching of traditional fluorescent molecules and efficiently promoted the separation of the HOMO and LUMO. The outcomes were AIE features and a narrow single-triplet energy gap. Furthermore, TPAB-CF3 and TPAB-diCF3 showed bright yellow fluorescence emission peaks at 577 and 601 nm; large Stokes shifts of 234 and 256 nm, respectively; and excellent lysosome-targeted imaging of HeLa cells (Pearson’s coefficient = 0.90). In addition to the good 1O2-generation ability under light irradiation, these AIEgens achieved the high-efficiency bright lysosome imaging-guided photodynamic killing of cancer cells under white-light irradiation. Full article
Show Figures

Figure 1

15 pages, 6422 KiB  
Article
pH-Induced Conformational Change of the Chromophore of the Large Stokes Shift Fluorescent Protein tKeima
by Yongbin Xu, Yun Gyo Seo, In Jung Kim and Ki Hyun Nam
Molecules 2025, 30(7), 1623; https://doi.org/10.3390/molecules30071623 - 5 Apr 2025
Viewed by 665
Abstract
Fluorescent proteins (FPs) are widely used as optical probes in molecular and cell biology. tKeima is a tetrameric, large Stokes shift red fluorescent protein and the ancestral protein of mt-Keima, which is widely applied as a pH-sensitive fluorescent probe. While the pH sensitivity [...] Read more.
Fluorescent proteins (FPs) are widely used as optical probes in molecular and cell biology. tKeima is a tetrameric, large Stokes shift red fluorescent protein and the ancestral protein of mt-Keima, which is widely applied as a pH-sensitive fluorescent probe. While the pH sensitivity of mt-Keima is well characterized, the pH-dependent properties of the ancestral tKeima have not been comprehensively elucidated. To obtain a better understanding of the effects of pH on tKeima, its fluorescent emission intensity at various pH levels was measured, and its crystal structure at pH 4.0 was determined at a resolution of 2.2 Å. The fluorescence emission intensity of tKeima at pH 4.0 decreased by approximately 65% compared with its peak emission at pH 10.0. The crystal structure of tKeima at pH 4.0 revealed both cis and trans conformations of the chromophore, in contrast to previously determined structures at pH 8.0, which showed only the cis conformation. This indicates that pH induces a conformational change of the chromophore in tKeima. Both the cis and trans conformations in tKeima were stabilized by hydrogen bonds with neighboring residues. A comparison of tKeima at pH 4.0 with tKeima at basic pH, as well as with mKeima, highlights its unique structural properties. These results provide a deeper understanding of the structural basis for the pH-induced fluorescence emission changes in the Keima family. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

13 pages, 5468 KiB  
Article
A Bifunctional Fluorescence Probe for the Detection of Hypochlorous Acid and Viscosity in Living Cells and Zebrafish
by Xin Zhang, Yanmei Si, Xinpeng Chen, Xuqing Nie, Yiheng Zhang, Li Lin and Yehao Yan
Molecules 2025, 30(7), 1531; https://doi.org/10.3390/molecules30071531 - 30 Mar 2025
Cited by 1 | Viewed by 555
Abstract
As two significant indicators in the microenvironment, hypochlorous acid and viscosity play important roles in multitudinous physiological metabolic processes. However, it is challenging to determine the dynamic levels of hypochlorous acid and viscosity in living cells and organisms because of the absence of [...] Read more.
As two significant indicators in the microenvironment, hypochlorous acid and viscosity play important roles in multitudinous physiological metabolic processes. However, it is challenging to determine the dynamic levels of hypochlorous acid and viscosity in living cells and organisms because of the absence of effective molecular tools that can simultaneously detect hypochlorous acid and viscosity in organisms. Herein, a molecular design strategy was presented to fabricate a single fluorescence probe that can simultaneously detect hypochlorous acid and viscosity by using two different emission channels. In JXR, TICT-based 4-(2-(5-(dimethylamino)thiophen-2-yl)vinyl)-1-methylpyridin-1-ium-iodide chromophore serves as energy acceptor in the FRET process and sensors for hypochlorous acid and viscosity. JXR showed a large Stokes shift, wide emission peak distance, high photostability, and low toxicity. JXR could detect hypochlorous acid and viscosity rapidly, sensitively, and selectively by emitting different fluorescence signals. Importantly, JXR was successfully applied to track the intracellular hypochlorous acid and viscosity in living cells. Meanwhile, the generation of endogenous hypochlorite in living cells can be observed by using JXR. Full article
(This article belongs to the Special Issue Analytical Chemistry in Asia, 2nd Edition)
Show Figures

Figure 1

10 pages, 13654 KiB  
Article
Monitoring Dynamic Changes of Cellular Membrane GSH During Stroke via an ESIPT-Based Near-Infrared Fluorescent Probe
by Yue Gao and Zhao Wang
Molecules 2025, 30(3), 592; https://doi.org/10.3390/molecules30030592 - 28 Jan 2025
Viewed by 938
Abstract
Stroke, primarily ischemic (85%), results from inadequate blood supply and is worsened by ferroptosis, characterized by free radical generation and lipid peroxidation. Monitoring ferroptosis is essential for understanding its mechanisms and developing treatments. Glutathione (GSH) is a key ferroptosis biomarker, but current probes [...] Read more.
Stroke, primarily ischemic (85%), results from inadequate blood supply and is worsened by ferroptosis, characterized by free radical generation and lipid peroxidation. Monitoring ferroptosis is essential for understanding its mechanisms and developing treatments. Glutathione (GSH) is a key ferroptosis biomarker, but current probes are limited by short excitation/emission wavelengths, small Stokes shifts, and inability to monitor dynamic GSH changes at the cellular membrane, where ferroptosis plays a crucial role. To address these issues, we developed the PM-Red-GSH, a novel near-infrared (NIR) probe based on the Excited-state intramolecular proton transfer (ESIPT) mechanism. It shows strong NIR emission (715 nm), large Stokes shift (290 nm), and enhanced membrane binding (PCC = 0.95) due to its alkyl group. PM-Red-GSH enables dynamic GSH monitoring in an MCAO mouse model. These findings offer new insights into ferroptosis and stroke treatment. Full article
(This article belongs to the Special Issue Modern Trends in Bioactive Heterocyclic Chemistry)
Show Figures

Figure 1

12 pages, 1642 KiB  
Article
[(2-Dimesitylboryl)phenyl]ethynyl-Substituted [2.2]Paracyclophane Exhibiting Circularly Polarized Luminescence in Both Solution and Solid-State
by Lianfeng Guo, Mengyuan Zhang and Cuihua Zhao
Molecules 2025, 30(2), 390; https://doi.org/10.3390/molecules30020390 - 18 Jan 2025
Cited by 2 | Viewed by 1036
Abstract
Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [...] Read more.
Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, m-BPhANPh2-Cp, in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating N,N-diphenylamino group are introduced into two different benzene rings of [2.2]paracyclophane. Owing to the electronic effect of these two substituents, this compound can display charge-transfer emission with large Stokes shifts (∆υ = 4.23 − 8.20 × 103 cm−1) and fair quantum yields (ΦF = 0.15 − 0.37) in solutions. In addition, this compound can emit strong blue fluorescence in the solid state with quantum yields that are even much higher than in solution (ΦF up to 0.64 in powder and spin-coated film). Moreover, the enantiomeric forms of m-BPhANPh2-Cp can show strong CPL signals in both dilute solution and solid state with |glum|s up to 9.6 × 10−3 and 5.4 × 10−3, respectively. Thus, it is possible to achieve tunable CPL from blue to yellow in solution with high BCPLs ranging from 56.7 to 26.6 M−1 cm−1 and intense blue CPL combing high ΦF and |glum| in the solid state. Full article
Show Figures

Graphical abstract

14 pages, 3394 KiB  
Article
Asymmetric Donor–Acceptor 2,7-Disubstituted Fluorenes and Their 9-Diazoderivatives: Synthesis, Optical Spectra and Photolysis
by Andrei I. Savchenko, Vladimir N. Belov, Mariano L. Bossi and Stefan W. Hell
Molecules 2025, 30(2), 321; https://doi.org/10.3390/molecules30020321 - 15 Jan 2025
Viewed by 989
Abstract
In a search for dyes photoactivatable with visible light, fluorenes with substituents at positions 2 and 7 were prepared, and their absorption and emission spectra were studied. In particular, the synthesis route to 9-diazofluorenes with 2-(N,N-dialkylamino) and N-modified 7-(4-pyridyl) substituents was established. These [...] Read more.
In a search for dyes photoactivatable with visible light, fluorenes with substituents at positions 2 and 7 were prepared, and their absorption and emission spectra were studied. In particular, the synthesis route to 9-diazofluorenes with 2-(N,N-dialkylamino) and N-modified 7-(4-pyridyl) substituents was established. These compounds are initially non-fluorescent, undergo photolysis with UV or blue light, and—in non-polar media—provide orange- to red-emitting products with a large separation between absorption and emission bands. Irradiation of non-fluorescent 9-diazoderivative 20 in dioxane with the light of 365 nm or 470 nm was accompanied by strong fluorescence gain (10 to 20 times), orange–red emission, and a large Stokes shift of photoproducts, which structurally relate to fluorescent betaine 13 (model compound without diazo group). Photolysis of 20 in protic solvents (ROH = MeOH, H2O) provided clean transformation to C9-OR derivatives, though the emission gain in protic solvents was low. Full article
(This article belongs to the Special Issue Advances in Functional Organic Dye Chemistry)
Show Figures

Figure 1

13 pages, 3142 KiB  
Article
Advanced Large-Stokes-Shift Fluorescent Probe for the Detection of Biothiols: Facilitating Accurate Indirect Measurement of β-Lactamases
by Likun Liu, Dongling Yan, Yukun Ma, Peng Hou, Pengfei Qi, Xue Zhang, Yitong Liu and Song Chen
Int. J. Mol. Sci. 2025, 26(2), 525; https://doi.org/10.3390/ijms26020525 - 9 Jan 2025
Cited by 1 | Viewed by 834
Abstract
A novel fluorescent probe, Bibc-DNBS, based on the combination of the PET (photoinduced electron transfer) and ESIPT (excited-state intramolecular proton transfer) mechanisms, was designed and synthesized. Bibc-DNBS exhibited a Stokes shift of 172 nm in the fluorescence detection field. In addition, the probe [...] Read more.
A novel fluorescent probe, Bibc-DNBS, based on the combination of the PET (photoinduced electron transfer) and ESIPT (excited-state intramolecular proton transfer) mechanisms, was designed and synthesized. Bibc-DNBS exhibited a Stokes shift of 172 nm in the fluorescence detection field. In addition, the probe exhibited good performance in key parameters in bioassays such as sensitivity, specificity, and response time. Based on these properties, Bibc-DNBS successfully monitored the biothiol levels in live cells and zebrafish models, providing an effective analytical tool for real-time monitoring of biothiols. More importantly, Bibc-DNBS could be useful for indirectly detecting β-lactamases. Bibc-DNBS(3-(1H-benzo[d]imidazol-2-yl)-4′-cyano-[1,1′-biphenyl]-4-yl2,4-dinitrobenzenesulfonate) facilitated the screening of β-lactamase inhibitors, using tazobactam and clavulanic acid as model compounds, with respective semi-inhibitory concentration values of 31.32 μM and 2.26 μM, respectively. It might also be applied to distinguish sensitive strain Staphylococcus aureus ATCC 29213 and drug-resistant strain Enterobacter cloacae ATCC 13047, which could provide strong support for the clinical application of antibiotics and the development of new drugs. Full article
(This article belongs to the Special Issue Luminescent Dyes as Tools for Biological and Medical Applications)
Show Figures

Figure 1

9 pages, 1924 KiB  
Article
Vortex–Swirl Flow Results in Microbubble-Enhanced Transient Water Properties: A Time-Resolved Analysis from Fine-Bubble Engineering
by Niall J. English and Cees M. B. Kamp
Water 2024, 16(24), 3565; https://doi.org/10.3390/w16243565 - 11 Dec 2024
Viewed by 1281
Abstract
The inward vortex–swirl-type motion of convective, rectilinear water flow has been studied vis-à-vis its propensity for bubble formation, with a particular focus on the microbubble region. It has been found that a large population of smaller microbubbles, around 1 μm in diameter, is [...] Read more.
The inward vortex–swirl-type motion of convective, rectilinear water flow has been studied vis-à-vis its propensity for bubble formation, with a particular focus on the microbubble region. It has been found that a large population of smaller microbubbles, around 1 μm in diameter, is created in the process of these types of motions, and the time-dependent behaviour of this “micro-bubbly” water is analysed as Stokes’ law for microbubble dissipation occurs, such as bubble population, dissolved oxygen, pH, etc. Exponential decay analysis on the DLS-measured microbubble populations gave relaxation times τ of ~2.4 h and 3.6 h in exp(−t/τ) fits for DI and filtered tap water, respectively. The downward shift in pH was about 0.08 ± 0.016 and 0.11 ± 0.018 for DI and filtered tap water, respectively. For DI water, the level of dissolved oxygen (DO) at room temperature of 19 °C was ~102% at “t = 0”, and it declined to ~87% within 3 h (with the unprocessed background sample being about 84 ± 1.1%). The respective DO decay results in the case of the filtered tap water (at 19 °C) were ~105% at “t = 0”, declining to 91% within 3 h (background = 86 ± 1.2%). This allows for the dynamic properties to be understood in the context of how microbubbles determine the observed properties of post-flow water, including rationalising the observations of its time-transient properties. Naturally, this may well be of interest in gas transfer optimisation in the growing field of “fine-bubble engineering”. Full article
Show Figures

Figure 1

11 pages, 2838 KiB  
Article
The Synthesis of a Large Stokes-Shift Dye and Intercalation into the Nanochannels of Zeolite L
by Fabian Walther, Achim Ecker, Dominik Brühwiler and Marc Bornand
Materials 2024, 17(22), 5669; https://doi.org/10.3390/ma17225669 - 20 Nov 2024
Viewed by 956
Abstract
A host–guest-based fluorescent composite with a large Stokes shift was synthesized by intercalating 2,2′-(thiophene-2,5-diyl)bis(benzo[d]oxazol-6-amine) (BBTA) into the nanochannels of zeolite L (ZL) and sealing the pores with (3-aminopropyl)triethoxysilane (APTES). To confirm the orientation of the amino groups in BBTA, a single crystal of [...] Read more.
A host–guest-based fluorescent composite with a large Stokes shift was synthesized by intercalating 2,2′-(thiophene-2,5-diyl)bis(benzo[d]oxazol-6-amine) (BBTA) into the nanochannels of zeolite L (ZL) and sealing the pores with (3-aminopropyl)triethoxysilane (APTES). To confirm the orientation of the amino groups in BBTA, a single crystal of 2,5-bis(6-nitrobenzo[d]oxazol-2-yl)thiophene (BBTN) was grown and examined by X-ray crystallography. The evidence of successful intercalation of BBTA into the nanochannels of ZL was provided by fluorescence spectrometry, gas sorption and fluorescence microscopy. BBTA showed a Stokes shift of 6641 cm−1 (157 nm) in ethanol and 4611 cm−1 (93 nm) in toluene. The BBTA-ZL composite (BBTA-ZL-s) showed a Stokes shift of 5677 cm−1 (123 nm) in toluene, and 5450 cm−1 (124 nm) in ethanol. In addition, the degree of loading was determined and stability against leaching was confirmed. We report the synthesis of this novel composite dye material with potential applications where free dyes are not applicable and which retains a large Stokes shift, independent of its chemical environment. Full article
Show Figures

Figure 1

12 pages, 2924 KiB  
Article
Detection of Silver and Mercury Ions Using Naphthalimide-Based Fluorescent Probe
by Chunwei Yu, Xiangxiang Li, Mei Yang, Yinghao Xie and Jun Zhang
Molecules 2024, 29(21), 5196; https://doi.org/10.3390/molecules29215196 - 2 Nov 2024
Cited by 3 | Viewed by 1559
Abstract
A multifunctional fluorescent probe P based on a naphthalimide derivative for the detection of Ag+ and Hg2+ through a dual-signal was designed and characterized. P exhibited a large Stokes shift (107 nm), high selectivity, good sensitivity, and fast response time. By [...] Read more.
A multifunctional fluorescent probe P based on a naphthalimide derivative for the detection of Ag+ and Hg2+ through a dual-signal was designed and characterized. P exhibited a large Stokes shift (107 nm), high selectivity, good sensitivity, and fast response time. By adjusting the testing medium and the order of reagent addition, multifunctional detection with P was achieved. The addition of Ag+ or Hg2+ to P solution in either ethanol or an ethanol–water mixture resulted in a significant quenching of fluorescence emission at 537 nm and caused a decrease in the absorbance at 440 nm accompanied by the appearance of a new absorption peak at around 340 nm, and there was an obvious color change from yellow to colorless. In contrast, the addition of other common metal ions and anions did not produce substantial spectral or color changes. The detection limit of probe P for Ag+ and Hg2+ was calculated to be 0.33 μM. The sensing mechanism was proposed and validated through MS and 1H NMR spectrometry methods. Additionally, P demonstrated the capability to recognize Ag+ and Hg2+ in living cells with satisfactory results. Full article
(This article belongs to the Special Issue Research Progress of Fluorescent Probes)
Show Figures

Figure 1

9 pages, 2327 KiB  
Article
A Novel Near-Infrared Tricyanofuran-Based Fluorophore Probe for Polarity Detection and LD Imaging
by Zhaojia Hang, Shengmeng Jiang, Zhitong Wu, Jin Gong and Lizhi Zhang
Molecules 2024, 29(21), 5069; https://doi.org/10.3390/molecules29215069 - 26 Oct 2024
Cited by 4 | Viewed by 1173
Abstract
In this paper, LD-TCF, a targeting probe for lipid droplets (LDs) with a near-infrared emission wavelength and large Stokes shift, was fabricated for polarity detection by assembling a donor–π–acceptor (D–π–A) molecule with typical twisted intramolecular charge transfer (TICT) characteristics. Surprisingly, the fluorescence emission [...] Read more.
In this paper, LD-TCF, a targeting probe for lipid droplets (LDs) with a near-infrared emission wavelength and large Stokes shift, was fabricated for polarity detection by assembling a donor–π–acceptor (D–π–A) molecule with typical twisted intramolecular charge transfer (TICT) characteristics. Surprisingly, the fluorescence emission wavelength of the newly constructed probe LD-TCF was stretched to 703 nm, and the Stokes shift was amplified to 126 nm. Furthermore, LD-TCF could specifically answer the change in polarity efficiently and did not experience interference from other biologically active materials. Importantly, LD-TCF exhibited the ability to target lipid droplets, providing valuable insights for the early diagnosis and tracking of pathophysiological processes underlying LD polarity. Full article
(This article belongs to the Special Issue Fluorescent Probes in Biomedical Detection and Imaging)
Show Figures

Figure 1

33 pages, 18599 KiB  
Review
High Quantum Yields and Biomedical Fluorescent Imaging Applications of Photosensitized Trivalent Lanthanide Ion-Based Nanoparticles
by Tirusew Tegafaw, Dejun Zhao, Ying Liu, Huan Yue, Abdullah Khamis Ali Al Saidi, Ahrum Baek, Jihyun Kim, Yongmin Chang and Gang Ho Lee
Int. J. Mol. Sci. 2024, 25(21), 11419; https://doi.org/10.3390/ijms252111419 - 24 Oct 2024
Cited by 2 | Viewed by 2161
Abstract
In recent years, significant advances in enhancing the quantum yield (QY) of trivalent lanthanide (Ln3+) ion-based nanoparticles have been achieved through photosensitization, using host matrices or capping organic ligands as photosensitizers to absorb incoming photons and transfer energy to the Ln [...] Read more.
In recent years, significant advances in enhancing the quantum yield (QY) of trivalent lanthanide (Ln3+) ion-based nanoparticles have been achieved through photosensitization, using host matrices or capping organic ligands as photosensitizers to absorb incoming photons and transfer energy to the Ln3+ ions. The Ln3+ ion-based nanoparticles possess several excellent fluorescent properties, such as nearly constant transition energies, atomic-like sharp transitions, long emission lifetimes, large Stokes shifts, high photostability, and resistance to photobleaching; these properties make them more promising candidates as next-generation fluorescence probes in the visible region, compared with other traditional materials such as organic dyes and quantum dots. However, their QYs are generally low and thus need to be improved to facilitate and extend their applications. Considerable efforts have been made to improve the QYs of Ln3+ ion-based nanoparticles through photosensitization. These efforts include the doping of Ln3+ ions into host matrices or capping the nanoparticles with organic ligands. Among the Ln3+ ion-based nanoparticles investigated in previous studies, this review focuses on those containing Eu3+, Tb3+, and Dy3+ ions with red, green, and yellow emission colors, respectively. The emission intensities of Eu3+ and Tb3+ ions are stronger than those of other Ln3+ ions; therefore, the majority of the reported studies focused on Eu3+ and Tb3+ ion-based nanoparticles. This review discusses the principles of photosensitization, several examples of photosensitized Ln3+ ion-based nanoparticles, and in vitro and in vivo biomedical fluorescent imaging (FI) applications. This information provides valuable insight into the development of Ln3+ ion-based nanoparticles with high QYs through photosensitization, with future potential applications in biomedical FI. Full article
(This article belongs to the Special Issue The Application of Nanoparticles in Biomedicine)
Show Figures

Figure 1

Back to TopTop